Published as a conference paper at ICLR 2020

NETWORK DECONVOLUTION

Chengxi Ye; Matthew Evanusa, Hua He, Anton Mitrokhin,

Tom Goldstein, James A. Yorke] Cornelia Fermiiller, Yiannis Aloimonos

Department of Computer Science, University of Maryland, College Park
{cxy, mevanusa, huah, amitrokh}@umd.edu
{tomg@cs, yorke@, fer@umiacs, yiannis@cs}.umd.edu

ABSTRACT

Convolution is a central operation in Convolutional Neural Networks (CNNs),
which applies a kernel to overlapping regions shifted across the image. However,
because of the strong correlations in real-world image data, convolutional kernels
are in effect re-learning redundant data. In this work, we show that this redundancy
has made neural network training challenging, and propose network deconvolution,
a procedure which optimally removes pixel-wise and channel-wise correlations
before the data is fed into each layer. Network deconvolution can be efficiently
calculated at a fraction of the computational cost of a convolution layer. We also
show that the deconvolution filters in the first layer of the network resemble the
center-surround structure found in biological neurons in the visual regions of the
brain. Filtering with such kernels results in a sparse representation, a desired
property that has been missing in the training of neural networks. Learning from
the sparse representation promotes faster convergence and superior results without
the use of batch normalization. We apply our network deconvolution operation
to 10 modern neural network models by replacing batch normalization within
each. Extensive experiments show that the network deconvolution operation is able
to deliver performance improvement in all cases on the CIFAR-10, CIFAR-100,
MNIST, Fashion-MNIST, Cityscapes, and ImageNet datasets.

1 INTRODUCTION

Images of natural scenes that the human eye or camera captures contain adjacent pixels that are
statistically highly correlated (Olshausen & Field, 1996; Hyvrinen et al., 2009), which can be
compared to the correlations introduced by blurring an image with a Gaussian kernel. We can think
of images as being convolved by an unknown filter (Figure 1). The correlation effect complicates
object recognition tasks and makes neural network training challenging, as adjacent pixels contain
redundant information.

It has been discovered that there exists a visual correlation removal processes in animal brains. Visual
neurons called retinal ganglion cells and lateral geniculate nucleus cells have developed "Mexican
hat"-like circular center-surround receptive field structures to reduce visual information redundancy,
as found in Hubel and Wiesel’s famous cat experiment (Hubel & Wiesel, 1961; 1962). Furthermore,
it has been argued that data compression is an essential and fundamental processing step in natural
brains, which inherently involves removing redundant information and only keeping the most salient
features (Richert et al., 2016).

In this work, we introduce network deconvolution, a method to reduce redundant correlation in
images. Mathematically speaking, a correlated signal is generated by a convolution: b = k*xx = Kz
(as illustrated in Fig. 1 right), where £ is the kernel and K is the corresponding convolution matrix.
The purpose of network deconvolution is to remove the correlation effects via: x = K ~1b, assuming
K is an invertible matrix.

*Corresponding Author
"Institute for Physical Science and Technology

Published as a conference paper at ICLR 2020

Deconvolution Deconvolution
-« —
T ¥ T,
R » f f] —

Convelufion

Figure 1: Performing convolution on this real world image using a correlative filter, such as a Gaussian
kernel, adds correlations to the resulting image, which makes object recognition more difficult. The
process of removing this blur is called deconvolution. What if, however, what we saw as the real
world image was itself the result of some unknown correlative filter, which has made recognition
more difficult? Our proposed network deconvolution operation can decorrelate underlying image
features which allows neural networks to perform better.

Image data being fed into a convolutional network (CNN) exhibit two types of correlations. Neigh-
boring pixels in a single image or feature map have high pixel-wise correlation. Similarly, in the case
of different channels of a hidden layer of the network, there is a strong correlation or "cross-talk"
between these channels; we refer to this as channel-wise correlation. The goal of this paper is to show
that both kinds of correlation or redundancy hamper effective learning. Our network deconvolution
attempts to remove both correlations in the data at every layer of a network.

Our contributions are the following:

e We introduce network deconvolution, a decorrelation method to remove both the pixel-wise
and channel-wise correlation at each layer of the network.

e Our experiments show that deconvolution can replace batch normalization as a generic
procedure in a variety of modern neural network architectures with better model training.

e We prove that this method is the optimal transform if considering Lo optimization.

e Deconvolution has been a misnomer in convolution architectures. We demonstrate that
network deconvolution is indeed a deconvolution operation.

e We show that network deconvolution reduces redundancy in the data, leading to sparse
representations at each layer of the network.

e We propose a novel implicit deconvolution and subsampling based acceleration technique
allowing the deconvolution operation to be done at a cost fractional to the corresponding
convolution layer.

e We demonstrate the network deconvolution operation improves performance in comparison
to batch normalization on the CIFAR-10, CIFAR-100, MNIST, Fashion-MNIST, Cityscapes,
and ImageNet datasets, using 10 modern neural network models.

2 RELATED WORK

2.1 NORMALIZATION AND WHITENING

Since its introduction, batch normalization has been the main normalization technique (Ioffe &
Szegedy, 2015) to facilitate the training of deep networks using stochastic gradient descent (SGD).
Many techniques have been introduced to address cases for which batch normalization does not
perform well. These include training with a small batch size (Wu & He, 2018), and on recurrent
networks (Salimans & Kingma, 2016). However, to our best knowledge, none of these methods has
demonstrated improved performance on the ImageNet dataset.

In the signal processing community, our network deconvolution could be referred to as a whitening
deconvolution. There have been multiple complicated attempts to whiten the feature channels and
to utilize second-order information. For example, authors of (Martens & Grosse, 2015; Desjardins
et al., 2015) approximate second-order information using the Fisher information matrix. There, the
whitening is carried out interwoven into the back propagation training process.

The correlation between feature channels has recently been found to hamper the learning. Simple
approximate whitening can be achieved by removing the correlation in the channels. Channel-wise

Published as a conference paper at ICLR 2020

decorrelation was first proposed in the backward fashion (Ye et al., 2017). Equivalently, this procedure
can also be done in the forward fashion by a change of coordinates (Ye et al., 2018; Huang et al., 2018;
2019). However, none of these methods has captured the nature of the convolution operation, which
specifically deals with the pixels. Instead, these techniques are most appropriate for the standard
linear transform layers in fully-connected networks.

2.2 DECONVOLUTION OF DNA SEQUENCING SIGNALS

Similar correlation issues also exist in the context of DNA sequencing (Ye et al., 2014) where
many DNA sequencers start with analyzing correlated signals. There is a cross-talk effect between
different sensor channels, and signal responses of one nucleotide base spread into its previous and
next nucleotide bases. As a result the sequencing signals display both channel correlation and pixel
correlation. A blind deconvolution technique was developed to estimate and remove kernels to
recover the unblurred signal.

3 MOTIVATIONS

3.1 SUBOPTIMALITY OF EXISTING TRAINING METHODS

Deep neural network training has been a challenging research topic for decades. Over the past decade,
with the regained popularity of deep neural networks, many techniques have been introduced to
improve the training process. However, most of these methods are sub-optimal even for the most
basic linear regression problems.

Assume we are given a linear regression problem with Lo loss (Eq. 1). In a typical setting, the output
y = Xw is given by multiplying the inputs X with an unknown weight matrix w, which we are
solving for. In our paper, with a slight abuse of notation, X can be the data matrix or the augmented
data matrix (X|1).

1 1)
Lossr, = 5lly = 9l” = 5|1 Xw —g|1*, (D)

Here g is the response data to be regressed. With neural networks, gradient descent iterations (and its
variants) are used to solve the above problem. To conduct one iteration of gradient descent on Eq. 1,
we have:

1
Wnew = Wold — aN(XtXwold - X'9). 2)

Here « is the step length or learning rate. Basic numerical experiments tell us these iterations can
take long to converge. Normalization techniques, which are popular in training neural networks,
are beneficial, but are generally not optimal for this simple problem. If methods are suboptimal for
simplest linear problems, it is less likely for them to be optimal for more general problems. Our
motivation is to find and apply what is linearly optimal to the more challenging problem of network
training.
For the Lo regression problem, an optimal solution can be found by setting the gradient to O:
OLosst, — XH(Xw—19)=0

w=(X"X)"' X'y 3)

Here, we ask a fundamental question: When can gradient descent converge in one single iteration?

Proposition 1. Gradient descent converges to the optimal solution in one iteration if %X tX =1

Proof. Substituting 1 X' X = I, into the optimal solution (Eq. 3) we have w = 3 X'§.

On the other hand, substituting the same condition with & = 1 in Eq. 2 we have wyc, = %X tg. O

Since gradient descent converges in one single step, the above proof gives us the optimality condition.

Published as a conference paper at ICLR 2020

%X tX = T calculates the covariance matrix of the features. The optimal condition suggests that
the features should be standardized and uncorrelated with each other. When this condition does not
hold, the gradient direction does not point to the optimal solution. In fact, the more correlated the
data, the slower the convergence (Richardson, 1911). This problem could be handled equivalently
(Section A.8) either by correcting the gradient by multiplying the Hessian matrix = % (xtx)-1,
or by a change of coordinates so that in the new space we have %X tX = I. This paper applies the
latter method for training convolutional networks.

3.2 NEED OF SUPPORT FOR CONVOLUTIONS

Even though normalization methods were developed for training convolutional networks and have
been found successful, these methods are more suitable for non-convolutional operations. Existing
methods normalize features by channel or by layer, irrespective of whether the underlying operation
is convolutional or not. We will show in section 4.1 that if the underlying operation is a convolution,
this usually implies a strong violation of the optimality condition.

3.3 A NEUROLOGICAL BASIS FOR DECONVOLUTION

Many receptive fields in the primate visual cortex exhibit center-surround type behavior. Some
receptive fields, called on-center cells respond maximally when a stimuli is given at the center of the
receptive field and a lack of stimuli is given in a circle surrounding it. Some others, called off-center
cells respond maximally in the reversed way when a lack of stimuli is at the center and the stimuli is
given in a circle surrounding it (Fig. 9) (Hubel & Wiesel, 1961; 1962). It is well-understood that
these center-surround fields form the basis of the simple cells in the primate V1 cortex.

If the center-surround structures are beneficial for learning, one might expect such structures to be
learned in the network training process. As shown in the proof above, the minima is the same with or
without such structures, so gradient descent does not get an incentive to develop a faster solution,
rendering the need to develop such structures externally. As shown later in Fig. 2, our deconvolution
kernels strongly resemble center-surround filters like those in nature.

4 THE DECONVOLUTION OPERATION

4.1 THE MATRIX REPRESENTATION OF A CONVOLUTION LAYER

The standard convolution filtering x * kernel, can be formulated into one large matrix multiplication
Xw (Fig. 3). In the 2-dimensional case, w is the flattened 2D kernel. The first column of X
corresponds to the flattened image patch of z[1 : H — k,1 : W — k], where k is the side length of
the kernel. Neighboring columns correspond to shifted patches of x: X[:,2] = vec(x[1: H — k,2:
W —k+1)),.., X[:,k?] = vec(z[k : H,k : W]). A commonly used function im2col has been
designed for this operation. Since the columns of X are constructed by shifting large patches of
x by one pixel, the columns of X are heavily correlated with each other, which strongly violates
the optimality condition. This violation slows down the training algorithm (Richardson, 1911), and
cannot be addressed by normalization methods (Ioffe & Szegedy, 2015).

For a regular convolution layer in a network, we generally have multiple input feature channels
and multiple kernels in a layer. We call ¢m2col in each channel, and horizontally concatenate the
resulting data matrices from each individual channel to construct the full data matrix, then vectorize
and concatenate all the kernels to get w. Matrix vector multiplication is used to calculate the output
y, which is then reshaped into the output shape of the layer. Similar constructions can also be
developed for the specific convolution layers such as the grouped convolution, where we carry out
such constructions for each group. Other scenarios such as when the group number equals the channel
number (channel-wise conv) or when £ = 1 (1 x 1 conv) can be considered as special cases.

In Fig. 3 (top right) we show as an illustrative example the resulting calculated covariance matrix of
a sample data matrix X in the first layer of a VGG network (Simonyan & Zisserman, 2014) taken
from one of our experiments. The first layer is a 3 x 3 convolution that mixes RGB channels. The
total dimension of the weights is 27, the corresponding covariance matrix is 27 x 27. The diagonal
blocks correspond to the pixel-wise correlation within 3 x 3 neighborhoods. The off diagonal blocks

Published as a conference paper at ICLR 2020

correspond to correlation of pixels across different channels. We have empirically seen that natural
images demonstrate stronger pixel-wise correlation than cross-channel correlation, as the diagonal
blocks are brighter than the off diagonal blocks.

4.2 THE DECONVOLUTION OPERATION

Once the covariance matrix has been calculated, an inverse correction can be applied. It is beneficial
to conduct the correction in the forward way for numerical accuracy and because the gradient of the
correction can also be included in the gradient descent training.

Given a data matrix Xy« ¢ as described above in section 4.1, where N is the number of samples,
and F is the number of features, we calculate the covariance matrix Cov = ﬁ (X —w)T(X —p).

We then calculate an approximated inverse square root of the covariance matrix D = Cov™3 (see
section 4.5.3) and multiply this with the centered vectors (X — p) - D. In a sense, we remove the
correlation effects both pixel-wise and channel-wise. If computed perfectly, the transformed data has
the identity matrix as covariance: DT(X — p)T(X — p)D = Cov=25 . Cov - Cov=%% = I.

Algorithm 1 describes the process to construct X and D = (Cov +¢€- I)_%. Here € - I is introduced
to improve stability. We then apply the deconvolution operation via matrix multiplication to remove
the correlation between neighboring pixels and across different channels. The deconvolved data is
then multiplied with w. The full equation becomes y = (X — p)- D -w+b, orsimplyy = X - D -w
if X is the augmented data matrix (Fig. 3).

We denote the deconvolution operation in the i-th layer as D;. Hence, the input to next layer z; 1 is:
Tiy1 = fioWio Djom, 4)
where o is the (right) matrix multiplication operation, x; is the input coming from the ¢—th layer, D;

is the deconvolution operation on that input, W is the weights in the layer, and f; is the activation
function.

4.3 JUSTIFICATIONS

4.3.1 ON NAMING THE METHOD DECONVOLUTION

The name network deconvolution has also been used in inverting the convolution effects in biological
networks (Feizi et al., 2013). We prove that our operation is indeed a generalized deconvolution
operation.

Proposition 2. Removal of pixel-wise correlation (or patch-based whitening) is a deconvolution
operation.

Proof. Let § be the delta kernel, x be an arbitrary signal, and X = im2col(z).

z=2%x0=X-0=X-Cov™ . Co®® -6 =X -Cov ™% kppp=X-0=2z (5)
The above equations show that the deconvolution operation negates the effects of the convolution
using kernel k.o, = Cov®5 - 6. O

4.3.2 THE DECONVOLUTION KERNEL

The deconvolution kernel can be found as Cov =% - vec(d), where vec(:) is the Vectorize function,

or equivalently by slicing the middle row/column of Cov~—""° and reshaping it into the kernel size.
We visualize the deconvolution kernel from 1024 random images from the ImageNet dataset. The
kernels indeed show center-surround structure, which coincides with the biological observation (Fig.
2). The filter in the green channel is an on-center cell while the other two are off-center cells (Hubel
& Wiesel, 1961; 1962).

4.4 OPTIMALITY

Motivated by the ubiquity of center-surround and lateral-inhibition mechanisms in biological neural
systems, we now ask if removal of redundant information, in a manner like our network deconvolution,
is an optimal procedure for learning in neural networks.

Published as a conference paper at ICLR 2020

Figure 2: Visualizing the 15 x 15 deconvolution kernels from 1024 random images from the ImageNet
dataset. The kernels in the R,G,B channels consistently show center-surround structures.

4.4.1 Lo OPTIMIZATIONS

There is a classic kernel estimation problem (Cho & Lee, 2009; Ye et al., 2014) that requires
solving for the kernel given the input data X and the blurred output data y. Because X violates the
optimality condition, it takes tens or hundreds of gradient descent iterations to converge to a close
enough solution. We have demonstrated that our deconvolution processing is optimal for the kernel
estimation, in contrast to all other normalization methods.

4.4.2 ON TRAINING NEURAL NETWORKS

Training convolutional neural networks is analogous to a series of kernel estimation problem, where
we have to solve for the kernels in each layer. Network deconvolution has a favorable near-optimal
property for training neural networks.

For simplicity, we assume the activation function is a sample-variant matrix multiplication throughout
the network. The popular ReLU (Nair & Hinton, 2010) activation falls into this category. Let W be
the linear transform/convolution in a certain layer, A the inputs to the layer, B the operation from
the output of the current layer to the output of the last deconvolution operation in the network. The
computation of such a network can be formulated as: y = AW B.

Proposition 3. Network deconvolution is near-optimal if W is an orthogonal transform and if we
connect the output y to the Lo loss.

Rewriting the matrix equation from the previous subsection using the Kronecker product, we get:
y = AWB = (BT @ A)vec(W) = Xvec(W), where ® is the Kronecker product. According to
the discussion in the previous subsection, gradient descent is optimal if X = (BT ® A) satisfies
the orthogonality condition. In a network trained with deconvolution, the input A is orthogonal for
each batch of data. If B is also orthogonal, then according to basic properties of the Kronecker
product (Golub & van Loan, 2013)(Ch 12.3.1), (BT ® A) is also orthogonal. y is orthogonal since
it is the output of the last deconvolution operation in our network. If we assume W is an orthog-
onal transform, then B transforms orthogonal inputs to orthogonal outputs, and is approximately
orthogonal.

Slight loss of optimality incurs since we do not enforce W to be orthogonal. But the gain here is that
the network is unrestricted and is promised to be as powerful as any standard network. On the other
hand, it is worth mentioning that many practical loss functions such as the cross entropy loss have
similar shapes to the L loss.

4.5 ACCELERATIONS

We note that in a direct implementation, the runtime of our training using deconvolution is slower
than convolution using the wallclock as a metric. This is due to the suboptimal support in the
implicit calculation of the matrices in existing libraries. We propose acceleration techniques to
reduce the deconvolution cost to only a fraction of the convolution layer (Section A.6). Without
further optimization, our training speed is similar to training a network using batch normalization on
the ImageNet dataset while achieving better accuracy. This is a desired property when faced with
difficult models (Goodfellow et al., 2014) and with problems where the network part is not the major
bottleneck (Ye et al., 2018).

Published as a conference paper at ICLR 2020

Figure 3: (Left) Given a single channel image, and a 3 x 3 kernel, the kernel is first flattened into a 9
dimensional vector w. The 9 image patches, corresponding to the image regions each kernel entry
sees when overlaying the kernel over the image and then shifting the kernel one pixel each step, are
flattened into a tall matrix X. It is important to note that because the patches are shifted by just one
pixel, the columns of X are highly correlated. The output y is calculated with matrix multiplication
Xw, which is then reshaped back into a 2D image. (Top Right) In a convolution layer the matrix X
and Cov is calculated from Algorithm 1. (Bottom Right) The pixel-wise and channel-wise correlation

is removed by multiplying this X matrix with with Cov™ 3, before the weight training.

4.5.1 IMPLICIT DECONVOLUTION

Following from the associative rule of matrix multiplication, y = X - D - w = X - (D - w), which
suggests that the deconvolution can be carried out implicitly by changing the model parameters,
without explicitly deconvolving the data. Once we finish the training, we freeze D to be the running
average. This change of parameters makes a network with deconvolution perform faster at testing
time, which is a favorable property for mobile applications. We provide the practical recipe to include
thebiasterm: y = (X —p) - D-w+b=X-(D-w)+b—p-D-w.

4.5.2 FAST COMPUTATION OF THE COVARIANCE MATRICE

We propose a simple S = 3 — 5x subsampling technique that speeds up the computation of the
covariance matrix by a factor of 10 — 20. Since the number of involved pixels is usually large
compared with the degree of freedom in a convariance matrix (Section A.6), this simple strategy
provides significant speedups while maintaining the training quality. Thanks to the regularization and
the iterative method we discuss below, we found the subsampling method to be robust even when the
covariance matrix is large.

4.5.3 FAST INVERSE SQUARE ROOT OF THE COVARIANCE MATRIX

Computing the inverse square root has a long and fruitful history in computer graphics and numerical
mathematics. Fast computation of the inverse square root of a scalar with Newton-Schulz iterations
has received wide attention in game engines (Lomont, 2003). One would expect the same method
to seamlessly generalize to the matrix case. However, according to numerous experiments, the
standard Newton-Schulz iterations suffer from severe numerical instability and explosion after ~ 20
iterations for simple matrices (Section A.3) (Higham, 1986)(Eq. 7.12), (Higham, 2008). Coupled
Newton-Schulz iterations have been designed (Denman & Beavers, 1976) (Eq.6.35), (Higham, 2008)
and been proved to be numerically stable.

We compute the approximate inverse square root of the covariance matrix at low cost using coupled
Newton-Schulz iteration, inspired by the Denman-Beavers iteration method (Denman & Beavers,
1976). Given a symmetric positive definite covariance matrix C'ov, the coupled Newton-Schulz
iterations start with initial values Yy = Cov, Zy = I. The iteration is defined as: Y1 = %Yk (31 —
ZYs), Zys1 = (31 — Z4 Y1) Zy, and Yy, — Covz, Z), — Cov™ 2 (Higham, 2008) (Eq.6.35). Note
that this coupled iteration has been used in recent works to calculate the square root of a matrix (Lin
& Maji, 2017). Instead, we take the inverse square root from the outputs, as first shown in (Ye et al.,

Published as a conference paper at ICLR 2020

Figure 4: (a) The input image. (b) The absolute value of the zero-meaned input image. (c) The
deconvolved input image (min-max normalized, gray areas stands for 0). (d) Taking the absolute
value of the deconvolved image.

2018). In contrast with the vanilla Newton-Schulz method (Higham, 2008; Huang et al., 2019)(Eq.
7.12), we found the coupled Newton-Schulz iterations are stable even if iterated for thousands of
times.

It is important to point out a practical implementation detail: when we have Ch;,, input feature
channels, and the kernel size is k X k, the size of the covariance matrix is (Ch;, X k x k) X (Chyp, X
k x k). The covariance matrix becomes large in deeper layers of the network, and inverting such a
matrix is cumbersome. We take a grouping approach by evenly dividing the feature channels Ch,
into smaller blocks (Ye et al., 2017; Wu & He, 2018; Ye et al., 2018); we us b to denote the block
size, and usually set B = 64. The mini-batch covariance of a each block has a manageable size of
(B x k x k) x (B x k x k). Newton-Schulz iterations are therefore conducted on smaller matrices.
We notice that only a few (~ 5) iterations are necessary to achieve good performance. Solving for the
inverse square root takes O((k x k x B)?). The computation of the covariance matrix has complexity

OH xW xkxkxBxBx%nx Ly=0OHxW xkxkx Chi, x Bx g+=). Implicit

deconvolution is a simple matrix multiplication with complextity O(Choys x (B x k x k)? x %)

The overall complexity is O(ZXWXEXEXChinxB 4 (| x k x B)? 4+ Choyt x (B x k x k)? x

%), which is usually a small fraction of the cost of the convolution operation (Section A.6).
In comparison, the computational complexity of a regular convolution layer has a complexity of
O(H xW x k x kx Chip X Choyt).

Algorithm 1 Computing the Deconvolution Matrix

Input: C channels of input features [21, za, ..., 2]
fori e {1,...,C} do
X; = im2col(x;)
end for
X = [X1,..., X¢] %Horizontally Concatenate
X = Reshape(X) %Divide columns into groups
Cov =+ X'X
D=~ (Cov+e-I)"2

A A

4.6 SPARSE REPRESENTATIONS

Our deconvolution applied at each layer removes the pixel-wise and channel-wise correlation and
transforms the original dense representations into sparse representations (in terms of heavy-tailed
distributions) without losing information. This is a desired property and there is a whole field with
wide applications developed around sparse representations (Hyvrinen et al., 2009)(Fig. 7.7), (Ol-
shausen & Field, 1996; Ye et al., 2013). In Fig. 4, we visualize the deconvolution operation on
an input and show how the resulting representations (4(d)) are much sparser than the normalized
image (4(b)). We randomly sample 1024 images from the ImageNet and plot the histograms and
log density functions before and after deconvolution (Fig. 10). After deconvolution, the log density
distribution becomes heavy-tailed. This holds true also for hidden layer representations (Section A.5).
We show in the supplementary material (Section A.4) that the sparse representation makes classic
regularizations more effective.

Published as a conference paper at ICLR 2020

5 A UNIFIED VIEW

Network deconvolution is a forward correction method that has relations to several successful
techniques in training neural networks. When we set £ = 1, the method becomes channel-wise
decorrelation, as in (Ye et al., 2018; Huang et al., 2018). When k = 1, B = 1, network deconvolution
is Batch Normalization (Ioffe & Szegedy, 2015). If we apply the decorrelation in a backward way in
the gradient direction, network deconvolution is similar to SG D2 (Ye et al., 2017), natural gradient
descent (Desjardins et al., 2015) and K F'AC (Martens & Grosse, 2015), while being more efficient
and having better numerical properties (Section A.8).

6 EXPERIMENTS

We now describe experimental results validating that network deconvolution is a powerful and
successful tool for sharpening the data. Our experiments show that it outperforms identical networks
using batch normalization (Ioffe & Szegedy, 2015), a major method for training neural networks.
As we will see across all experiments, deconvolution not only improves the final accuracy but also
decreases the amount of iterations it takes to learn a reasonably good set of weights in a small number
of epochs.

Linear Regression with L, loss and Logistic Regression: As a first experiment, we ran network
deconvolution on a simple linear regression task to show its efficacy. We select the Fashion-MNIST
dataset. It is noteworthy that with binary targets and the L loss, the problem has an explicit solution
if we feed the whole dataset as input. This problem is the classic kernel estimation problem, where
we need to solve for 10 optimal 28 x 28 kernels to convolve with the inputs and minimize the Lo
loss for binary targets. During our experiment, we notice that it is important to use a small learning
rate of 0.02 — 0.1 for vanilla SG D training to prevent divergence. However, we notice that with
deconvolution we can use the optimal learning rate 1.0 and get high accuracy as well. It takes ~ 5
iterations to get to a low cost under the mini-batch setting (Fig. 5(a)). This even holds if we change
the loss to logistic regression loss (Fig. 5(b)).

@)

25 .
SGD)| e SGD
[T Deconv| 2

—— Deconv

SGD + BN
Deconv 8

8 8 8

_ Logistic Loss
Cross Entropy Loss
Accuracy

Aun
Iterations) Iterations terations _Ep .
2 W E) 0 100 120] 2)) £ 100 2 % 2 0) 8 100 120 0o 2 4 6 8 10 12 1

Figure 5: (a-b): Regression losses on Fashion-MNIST dataset showing the effectiveness of deconvo-
lution versus batch normalization on a non-convolutional type layer. (a) One layer, linear regression
model with L loss. (b) One layer, linear regression model with logistic regression loss. (c-d): Results
of a 3-hidden-layer Multi Layer Perceptron (MLP) network on the MNIST dataset.

Convolutional Networks on CIFAR-10/100: We ran deconvolution on the CIFAR-10 and CIFAR-
100 datasets (Table 1), where we compared again the use of network deconvolution versus the use
of batch normalization. Across 10 modern network architectures for both datasets, deconvolution
consistently improves convergence on these well-known datasets. There is a wide performance gap
after the first epochs of training. Deconvolution leads to faster convergence: 20-epoch training using
deconvolution leads to results that are comparable to 100-epoch training using batch normalization.

In our setting, we remove all batch normalizations in the networks and replace them with deconvo-
lution before each convolution/fully-connected layer. For the convolutional layers, we set B = 64
before calculating the covariance matrix. For the fully-connected layers, we set B equal to the input
channel number, which is usually 512. We set the batch size to 128 and the weight decay to 0.001.
All models are trained with SGD and a learning rate of 0.1.

Convolutional Networks on ImageNet: We tested three widely acknowledged model architectures
(VGG-11, ResNet-18, DenseNet-121) from the PyTorch model zoo and find significant improvements
on both networks over the reference models. Notably, for the VGG-11 network, we notice our method

Published as a conference paper at ICLR 2020

CIFAR-10 CIFAR-100

Net Size | BN 1 ND 1 BN20 ND20 BNI100 ND100 | BN1 ND 1 BN20 ND20 BN100 ND 100
VGG-16 1471M | 1412% 74.18% 90.07% 93.25% 93.58% 94.56% 2.01% 37.94% 63.22% 71.97% 7275% 75.32%
ResNet-18 11.17M | 56.25% 72.89% 92.64% 94.07% 94.87% 95.40% | 16.10% 35.73% 72.67% 76.55% 77.710% 78.63%
Preact-18 11.17M | 55.15% 72.70% 91.93% 94.10% 9437% 95.44% | 15.17% 36.52% 70.79% 76.04% 76.14% 79.14%
DenseNet-121 6.88M | 59.56% 76.63% 93.25% 94.89% 94.71% 95.88% | 17.90% 4291% 74.79% 71.63% 17.99% 80.69%
ResNext-29 476M | 52.14% 69.22% 93.12% 94.05% 95.15% 95.80% | 17.98% 3093% 7426% 71.35% 78.60% 80.34%
MobileNet v2 2.28M | 5429% 65.40% 89.86% 92.52% 90.51% 94.35% | 15.88% 29.01% 66.31% 7233% 67.52% 74.90%
DPN-92 34.18M | 34.00% 53.02% 92.87% 93.74% 95.14% 95.82% 8.84% 21.89% 74.87% 76.12% 78.87% 80.38%
PNASNetA 0.13M | 21.81% 64.19% 75.85% 81.97% 81.22% 84.45% | 1049% 36.52% 44.60% 55.65% 54.52% 59.44%
SENet-18 11.26M | 57.63% 67.21% 9237% 9411% 94.57% 95.38% | 16.60% 32.22% 71.10% 75.79% 76.41% 78.63%
EfficientNet 29IM | 3540% 55.67% 84.21% 86.78% 86.07% 88.42% | 19.03% 22.40% 57.23% 57.59% 59.09% 62.37%

Table 1: Comparison on CIFAR-10/100 over 10 modern CNN architectures. Models are trained for
1, 20, 100 epochs using batch normalization (BN) and network deconvolution (ND). Every single
model shows improved accuracy using network deconvolution.

VGG-11 ResNet-18 DenseNet-121
Original BN Deconv BN Deconv BN Deconv
ImageNet top-1 | 69.02% 70.38% 71.95% | 69.76% 71.24% | 74.65% 75.73%
ImageNet top-5 | 88.63% 89.81% 90.49% | 89.08% 90.14% | 92.17% 92.75%

Table 2: Comparison of accuracies of deconvolution with the model zoo implementation of VGG-11,
ResNet-18, DenseNet-121 on ImageNet with batch normalization using the reference implementation
on PyTorch. For VGG-11, we also include the performance of the original network without batch
normalization.

has led to significant improved accuracy. The top-1 accuracy is even higher than 71.55%, reported
by the reference VGG-13 model trained with batch normalization. The improvement introduced by
network deconvolution is twice as large as that from batch normalization (+1.36%). This fact also
suggests that improving the training method may be more effective than improving the architecture.

We keep most of the default settings when training the models. We set B = 64 for all deconvolution
operations. The networks are trained for 90 epochs with a batch size of 256, and weight decay of
0.0001. The initial learning rates are 0.01,0.1 and 0.1, respectively for VGG-11,ResNet-18 and
DenseNet-121 as described in the paper. We used cosine annealing to smoothly decrease the learning
rate to compare the curves.

Generalization to Other Tasks It is worth pointing out that network deconvolution can be applied to
other tasks that have convolution layers. Further results on semantic segmentation on the Cityscapes
dataset can be found in (Sec. A.8). Also, the same deconvolution procedure for 1 x 1 convolutions
can be used for non-convolutional layers, which makes it useful for the broader machine learning
community. We constructed a 3-layer fully-connected network that has 128 hidden nodes in each
layer and used the sigmoid for the activation function. We compare the result with/without batch
normalization, and deconvolution, where we remove the correlation between hidden nodes. Indeed,
applying deconvolution to MLP networks outperforms batch normalization, as shown in Fig. 5(c,d).

7 CONCLUSION

In this paper we presented network deconvolution, a novel decorrelation method tailored for convo-
lutions, which is inspired by the biological visual system. Our method was evaluated extensively
and shown to improve the optimization efficiency over standard batch normalization. We provided
a thorough analysis of its performance and demonstrated consistent performance improvement of
the deconvolution operation on multiple major benchmarks given 10 modern neural network models.
Our proposed deconvolution operation is straightforward in terms of implementation and can serve as
a good alternative to batch normalization.

10

Published as a conference paper at ICLR 2020

REFERENCES

Sunghyun Cho and Seungyong Lee. Fast motion deblurring. In ACM SIGGRAPH Asia 2009 Papers,
SIGGRAPH Asia ’09, pp. 145:1-145:8, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
858-2. doi: 10.1145/1661412.1618491. URL http://doi.acm.org/10.1145/1661412.
16184091.

Eugene D. Denman and Alex N. Beavers, Jr. The matrix sign function and computations in systems.
Appl. Math. Comput., 2(1):63-94, January 1976. ISSN 0096-3003. doi: 10.1016/0096-3003(76)
90020-5. URL http://dx.doi.org/10.1016/0096-3003(76)90020-5.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, and koray kavukcuoglu. Natural neural
networks. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances
in Neural Information Processing Systems 28, pp. 2071-2079. Curran Associates, Inc., 2015. URL
http://papers.nips.cc/paper/5953-natural-neural-networks.pdf.

Soheil Feizi, Daniel Marbach, Muriel Médard, and Manolis Kellis. Network deconvolution as a
general method to distinguish direct dependencies in networks. In Nature biotechnology, 2013.

Gene H. Golub and Charles F. van Loan. Matrix Computations. JHU Press, fourth edition, 2013.
ISBN 1421407949 9781421407944. URL http://www.cs.cornell.edu/cv/GVL4/
golubandvanloan.htm.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks, 2014.

Nicholas J. Higham. Newton’s method for the matrix square root. 1986.

Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2008. ISBN 978-0-898716-46-7.

Lei Huang, Dawei Yang, Bo Lang, and Jia Deng. Decorrelated batch normalization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 791-800, 2018.

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond standardization
towards efficient whitening. CoRR, abs/1904.03441, 2019. URL http://arxiv.org/abs/
1904.03441.

D. H. Hubel and T. N. Wiesel. Integrative action in the cat’s lateral geniculate
body. The Journal of Physiology, 155(2):385-398, 1961. doi: 10.1113/jphysiol.
1961.sp006635. URL https://physoc.onlinelibrary.wiley.com/doi/abs/10.
1113/jphysiol.1961.sp006635.

David H Hubel and Torsten N Wiesel. Receptive fields, binocular interaction and functional architec-
ture in the cat’s visual cortex. The Journal of physiology, 160(1):106-154, 1962.

Aapo Hyvrinen, Jarmo Hurri, and Patrick O. Hoyer. Natural Image Statistics: A Probabilistic
Approach to Early Computational Vision. Springer Publishing Company, Incorporated, 1st edition,
2009. ISBN 1848824904, 9781848824904.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Tsung-Yu Lin and Subhransu Maji. Improved bilinear pooling with cnns. CoRR, abs/1707.06772,
2017. URL http://arxiv.org/abs/1707.06772.

Chris Lomont. Fast inverse square root. Tech-315 nical Report, 32, 2003.

James Martens and Roger B. Grosse. Optimizing neural networks with Kronecker-factored ap-
proximate curvature. CoRR, abs/1503.05671, 2015. URL http://arxiv.org/abs/1503.
05671.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807-814,
2010.

11

http://doi.acm.org/10.1145/1661412.1618491
http://doi.acm.org/10.1145/1661412.1618491
http://dx.doi.org/10.1016/0096-3003(76)90020-5
http://papers.nips.cc/paper/5953-natural-neural-networks.pdf
http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm
http://www.cs.cornell.edu/cv/GVL4/golubandvanloan.htm
http://arxiv.org/abs/1904.03441
http://arxiv.org/abs/1904.03441
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1961.sp006635
https://physoc.onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.1961.sp006635
http://arxiv.org/abs/1707.06772
http://arxiv.org/abs/1503.05671
http://arxiv.org/abs/1503.05671

Published as a conference paper at ICLR 2020

Bruno A. Olshausen and David J. Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607—609, 1996. ISSN 1476-4687.
doi: 10.1038/381607a0. URL https://doi.org/10.1038/381607a0.

L. F. Richardson. The approximate arithmetical solution by finite differences of physical problems
involving differential equations, with an application to the stresses in a masonry dam. Philosophical
Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, 210:307-357, 1911. ISSN 02643952. URL http://www. jstor.org/
stable/90994.

Micah Richert, Dimitry Fisher, Filip Piekniewski, Eugene M Izhikevich, and Todd L Hylton. Funda-
mental principles of cortical computation: unsupervised learning with prediction, compression and
feedback. arXiv preprint arXiv:1608.06277, 2016.

Tim Salimans and Diederik P. Kingma. Weight normalization: A simple reparameterization to
accelerate training of deep neural networks. CoRR, abs/1602.07868, 2016. URL http://
arxiv.org/abs/1602.07868.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yuxin Wu and Kaiming He. Group normalization. CoRR, abs/1803.08494, 2018. URL http:
//arxiv.org/abs/1803.08494.

Chengxi Ye, Dacheng Tao, Mingli Song, David W. Jacobs, and Min Wu. Sparse norm filtering. CoRR,
abs/1305.3971, 2013. URL http://arxiv.org/abs/1305.3971.

Chengxi Ye, Chiaowen Hsiao, and Héctor Corrada Bravo. BlindCall: Ultra-fast base-calling of
high-throughput sequencing data by blind deconvolution. Bioinformatics, 30(9):1214-1219, 01
2014. ISSN 1367-4803. doi: 10.1093/bioinformatics/btu010. URL https://doi.org/10.
1093/biocinformatics/btul10.

Chengxi Ye, Yezhou Yang, Cornelia Fermiiller, and Yiannis Aloimonos. On the importance of
consistency in training deep neural networks. CoRR, abs/1708.00631, 2017. URL http://
arxiv.org/abs/1708.00631.

Chengxi Ye, Anton Mitrokhin, Cornelia Fermiiller, James A. Yorke, and Yiannis Aloimonos. Unsu-
pervised learning of dense optical flow and depth from sparse event data. CoRR, abs/1809.08625,
2018. URL http://arxiv.org/abs/1809.08625.

A APPENDIX

A.1 SOURCE CODE

Source code can be found at:

https://github.com/yechengxi/deconvolution

The models for CIFAR-10/CIFAR-100 are adapted from the following repository:
https://github.com/kuangliu/pytorch-cifar.

A.2 GENERALIZATION TO SEMANTIC SEGMENTATION

To demonstrate the applicability of network deconvolution to different tasks, we modify a baseline
architecture of DeepLabV3 with a ResNet-50 backbone for semantic segmentation. We remove
the batch normalization layers in both the backbone network and the head network and pre-apply
deconvolutions in all the convolution layers. The full networks are trained from scratch on the
Cityscape dataset (with 2,975 training images) using a learning rate of 0.1 for 30 epochs with
batch size 8. All settings are the same with the official PyTorch recipe except we have raised the
learning rate from 0.01 to 0.1 for training from scratch. Here we report the mean intersection over
union (mloU) curves of standard training and deconvolution using a crop size of 480. We achieved
significantly improved training results (Fig. 6).

12

https://doi.org/10.1038/381607a0
http://www.jstor.org/stable/90994
http://www.jstor.org/stable/90994
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1602.07868
http://arxiv.org/abs/1803.08494
http://arxiv.org/abs/1803.08494
http://arxiv.org/abs/1305.3971
https://doi.org/10.1093/bioinformatics/btu010
https://doi.org/10.1093/bioinformatics/btu010
http://arxiv.org/abs/1708.00631
http://arxiv.org/abs/1708.00631
http://arxiv.org/abs/1809.08625

Published as a conference paper at ICLR 2020

Validation Mean o on Cityscapes. w Validation Giobal Pixel Accuracy on Cityscapes Training Loss on Cityscapes

Figure 6: The mean IoU, pixel-wise accuracy and training loss on the Cityscapes dataset using
DeepLabV3 with a ResNet-50 backbone. In our setting, we modified all the convolution layers to
remove batch normalizations and insert deconvolutions.

A.3 COUPLED/UNCOUPLED NEWTON SCHULZ ITERATIONS

30

Vanilla Newton Schulz
Coupled Newton Schulz

25

20

0Os!
=
o

10

0 5 10 15 20
Iterations

Figure 7: Comparison of coupled/uncoupled Newton-Schulz iterations on a 27 x 27 covariance matrix
constructed from the Lenna Image.

We take the Lenna image and construct the 27 x 27 covariance matrix using pixels from 3 x 3
windows in 3 color channels. We apply the vanilla Newton-Schulz iteration and compare it with the
coupled Newton-Schulz iteration. The Frobenius Norm of D - D - C'ov — [is plotted in Fig. 7. The
rounding errors quickly accumulate with the vanilla Newton Schulz iterations, while the coupled
iteration is stable. From the curve we set the iteration number to 15 for the first layer of the network
to thoroughly remove the correlation in the input data. We freeze the deconvolution matrix D after
200 iterations. For the middle layers of the network we set the iteration number to 5.

A.4 REGULARIZATIONS

If two features correlate, weight decay regularization is less effective. If X, X, are strongly
correlated features, but differ in scale, and if we look at: w; X7 + wy X3, the weights are likely to
co-adapt during the training, and weight decay is likely to be more effective on the larger coefficient.
The other, small coefficient is left less penalized. Network deconvolution reduces the co-adaptation of
weights, and weight decay becomes less ambiguous and more effective. Here we report the accuracies
of the VGG-13 network on the CIFAR-100 dataset using weight decays of 0.005 and 0.0005. We
notice that a stronger weight decay is detrimental to the performance with standard training using
batch normalization. In contrast, the network achieves better performance with deconvolution using
a stronger weight decay. Each setting is repeated for 5 times, and the mean accuracy curves with
confidence intervals of (+/- 1.0 std) are shown in Fig. 8(a).

13

Published as a conference paper at ICLR 2020

Cross Entropy Loss of VGG-11 on ImageNet
T T T T T

1.5
VGG-13 Validation Accuracy (CIFAR-100) SGD
= 5GD + BN
Deconv

~

6.5

Accuracy
=
8
Loss

o

5.5

= ¥ =SGD + BN, Weight Decay 0.0005
—F—5GD + BN, Weight Decay 0.005 ||
- I - Deconv, Weight Decay 0.0005
—JF—Deconv, Weight Decay 0.005

0 2 4 6 8 10 12 14 16 18 20 Q 200 400 600 800 1000
Epochs Iterations

(@) (b)

Figure 8: (a) The effects of weight decay on stochastic gradient descent (SGD) and batch normal-
ization (BN) versus SGD and deconvolution (Deconv), training on the CIFAR-100 dataset on the
VGG-13 network. Here we notice that increased weight decay leads to worse results for standard
training. However, in our case with deconvolution, the final accuracy actually improves with increased
weight decay (.0005 to .005). Each experiment is repeated 5 times. We show the confidence interval
(+/- 1 std). (b)The training loss of the VGG-11 network on the ImageNet dataset. Only the first
1000 iterations are shown. Comparison is made among SGD, SGD with batch normalization and

deconvolution.

Figure 9: An on-center cell and off-center cell found in animal vision system. The on-center cell
(left) responds maximally when a stimuli is given at the center and a lack of stimuli is given in a
circle surrounding it. The off-center cell (right) responds in the opposite way.

A.5 SPARSE REPRESENTATIONS FOR CONVOLUTION LAYERS

Network deconvolution reduces redundancy similar to the that in the animal vision system (Fig. 9).
The center-surround antagonism results in efficient and sparse representations. In Fig. 10 we plot
the distribution and log density of the signals at the first layer before and after deconvolution. The
distribution after the deconvolution has a well-known heavy-tailed shape (Hyvrinen et al., 2009; Ye
et al., 2013).

Fig. 11 shows the inputs to the 5-th convolution layer in VGG — 11. This input is the output of a
ReLU activation function. The deconvolution operation removes the correlation between channels
and nearby pixels, resulting in a sharper and sparser representation.

A.6 PERFORMANCE BREAKDOWN

Network deconvolution is a customized new design and relies on less optimized functions such as
Im2col. Even so, the slow down is tunable to be around ~ 10 — 30% on modern networks. We
plot the walltime vs accuracy plot of the VGG network on the ImageNet dataset. For this plot we
use B = 16,5 = 4 (Fig. 12). Here we also break down the computational cost on CPU to show
deconvolution is a low-cost and promising approach if properly optimized on GPUs. We take random
images at various scales and set the input/output channels to common values in modern networks.

14

Published as a conference paper at ICLR 2020

Histogram of Signals Before/After Deconv 1 Log Probability of Signals Before/After Deconv

0.14

Input Signal
After Deconv

[input Signal
[Cafter Deconv -2

5 -5 0 5

(b)

Figure 10: (a) Histograms of input signals (pixel values) before/after deconvolution. (b) Log density
of the input signals before/after deconvolution.) The x-axis represents the normalized pixel value.
After applying deconvolution, the resulting data is much sparser, with most values being zero.

(a) (b)

Figure 11: (a)Input features to the 5-th convolution layer in VGG-11. (b) Taking the absolute value of
the deconvolved features. The features have been min-max normalized for visualization.(Best view
on a display.)

The CPU timing on a batch size of 128 can be found in Table 3. Here we fix the Newton-Schulz
iteration times to be 5.

A.7 ACCELERATED CONVERGENCE

We demonstrate the loss curves using different settings when training the VGG-11 network on the
ImageNet dataset(Fig. 8(b)). We can see network deconvolution leads to significantly faster decay in
training loss.

15

Published as a conference paper at ICLR 2020

VGG-11 Top-1 Validation Accuracy on ImageNet

Accuracy

=
1=}

w
=}

)
=1

SGD + BN Top 1 Acc
Deconv Top 1 Acc

10
0 10 20 30 40 50 60

Walltime(Hrs)
Figure 12: The accuracy vs walltime curves of VGG-11 networks on the ImageNet dataset using

batch normalization and network deconvolution.

H W Chyy Choyt groups stride Im2Col Cov Inv Conv

256 256 3 64 1 0.069 0.0079 0.00025 0.50
128 128 64 128 1 0.315 0.3214 0.02069 0.67
64 o4 128 256 2 0.045 0.0445 0.00076 0.55
32 32 256 512 4 0.022 0.0391 0.00222 0.48
16 16 512 512 8 0.011 0.0444 0.01155 0.23
128 128 64 128 64 0.376 0.0871 0.00024 0.66

64 64 128 256 128
32 32 256 512 256

k
3
3
3
3
3
3
3 0.042 0.0412 0.00082 0.53
3

16 16 512 512 512 3
3
3
3
3
3
3
7
7
7

0.023 0.0377 0.00208 0.47
0.011 0.0437 0.01194 0.22

BNV, USIEN RV, USRIV, IV, VS VS IOV L US IR UV IOV VS IR UV IOV IS IR US SOV IR O]

128 128 64 128 32 0.360 0.0939 0.00021 0.67
64 64 128 256 32 0.044 0.0425 0.00076 0.55
32 32 256 512 32 0.023 0.0374 0.00204 0.46
16 16 512 512 32 0.011 0.0421 0.01180 0.22
256 256 3 64 1 0.030 0.0046 0.00029 0.49
128 128 64 128 1 0.153 0.1284 0.01901 0.66
256 256 3 64 1 0.338 0.1111 0.00107 0.69
256 256 3 64 1 0.180 0.0408 0.00107 0.69
256 256 3 64 1 0.063 0.0210 0.00104 0.70
256 256 3 64 1 11 0.681 0.4810 0.00479 0.99
256 256 3 64 1 11 0.315 0.1909 0.00488 1.00
256 256 3 64 1 11 0.199 0.1022 0.00494 0.99
256 256 3 64 1 11 11 0.069 0.0420 0.00496 1.00

Table 3: Breakdown of deconvolution layer component computation time (in sec., measured on CPU)
against various layer parameters. The batch size is set to 128, H x W are layer dimensions, Ch;,,
- number of input channels, C'h,,; - number of output channels, groups - the number of channel
groups, k is the kernel size and stride is the sampling stride.

A.8 FORWARD BACKWARD EQUIVALENCE

We discuss the relation between the correction in the forward way and in the backward way. We
thank Prof. Brian Hunt for providing us this simple proof.

Assuming that in one layer of the network we have X - W; =X - D - Wy =Y, W, = D=1 . Wy,
here D = Cov~ 93,

OLoss _ OLoss . ay Xt O0Loss
owy 9y oWy oy

(6)

16

Published as a conference paper at ICLR 2020

BatchSize Acc LR € ITter
2 89.12% 0.001 0.01

8 91.26% 0.01 0.01

32 91.18% 0.01 1le-5

128 91.56% 0.1 1e-5

512 91.66% 0.5 1le-5

2048 90.64% 1 1le-5

(S IV, IV, IV, I (O V)

Table 4: Performance and settings under different batch sizes.

Assuming D is fixed,
OLoss OLoss 0Y . OLoss
aw, ~ oy Caw, XDy @
One iteration of gradient descent with respect to W} is:
0Loss 0Loss
new old old t
Wi =Wy _a3Wfld =W —aX"- oY (®)
dLoss dLoss o) OLoss
(9LW2 = gY O({ﬂ}//z :(XD)t gY .
One iteration of gradient descent with respect to Wy is:
0Loss
WZnew _ 2old —a ~ (9)
3W2ld
0Loss oY 0Loss
-1, new _ my—lyyrold _ — p—lyold _ . t .
D Wi DWWy «a Y o oW D™ Wi a(X - D) Yy (10)
We then reach the familiar form (Ye et al., 2017):
new o O0Loss o _ OLoss
Wl = 1ld—0[D2'Xt'87Y: 1ld—aCO'U 1(Xt87Y) (11)

We have proved the equivalence between forward correction and the Newton’s method-like backward
correction. Carrying out the forward correction as in our paper is beneficial because as the neural
network gets deep, X gets more ill-posed. Another reason is that because D depends on X, the layer
gradients are more accurate if we include the inverse square root into the back propagation training.
This is easily achievable with the help of automatic differentiation implementations:

i D;
&EH:DiHofionLa +1
aﬂl‘i Ba:,

o fioW; (12)
Here x; is an input to the current layer and ;1 is the input to the next layer.

A.9 INFLUENCE OF BATCH SIZE

We notice network deconvolution works well under various batch sizes. However, different settings
need to be adjusted to achieve optimal performance. High learning rates can be used for large batch
sizes, small learning rates should be used for small batch sizes. When the batch size is small, to avoid
overfitting the noise, the number of Newton-Schulz iterations should be reduced and the regularization
factor e should be raised. More results and settings can be found in Table 4.

A.10 IMPLEMENTATION OF FASTDECONV IN PYTORCH

We present the reference implementation in PyTorch. "FastDeconv" can be used to replace instances
of "nn.Conv2d" in the network architectures. Batch normalizations should also be removed.

17

import torch

import torch.nn as nn

import torch. nn. functional as F

from torch. nn. modules import conv

from torch. nn.modules.utils import _pair
import math

class FastDeconv(conv. ConvNd) :
def init (self, in channels, out channels, kernel size, stride=1, padding=0, dilation=1,
groups=1, bias=True,
eps=le-5, n iter=5, momentum=0.1, block=64, sampling stride=3, freeze=False,
freeze iter=100) :
self. momentum = momentum
self.n_iter = n_iter
self. eps = eps
self. counter = 0
super (FastDeconv, self). init (
in channels, out channels, pair(kernel size), pair(stride), pair(padding), pair(
dilation),

False, pair(0), groups, bias, padding mode="zeros’)

if block > in channels:
block = in_channels
else:
if in channels % block != 0:
block = math. gcd(block, in channels)

if groups > 1:
grouped conv

block = in_channels // groups

self. block = block
self.num features = kernel size *% 2 % block
if groups == 1:
self. register buffer (running mean’, torch. zeros(self.num_features))
self. register buffer (running deconv’, torch. eye(self.num features))
else:
self. register buffer (running mean’, torch. zeros (kernel size %% 2 * in_channels))
self. register buffer C running_deconv’, torch. eye(self.num features). repeat (
in_channels // block, 1, 1))

self. sampling stride = sampling stride * stride
self. counter = 0
self. freeze iter = freeze iter

self. freeze = freeze

def forward(self, x):
N, C, H, W = x.shape
B = self. block
frozen = self. freeze and (self.counter > self.freeze iter)
if self. training:
self. counter += 1
self. counter %= (self.freeze iter * 10)

if self.training and (not frozen):

1. im2col: N x cols x pixels —> N#*pixles x cols

if self. kernel size[0] > 1:
X = torch. nn. functional. unfold(x, self.kernel size, self.dilation, self.padding

self. sampling stride). transpose(l, 2).contiguous (

else:
channel wise

X = x.permute(0, 2, 3, 1).contiguous().view(-1, C)[::self.sampling stride % 2,

if self. groups == 1:
(C//B*N+*pixels, k*k*B)
X = X.view(-1, self.num features, C // B).transpose(l, 2).contiguous().view(-1,
self.num features)
else:
X = X.view(-1, X.shape[-1])

2. subtract mean

X mean = X.mean (0)

X = X - X _mean. unsqueeze (0)

self. running mean.mul (1 — self.momentum)

self. running mean. add (X mean. detach() * self.momentum)

3. calculate COV, COV (-0.5), then deconv
if self. groups == 1:
Cov=Xt() @X / X shape[0] + self. eps * torch. eye (X. shape[1], dtype=X. dtype
device=X. device)
Id = torch. eye(X. shape[1], dtype=X.dtype, device=X.device)
Cov = torch. addmm(self. eps, Id, 1. / X.shapel[0], X.t(O, X)
deconv = isqrt newton schulz autograd(Cov, self.n iter)
else:
Cov = X. transpose (1, 2) @ (X / X. shape[1]) + self. eps * Id
X = X.view(-1, self.groups, self.num features).transpose(0, 1)
Id = torch. eye(self. num features, dtype=X.dtype, device=X.device). expand(self
groups, self.num features,
self.
num_features)
Cov = torch. baddbmm(self. eps, Id, 1. / X.shape[l], X.transpose(l, 2), X)

deconv = isqrt newton schulz autograd batch(Cov, self.n iter)
track stats for evaluation

self. running deconv.mul (1 - self.momentum)

self. running deconv. add (deconv. detach() * self.momentum)

else:
X mean = self. running mean
deconv = self. running_deconv
4. X * deconv * conv = X * (deconv * conv)

if self. groups == 1:
w = self.weight. view(-1, self.num features, C // B).\
transpose (1, 2).contiguous().view(-1, self.num features) @ deconv
b = self.bias - (w @ (X _mean. unsqueeze(1))). view(self.weight. shape[0], —1).sum(1)
w = w.view(=1, C // B, self.num features). transpose(l, 2).contiguous ()
else:
w = self.weight.view(C // B, -1, self.num features) @ deconv

b = self.bias - (w @ (X _mean. view(-1, self.num features, 1))).view(self.bias. shape)

w = w. view(self.weight. shape)
x = F.conv2d(x, w, b, self.stride, self.padding, self.dilation, self.groups)

return x

def isqrt newton schulz autograd(A, numlters, norm="norm’, method="denman_beavers’):
dim = A. shape[0]
if norm == ’'norm’ :
normA = A. norm()
else:
normA = A. trace()

I = torch. eye(dim, dtype=A.dtype, device=A.device)
Y = A. div(normA)
Z = torch. eye(dim, dtype=A.dtype, device=A.device)

if method == ’ denman_beavers’ :
for i in range (numlters):

T = 0.5%(3. 0% — 7Z@Y)

T = torch. addmm(1.5, I, -0.5, Z, Y)
Y = Y. mm(T)

Z = T.mm(Z)

else:
for i in range (numlters) :
#7Z= 1.5b*x7-0bx707 @7 @Y
Z = torch. addmm(1.5, Z, -0.5, torch.matrix power(Z, 3), Y)
A sqrt = Y* torch. sqrt (normA)
A isqrt = Z / torch. sqrt (normA)
return A isqrt

def isqrt newton schulz autograd batch(A, numlters):
batchSize, dim, _ = A. shape
normA = A.view(batchSize, —1).norm(2, 1).view(batchSize, 1, 1)
Y = A. div(normA)
I = torch. eye(dim, dtype=A.dtype, device=A.device).unsqueeze (0).expand as(A)
7 = torch. eye(dim, dtype=A.dtype, device=A.device).unsqueeze(0). expand as(A)

for i in range (numlters):
T=05% (3.0%1- Z bm(Y))

Y = Y. bum (T)
Z = T. bmm(Z)
A sqrt = Y*torch. sqrt (normA)

A isqrt = Z / torch. sqrt (normA)

return A isqrt

	Introduction
	Related Work
	Normalization and Whitening
	Deconvolution of DNA Sequencing Signals

	Motivations
	Suboptimality of Existing Training Methods
	Need of Support for Convolutions
	A Neurological Basis for Deconvolution

	The Deconvolution Operation
	The Matrix Representation of a Convolution Layer
	The Deconvolution Operation
	Justifications
	On Naming the Method Deconvolution
	The Deconvolution Kernel

	Optimality
	L2 Optimizations
	On Training Neural Networks

	Accelerations
	Implicit Deconvolution
	Fast Computation of the Covariance Matrice
	Fast Inverse Square Root of the Covariance Matrix

	Sparse Representations

	A Unified View
	Experiments
	Conclusion
	Appendix
	Source Code
	Generalization to Semantic Segmentation
	Coupled/Uncoupled Newton Schulz Iterations
	Regularizations
	Sparse Representations for Convolution Layers
	Performance Breakdown
	Accelerated Convergence
	Forward Backward Equivalence
	Influence of Batch Size
	Implementation of FastDeconv in PyTorch

