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Abstract—In this paper, we present the implementation of
Velocity Controlled (or tuned) Oscillators (VCO) to model
spatial coding and navigation in the mammalian hippocampus.
Specifically, we demonstrate these spatial cells by representing a
spatial firing map of grid, place, and border cells. Since the VCO
is the basis for Oscillatory Interference (OI) models based on
the Spatial Envelope Synthesis (SES) approach of hippocampal
and entorhinal navigation, we use these models in our hardware
implementation to construct more complex spatial cells from
simple interference between VCOs. We develop the design of
a VCO ASIC chip containing up to 128 independently tuned
VCOs.

Keywords—Neuromorphic Computing, Low Power Navigation,
SLAM, Velocity Controlled Oscillators

I. INTRODUCTION

Research conducted over the past four decades suggests that
various cells in the hippocampal formation provide a detailed
representation of animals’ current location and orientation. To
this end, several major classes of spatially tuned neurons have
been identified. Depending on their role in navigation, these
neurons can be categorized as place cells, grid cells, and border
cells [1], [2]. As the name suggests, place cells are activated
when the animal visits a particular spatial location. By contrast
the border cells exhibit activity when the animal encounters a
boundary. Finally, grid cells fire at multiple locations which
lie at the edges of a hexagonal lattice. From the neuroscience
studies it is evident that animals, and by extension humans
have a unique ability to utilize these spatially tuned cells to
form maps of the environment. These studies have therefore
triggered many researchers in the robotics community to
investigate more cost effective, and power efficient algorithms
for navigation and map formation inspired by the hippocampal
models.

The idea of constructing a map of an environment as it is
being explored is called Simultaneous Localization and Map-
ping (SLAM). SLAM is a standard and difficult problem in
mobile robotics, and typically involves heavily over-sensored
and mathematical complex algorithms. On the other hand, the
neurally inspired version of SLAM, called NeuroSLAM or
RatSLAM [3], offers a method that operates as under-sensored
and ultra-low power algorithms [4]. Clearly, the NeuroSLAM
approach to navigation promises performance that can mimic

living organisms, which at this point, greatly surpasses the
performance of artificial systems.

Previous neural SLAM implementations [3]–[6] take inspi-
ration from general models of spatial coding and navigation
in rat hippocampus and para-hippocampal regions. These
implementations, while brain-inspired, do not explicitly model
navigational cells in the brain or include biologically-plausible
spiking neurons. The algorithmic organization reflects general
principles of rodent navigation, but lower-level representations,
transformations, and computations eschew neural implemen-
tations for traditional computational techniques. By failing to
seek bio-plausibility, these models fail to take advantage of
the power saving nature of neuromorphic systems, on both a
software and hardware level [7].

Last year our group demonstrated an implementation of
biologically faithful spatial coding cells in neuromorphic
hardware [8]. Key to our implementation was the realization
of Velocity Controlled (or tuned) Oscillators (VCOs) which
mimic the role of theta oscillations in the cortex. In an effort to
demonstrate a purely neuromorphic design, our previous work
demonstrated the VCO functionality in an Integrate-and-Fire
Array Transceiver (IFAT) device, which is a custom mixed
mode chip capable of implementing an array of neurons with
dynamically reconfigurable synapses [9]–[12].

In our implementation, each VCO was constructed by incor-
porating a feedback connectivity map inside an FPGA device,
servicing the IFAT chip. While successful at implementing bi-
ologically relevant firing behavior of VCO cells, our proposed
architecture suffered from a number of limitations inherent
to IFAT. Particularly, while IFAT is ideal for implementing
feedforward Convolution Neural Networks (CNN) to realize
the Spatial Envelope Synthesis (SES) neurons to generate
grid, place, and border cells, it struggles to implement many
VCO cells in parallel, because of the number of feedback
connections and large rate of spike feedback required.

In order to overcome the bottleneck in communication
complexity and spike traffic density encountered when using
neural arrays, such as the IFAT, to implement the VCOs, we
are developing a custom VCO ASIC, described in this paper, to
provide velocity tuned theta oscillations as input to the IFAT
system. The IFAT will then combine the outputs of various
oscillators, similar to a CNN, to implement the place, grid
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Fig. 1: Conceptual diagram of our biologically inspired spatial
neurons. Following [13], theta firings are represented as Velocity
Controlled Oscillators (VCO) whose frequency is modulated by the
preferred movement direction and velocity. Output from multiple
VCO units is projected neurons in the IFAT device with the connect
matrix required to create place, grid or boarder cells when the animal
reaches particular locations in space. Hence, the VCO and neurons
work together to perform path integration, and the neurons only fire
at specified locations in space. Various connectivity maps can be
exploited in order to generate place cells, grid cells, and border cells.

and boarder cells (Fig. 1).
The paper is organized as follows. In section II we will

provide a brief introduction of the underlying mathematical
model for our VCO module. We will also introduce the Oscil-
latory Interference (OI) model which has been adapted from
[14]. This model was first introduced in 2008 to describe the
formation of spatially tuned neurons as interference between
multiple VCOs with distinct preferred velocity and direction
vectors. Section II concludes with a MATLAB simulation
of the spatially tuned neuron firing process as it is relevant
to SLAM. In Section III we will discuss our VCO ASIC
implementation in 65 nm process. Finally we will conclude
this paper by discussing our future directions.

II. COMPUTATIONAL MODELS

Computational models of spatially tuned neurons aim to
describe the firing behavior of the neural cells, encoding in-
formation about familiar locations. Given the inter-relationship
between spatial location and velocity, these models often
attempt to compute the animal’s location by a process known
as path integration (i.e. integrating the moving velocity over
time). While many mechanisms have been proposed to de-
scribe interactions among VCO cells, in our design (Fig. 1)
we chose to follow the Oscillatory Interference (OI) model
proposed by Welday et al. [13]. This model represents the
theta phase precession as VCOs whose operating frequency
is modulated by the movement direction and speed, such that
their firing phase is synchronized with displacement along a
preferred direction. This model is particularly attractive from
a hardware implementation standpoint as it creates a modular,

low power, and highly re-configurable platform for generating
spatially tuned neurons such as place cells, grid cells, and
border cells.

A. Velocity Controlled Oscillator Model

As it was mentioned above, VCOs are the building block
of the neurons formed by the OI model. The output of the nth

VCO can be described as:

V COn(t) = cos(Φn(t)) (1)

where:
Φn(t) = Φ0 + dn · [x(t)-x(0)] (2)

Given that the phase is related to frequency as f = dφ/dt,
each oscillator’s frequency can be expressed in terms of its
preferred movement direction and velocity according to the
following equation:

fvco = fbase + d · V (3)

Where fbase is the base frequency of oscillation. d and
V are the VCO’s preferred direction vector and the animal’s
instantaneous velocity vector, respectively. This expression can
be decomposed in terms of the Cartesian coordinate system as:

fvco = fbase + dx · vx + dy · vy (4)

According to the OI model [13], neurons are formed when
N VCO units with different phase offsets, and preferred
directions interfere constructively at a given location. When
the animal’s velocity moves in its preferred direction, each
VCO oscillates at its maximum angular frequency. On the
other hand, each VCO operates at its minimum frequency
when the animal’s velocity vector is in the opposite orientation
with respect to its preferred direction vector. Note, that in our
implementation each VCO can output oscillations in 8 equally
spaced phases (i.e. φ = nπ/4, where n = 1, 2, ..., 8).

B. Creation and Navigation of a Spatial Maze

A spatial map of a maze can be created in the hippocampus
model establishing a sequence firing of place cells that tile
space that the animal roams. As depicted in Fig. 2, border
cells fire when the animal encounters a boundary in this 2D
space maze. As the animal explores the space, a grid-like
firing field appear across the 2D space. This shows that a grid
cell responds when the animal is in particular locations in the
room, and those places are spaced out in a hexagonal lattice
[15].

III. HARDWARE IMPLEMENTATION

A. Architecture

The design of our VCO ASIC is in 65 nm CMOS tech-
nology. The circuit includes an array of 128 mixed-mode
VCO units, each with a uniquely programmable preferred
direction vector. Each asynchronous VCO unit will take in a
common velocity input from an external sensor. As described
in Eq.3, the frequency of oscillations for each VCO unit will
be modulated according to the projection of the input velocity
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Fig. 2: Demonstration of the firing of place and border cells as the
animal explores a maze in 2D space. The maze is representative
of a few select states from the graph shown on the left. Black solid
lines are the path the animal has taken, broken grey lines are other
possible paths, and blue lines are paths that the animal had to travel
in reverse in order to make it to its goal. The maze consists of three
destination points, namely, “cheese”, “cat”, and “exit”. A place cell
is fired at ”home”, followed by a border cell firing when the animal
hits the boundary, changes direction, and hits another border cell. The
animal continues its trajectory until it encounters a “cat” at the far
end of the maze, and decides to change direction and hit an “exit”
path. The animal finally changes its direction towards the “cheese”.

vector and the VCO unit’s preferred direction. The output
event stream of the VCO chip will be presented to the IFAT
chip as spikes, where grid, place, and border cells are created
using the Spatial Envelope Synthesis (SES) approach. Each
VCO has 8 taps, corresponding to different phase states in
accordance with the analytical description provided in section
II.

Fig. 3: Block diagram of VCO chip. Each VCO unit is individually
enabled by the I/O unit. Current object speed, preferred velocity and
its write enable are common to all units. The oscillation is outputted
to one common pin.

Fig. 3 shows the block diagram of the VCO chip and its
corresponding I/O connections. Fig. 4 shows the structure of
our VCO unit cell. Each unit contains a local control I/O mod-
ule through which the X and Y components of the preferred
direction vector (i.e. dx and dy) are pre-loaded into the local
SRAMs as a pair of 4-bit words. Each stored component of the
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Fig. 4: Structure of the VCO unit. Each VCO unit converts
the stored preferred vector to analog values then preform analog
computation. The result controls the output oscillation.

Fig. 5: W-2W transistor ladder DAC.

direction vector is then converted to an analog voltage using a
W-2W digital to analog converter module (DAC) [16]. Key
to our VCO implementation are the multiplier cells which
calculate the instantaneous dot products between each VCO
unit’s preferred direction and its instantaneous velocity (i.e. vx
and vy). The outputs from the dot products units are further
used to drive the frequency of output oscillations.

Below we will provide a brief discussion of our VCO’s
building blocks.

1) SRAMs: The two 4-bit, sign + magnitude, SRAMs hold
the preferred X and Y coordinates of the preferred direction
vector. Each SRAM is preloaded with data upon start-up.

2) A/D Converters: The aim of our design is small area
and low power. Since the stored preferred velocity vectors are
not to be changed frequently after configuration, capacitance
DACs that requires refreshment are not preferred here. We
adopted a W-2W transistor ladder [16] with long transistor
length to minimize the current consumption, shown in Fig. 5.

3) Analog Computation Module: The theta model for the
VCO requires that the frequency is controlled by the inner
product of the VCO unit’s preferred velocity and the current
movement velocity. As illustrated in Fig. 6, in order to perform
the dot product for each VCO unit with minimum power
and area, we use two Gilbert cells to compute four quadrant
multiplication that generate differential voltages as the product.
Two pairs of differential voltages representing the product of x
and y component is converted into two currents using stacked
differential pairs, and the sum of the two currents is the result
of the dot product.

4) Oscillator: The basic structure of the oscillator is a
current starved ring oscillator, where the control current for the
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Fig. 6: (a) Gilbert four quadrant multiplier cell. (b) Differential
voltage to current amplifier. (c) Current summation and bias
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Fig. 7: (a) Parallel capacitance ring oscillator. (b) Oscillator
behavior, current bias vs. the frequency.

ring oscillator is provided by the dot product circuit. In order to
achieve a linear relation between current and frequency, as well
as reduce the oscillation frequency, i.e. increase the effective
capacitance of each stage of the oscillator, the inverters are
connected in parallel with each delay capacitor, thus taking
advantage of the Miller Effect, and ultimately reducing the
capacitance needed down to 1pF each.

5) I/O unit: Since the oscillator’s frequency is lower than
1000-Hz, it is possible to scan each oscillator signal using time
multiplexing (TDMA). One long shift register with bypassing
capability generate the enable signal for sampling the VCOs’
oscillations as well as initial configuration. On startup, the
shift register shifts through all phases of all VCO units. The
preferred velocity stored in local VCO SRAMs, and which
VCO or phase of which VCO to bypass is stored in an SRAM
with equal length to that of the shift register. Only the desired
VCO units and desired phase of those VCO units will then be
output. This allows us to minimize the traffic on the output
bus and to only access needed VCOs to construct the designed
place, grid and border cells.

A ring oscillator is used in our implementation where we
opted to widen the NMOS current mirror with a factor of

Fig. 8: Results of the oscillations displaying all the phases. The top
subplot shows the oscillation when the preferred velocity coincides.
The middle subplot shows the oscillation when the two vectors are
orthogonal. The bottom subplot shows the oscillation when the two
vectors are at opposite direction.

4/3 to achieve a 50% duty cycle of oscillation across the
range of operation frequency in order to get VCO outputs
as shown in Fig. 7. Additionally, as a representative example
Fig. 8 shows the operation of a VCO unit with a constant
input velocity held at (vxmax = a, vymax = a). When the
preferred direction vector is in line with the input velocity,
the frequency is maximized at 363-Hz. By contrast, when the
preferred direction vector is orthogonal to the input velocity
(i.e. dx = 1, dy = −1), VCO will run at its base frequency of
250-Hz. Finally, if the preferred direction vector is in opposite
direction to the input velocity (i.e. dx = −1, dy = −1), the
lowest frequency of 136-Hz is achieved.

B. Power Consumption

The power consumption will vary under various conditions,
such as output clocking speed, input velocity, bypassed units,
and the setup for preferred velocities for each VCO unit. The
power of a typical VCO unit will range around 2µW, thus the
total power of the VCO chip containing 128 VCO units is
expected to be under 300µW.

IV. DISCUSSION

In this paper, we present an implementation of spatial
cells by representing a spatial firing map of grid, place, and
border cells. Furthermore, we develop the design of a mixed
mode VCO ASIC to serve as an input layer to the Integrate-
and-Fire Array Transceiver (IFAT). This chip contains up to
128 independently tuned VCOs, each allowing 8 phases to
be tapped. In moving forward with concurrent software and
hardware development, we set out to implement this VCO
model on the IFAT developed by Molin et al. [12]. In doing
so, we are able to implement complex spatial networks on
low-power neuromorphic hardware. Hence, this neural system
can provide a robust, low-power, and bio-plausable neurally-
inspired model for robotic navigation and guidance systems
for autonomous mobile robots.
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