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Abstract

The accuracy and complexity of kernel learning algorithms is determined by the set of
kernels over which it is able to optimize. An ideal set of kernels should: admit a linear
parameterization (tractability); be dense in the set of all kernels (accuracy); and every
member should be universal so that the hypothesis space is infinite-dimensional (scalability).
Currently, there is no class of kernel that meets all three criteria - e.g. Gaussians are not
tractable or accurate; polynomials are not scalable. We propose a new class that meet
all three criteria - the Tessellated Kernel (TK) class. Specifically, the TK class: admits a
linear parameterization using positive matrices; is dense in all kernels; and every element
in the class is universal. This implies that the use of TK kernels for learning the kernel
can obviate the need for selecting candidate kernels in algorithms such as SimpleMKL
and parameters such as the bandwidth. Numerical testing on soft margin Support Vector
Machine (SVM) problems shows that algorithms using TK kernels outperforms other kernel
learning algorithms and neural networks. Furthermore, our results show that when the
ratio of the number of training data to features is high, the improvement of TK over MKL
increases significantly.

Keywords: Kernel Functions, Multiple Kernel Learning, Semi-definite Programming,
Supervised Learning, Universal Kernels

1. Introduction

This paper addresses the problem of the automated selection of an optimal kernel function
for a given kernel-based machine learning problem (e.g. soft margin SVM). Kernel functions
implicitly define a linear parametrization of nonlinear candidate maps y = f(x) from vectors x
to scalars y. Specifically, for a given kernel, the ‘kernel trick’ allows optimization over a set of
candidate functions in the kernel-associated hypothesis space without explicit representation
of the space itself. The kernel selection process, then, is critical for determining the class of
hypothesis functions and, as a result, is a well-studied topic with common kernels including
polynomials, Gaussians, and many variations of the Radial Basis Function. In addition,
specialized kernels include string kernels as in Lodhi et al. (2002); Eskin et al. (2003), graph
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kernels as in Gértner et al. (2003), and convolution kernels as in Haussler (1999); Collins and
Duffy (2002). The kernel selection process heavily influences the accuracy of the resulting
fit and hence significant research has gone into the optimization of these kernel functions
in order to select the hypothesis space which most accurately represents the underlying
physical process.

Recently, there have been a number of proposed kernel learning algorithms. For support
vector machines, the methods proposed in this paper are heavily influenced by the SDP
approach proposed by Lanckriet et al. (2004) which directly imposed kernel matrix positivity
on a subspace defined by the linear combination of candidate kernel functions. There have
been several extensions of the SDP approach, including the hyperkernel method of Ong et al.
(2005). However, because of the complexity of semidefinite programming, more recent work
has focused on alignment methods for MKL as in, e.g. Cortes et al. (2012) or gradient methods
for convex and non-convex parameterizations of positive linear combinations of candidate
kernels, such as SimpleMKL in Rakotomamonjy et al. (2008) or the several variations
in Sonnenburg et al. (2010). These MKL methods rely on kernel operations (addition,
multiplication, convolution) to generate large numbers of parameterized kernel functions
as in Cortes et al. (2009). Examples of non-convex parameterizations include GMKL as
introduced in Jain et al. (2012), and LMKL as introduced in Gonen and Alpaydin (2008).
Work focused on regularization includes the group sparsity metric defined in Subrahmanya
and Shin (2010) and the enclosing ball approach in Gai et al. (2010). See, e.g. Génen and
Alpaydin (2011) for a comprehensive review of MKL algorithms.

In this paper, we focus on the class of “Universal Kernels” formalized in Micchelli
et al. (2006). For a given compact metric space (input space), X, it is said that a function
k:X x X — Ris a Positive Kernel (PK) if for any N € N and any {z;}Y¥, C X, the matrix
defined elementwise by K;; = k(x;, x;) is symmetric and Positive SemiDefinite (PSD).

Definition 1 A kernel k: X x X — R is said to be universal on the compact metric space
X if it is continuous and there exists an inner-product space W and feature map, ® : X — W
such that k(xz,y) = (®(z), ®(y))w and where the unique Reproducing Kernel Hilbert Space
(RKHS),

He={f: f(z)=(v,2()), veW}

with associated norm || f|x = inf,{||v|]yw : f(x) = (v,P(x))} is dense in C(X) := {f :
X — R : fis continuous} where || fllc := sup,ex | f(2)].

Note that for any given PD kernel, # exists, is unique, and can be characterized (as described
in Sun (2005)) using the Riesz representation theorem as the closure of span{k(y,-) : y € X'}
with inner product defined for any f(x) =Y ;" cik(yi,z) and g(x) = > 1%, dik(zi, z) as

(foo)n =Y cidik(yi, z)).

i=1 j=1

Universal kernels are preferred when large amounts of data are available, due to the fact
that the dimension of the hypothesis space increases for every additional data point -
resulting in the ability to construct highly specialized and accurate classifiers. The most
well-known example of a universal kernel is the Gaussian (generalized in Zanaty and Afifi
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(2011)). However, many other common kernels are not universal, including, significantly,
the polynomial class of kernels. This is significant because generalized polynomial kernels
(Eq. (9)) are dense in all kernels and admit a linear parameterization using a monomial
basis, while Gaussian kernels (which are universal, but not dense in all kernels) do not.

The Class of Tessellated Kernels (TK) In this paper we propose a new class of kernel
functions (called Tessellated Kernels) which are not polynomials, yet which are defined
by polynomials and admit a linear parametrization. These kernels define classifiers on a
tessellated domain, each sub-domain (or tile) of which is a hyper-rectangle with vertices
defined by the input data - {z;}". In this way, each data point further divides any tiles
within which any of its features lie, resulting in increasing numbers of disjoint tiles. The
classifier itself, then, is piecewise polynomial - being polynomial when restricted to any
particular tile.

TK kernels have three important properties which make them uniquely well-suited for
kernel learning problems. First, these kernels admit a linear parameterization using positive
semidefinite matrices - meaning we can use convex optimization to search over the entire
class of such kernels (tractability), which is proven in Corollary 13 and implemented in
Optimization Problem (24). This is like the class of generalized polynomial kernels (See
Eq. (9)) yet unlike other universal kernel classes such as the Gaussian/RBF, wherein the
bandwidth parameter appears in the exponential. Second, the TK class is dense in all
kernels (accuracy), meaning there exists a TK kernel that can approximate any given kernel
arbitrarily well. This is like the generalized polynomial class yet unlike the Gaussian/RBF
class, wherein the resulting kernel matrix is restricted to having all positive elements.
Third, any kernel of the TK class has the universal property (scalability). This is like
the Gaussian/RBF class and unlike the generalized polynomial kernels, none of which are
universal. The TK class is thus unique in that no other currently known class of kernel
functions has all three properties of tractability, accuracy, and scalability. Finally, we
demonstrated through extensive numerical testing that kernel learning using TK kernels
significantly outperforms other kernel learning algorithms in terms of accuracy.

The paper is organized as follows. In Section 2 we provide an overview of the MKL
problem. Section 3 proposes a framework by which the class of TK kernels can be parameter-
ized by positive matrices. Section 4 proves general properties such as universality for every
member of the class of TK kernels. Sections 5 and 6 show how the class of TK kernels can
be rigorously incorporated into the SDP MKL framework and into SimpleMKL’s framework
respectively. In Section 7 we discuss the complexity of incorporating TK kernels into both
the SDP MKL framework and the SimpleMKL framework. Finally in Section 8 we provide
numerical results that illustrate improved performance using TK kernels on a number of
UCI repository data sets.

2. Formulation of the kernel learning problem

We begin this section by posing the kernel-learning problem as a convex optimization
problem for the particular case of the 1-norm soft margin support vector machine. Next, in
Subsections A and B, we present two standard algorithms for solving the kernel learning
problem. These algorithms are general in the sense that they apply to any given linear
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parameterization of kernel functions. The adaptation of these algorithms to the special case
of TK kernels will then be described in Section 3.
Suppose we are given a set of m training data points {x;}"; C R", each with associated

label y; € {—1,1} for i = 1,--- ;m. For a given “penalty” parameter C € RT, we define the
primal version of the linear 1-norm soft margin problem as
1
C 1
weRn, CER™, beR 2w W ZC’ (1)

=1
st yilw'zi+b0)>1-¢, (>0,

where the learned map (classifier) from inputs to outputs is then f:R™ — {—1,1} where
f(z) = sign(w? = +b).

If we desire the classifier to be a nonlinear function, we may introduce a positive kernel
function, k.

Definition 2 We say a function k:Y XY — R is a positive kernel function if

//f )f(y)dzdy > 0

For any given positive kernel k£ we may associate a ® such that k(z,y) = (®(x), ®(y)). In
this case Optimization Problem (1) might be posed as

for any function f € LylY].

min fw w+C Z G (2)

weR?, CER™, beR 2
st yi((w, <I>(l’z‘)> +0)>1-G, G =0.
Given a solution, the classifier would be
f(z) = sign ((w, (2)) +b).

Although the primal form of SVM has certain advantages - see Rahimi and Recht (2008), it
is ill-suited to kernel learning. For this reason, we consider the dual formulation,

ackm Zaz— 7220‘20‘]91% i), ®(x;)) (3)

=1 j=1

ZO&Z‘yZ’ZO, OgaigC A izl,.‘.,m

In this case we may eliminate ® from the optimization problem using (®(z;), ®(z;)) =
k(z;, x;) where the elements k(x;,x;) define the kernel matrix. In this case, the resulting
classifier is only a function of k and becomes

= sign (Z ;yik (s, 2) + b>

4
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Note that b can be found a posteriori as the average of y; — > 1" | a;y;ik(x, x;) for all j such
that 0 < a;j < C - See Scholkopf et al. (2002). This implies that the primal variable w is not
explicitly required for the calculation of b, and that the resulting learned classifier, f, may
be expressed solely in terms of a and the kernel function.

Commonly used positive kernel functions include the gaussian kernel k1 (x,y) = el=5 ”x_yHQ),
where f is the bandwidth (and must be chosen a priori) and the polynomial kernel
ko(x,y) = (14 2Ty)? where d is the degree of the polynomial.

Unfortunately Optimization Problem 3 requires that the kernel function, k(zx,y), be
chosen a priori, a choice which significantly influences the accuracy of the resulting classifier
f. We therefore alter the optimization problem by considering the kernel itself to be an
optimization variable, constrained to lie in a given convex set of candidate positive kernel
functions, K. In this case, we have the following convex optimization problem.

m 1 m m
min max Z o — B Z Z aiajyiyjk(xi, ﬂfj) (4)
i=1

ke aeR™ P
m
s.t. Zaiyi =0, 0<oyu<C Vi=1l,..m
i=1

Having formulated the kernel learning problem, we now present two standard approaches to
parameterizing the set of candidate kernels, K, and solving the resulting convex optimization
problem.

2.1 SDP-based kernel learning using positive kernel matrices

We first consider the method of Lanckriet et al. (2004), wherein positive matrices were used
to parameterize K for a given set of candidate kernels {k;}._; as

l
K= {k(:c,y) = Z,uiki(a:,y) IS Rl, Kij = k(a:i,a:j), K > 0} ,
i=1

where the {x;}"; C R" are the training points of the SVM problem and the k; were chosen
a priori to be, for instance, Gaussian and polynomial kernels. It is significant to note that
the PSD constraint on the kernel matrix K, enforces that the kernel matrix is PSD for the
set of training data, but does not necessarily enforce that the kernel function itself is PD -
meaning that kernels in I are not necessarily positive kernels.

Using this parameterized IC, the kernel optimization problem for the 1-norm soft margin
support vector machine was formulated in Lanckriet et al. (2004) as the following semi-definite
program, where e is the vector of all ones.

min t (5)
uER!, teR, vER, vER™, JER™
G e+v—0+y
(e+v—06+vy) t— 2T
v>0, 620, Gy =k(ziz;)viy;

>0

subject to: (

I
k(x,y) = Z piki(z,y)
i=1
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Note that here the original constraint K > 0 in X has been replaced by an equivalent
constraint on G. This problem can now be solved using well-developed interior-point
methods as in Alizadeh et al. (1998) with implementations such as MOSEK in ApS (2015).

In Optimization Problem (5), the size of the SDP constraint is (m+1) x (m+ 1) which is
problematic in that the complexity of the resulting SDP grows as a polynomial in the number
of training data. Methods that do not require this large semi-definite matrix constraint are
explored next.

2.2 Kernel learning using MKL

In this subsection, we again take a set of basis kernels {k:i}é:l and consider the set of positive
linear combinations,

l
K := {k D k(x,y) = Zuiki(x,y), Wi > O} . (6)

=1

Any element of this set is a positive kernel, replacing the matrix positivity constraint by a
LP constraint.

m m m 1
) 1
m>11(r)1 mez%@n Zai — B Z Z Zukaiajyz‘yjkk(wuﬂ?j)
p=t @ i=1 i=1 j=1 k=1
m
s.t ZalyZ:Q 0<<C Vi=1,...m
i=1

Use of this formulation is generally referred to as Multiple Kernel Learning (MKL). This
formulation is a LP in p for fixed o and a QP in « for fixed p. Recently, a number of highly
efficient two-step methods have been proposed which exploit this formulation, including
SimpleMKL as in Rakotomamonjy et al. (2008). These methods alternate between fixing
and optimizing «, then fixing o and optimizing p, adding the constraint that ), 1; = 1 using
a projected gradient descent. Other two-step solvers include Génen and Alpaydin (2011).
Two-step MKL solvers typically have a significantly reduced computational complexity
compared with SDP-based approaches and can typically handle thousands of data points
and thousands of basis kernels.

In Section 3, we propose a parameterization of kernels using positive matrices which avoids
the need for the selection of basis kernels. Moreover, we show that this parameterization can
be combined with MKL algorithms directly in SimpleMKL through the use of a randomly
generated basis of kernels.

3. Positive matrices parameterize positive kernels

To begin this section, we propose a framework for using positive matrices to parameterize
positive kernels. This is a generalization of a result initially proposed in Recht (2006).
In Subsection 3.1 we apply this framework to obtain generalized polynomial kernels. In
Subsection 3.2, we use the framework to obtain the TK class.
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Proposition 3 Let N be any bounded measurable function N : X x Y — R? on compact X
andY and P € RY%? be a positive semidefinite matric P > 0. Then

k(2,y) = /X N(z, )T PN (2, y)dz 7

s a positive kernel function.

Proof Since N is bounded and measurable, k(z,y) is bounded and measurable. Since
P >0, there exists P2 such that P = (P%)TP%. Now for any f € Ly[Y] define

9(2) = /Y P2N(z,2)f(z)dx.
Then
| [ r@weswasas = | [ | j@N o PN G f)azdedy

-[(/ P%N<z,x>f<x>dx>T( [ NPt a:

— [ o))z =0
X

For a given N, the map P +— k in Proposition 3 is linear. Specifically,
k,y) =) PiiGijlay),
i’j
where,

Gi,j(x,y):/XNi(z,:r)Nj(z,y)dz.

3.1 Generalized Polynomial Kernels (GPK)

Let Y = R" and define Z; : R™ — R? to be the vector of monomials of degree d. If we now
define Np(z,y) = Z4(y), then k as defined in Proposition 3 is a polynomial of degree 2d.
The following result is from Peet et al. (2009).

Lemma 4 A polynomial k of degree 2d is a positive polynomial kernel if and only if there
exists some P > 0 such that

k(z,y) = Za(x)" PZa(y). (8)

This lemma implies that a representation of the form of Equation (7) is necessary and
sufficient for a generalized polynomial kernel to be positive. For convenience, we denote the
set of generalized polynomial kernels of degree d as follows.

K = {k : k(z,y) = Zy(x)' PZ4(y) : P >0} (9)

Unfortunately, however, polynomial kernels are never universal and hence we propose the
following universal class of TK kernels, each of which is defined by polynomials, but which
are not polynomial.
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3.2 Tessellated Kernels

To begin, we define the indicator function for the positive orthant as

f+<z>={1 o

0 otherwise,

where z > 0 means z; > 0 for all <. Now define Z; : R™ x R™ — RY to be the vector of
monomials of degree d in R?”. We now propose the following choice of N : R® x R® — R?4,

Zd(zax) 2>
0 =

0 ] (10)
x>z

Zq(z,x)

0 otherwise

\

Equipped with this definition, we define the class of Tessellated Kernels as follows.
K4 = {k: D k(x,y) :/ N&(z,2)' PN4(z,9)dz, P > O}, Kr:={k: keK% deN}
X

3.3 Representation of TK kernels using polynomials

The following result shows that any k € ICp is piecewise polynomial. Specifically, if we define
the partition of R™ into 2" orthants - parameterized by 8 € {0,1}" as {X3}c0,13» Where

= . ;>0 for all j:8;=0,
Xﬁ T {.7} ER™ UiiSO for all i:Bi:l } ) (11)

then for any k € Kr, there exist kg such that

k(xz,y) = {kg(x,y), if z —y € Xg.
Lemma 5 Suppose that fora <b € R", Y =X = [a,b], N is as defined in Egn. (10),

Py P12:|
P = > 0,
[Pm Py

k is as defined in Eqn. (7) and {Xg}geqo,1yn 5 defined in Eqn. (11). Then

k(z,y) = {kg(x,y) if v—ye Xg. (12)
where the kg are polynomials defined as

b1 bn
kol y) = / / Za2,2)T Q1 Za(zy)d= + Kol ),
Bry1+(1—-B1)r1  Bayn+(1—PBn)n
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where

b b b
kO(xvy) :/Zd(zvx)TQQZd(zvy)dZ + /Zd(Z,SL')TQ:gZd(Z,y)dZ + /Zd(z’x)TPQQZd(Z’y)dZa
T y a

and
Q1=P11 — P2 — Po1 + Paa,  Qa=P12 — Pa2, Q3=P — Pao.
Proof
. . .. P Piof . .
Given N as defined above, if we partition P = P P into equal-sized blocks, we
21 122
have
2
baw) = [ Neo PNeode= Y [ i) Pz s
X ij=1"7 (@y,2)€Xi;
where

Xij = {(2,9,2) R Li((=1)(z = 2)) [ (1) (z — y)) = 1}.
From the definition of Xj; we have that,

Xn={z€X : z2pi(r,y), i=1--,n}
Xpp={zeX : z; >z, i=1,--- ,n}/Xn
Xy ={z€X : z>y, i=1--- .0}/
Xog =X/ (X11 U X2 U Xay) .

where pf(x,y) = max{z;,y;} and pl(z,y) = Biyi + (1 — Bi)z;. By the definitions of
X11, Xi2, Xo1, and Xy we have that,

b b
k() = / Za(e (P~ Pry = P+ Pa) Za ) + / Za(, ) (Prs — Pos) Zal2,y)d
p*(z,y x

b b
+ /Zd(z,:v)T (Par — Pa2) Za(2, y)dz + /Zd(z,w)TPmZd(z,y)dZ- (13)
Yy a

Note that the number of domains X3 used to define the piecewise polynomial k is 2",
which does not depend on ¢ (the dimension of P;;). Thus, even if Z; = 1, the resulting
kernel is partitioned into 2" domains. The size of Z;(z,y) € R? only influences the degree
of the polynomial defined on each domain.

The significance of the partition does not lie in the number of domains of the kernel,
however. Rather, the significance of the partition lies in the resulting classifier, which,
for a given set of training data {x;};", has a domain tessellated into (m + 1)" tiles, X5,
where v € {0,--- ,m}". Although the training data is unordered, we create an ordering
using I'(z,5) : {0,--- ,m} x {1,n} — {1,--- ,m} where I'(7, j) indicates that among the jth
elements of the training data, xr(; ;) has the ith largest value. That is,

-1l < lerapli < lerimpl; Yi=1,--- m—1, j=1,--- n.
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Now, for any v € {0,--- ,m}", we may define an associated tile

Xy = {Z Flrre i € 2 S Erepeapls 7 =10 ,n}-

The classifier may now be represented as

f(z) = aiyik(wi, ) + b
im1
= fy(2) Vz € X,,.

To define the f,, we associate with every tile v and datum ¢ an orthant 3(7,~) which denotes
the position of tile T’, relative to datum x; - i.e. T, is in the orthant 3(i,v) centered at the
point x;. Specifically,

1 otherwise.

B(i,7); = {0 (1, li = [2d;

Now we may define

m
Fy(2) = augikpin) (w1, 2)
i=1
which is a polynomial for every «. In this way, each data point further divides the domains
which it intersects, resulting in (m+1)" disjoint sub-domains, each with associated polynomial
classifier.

Thus we see that the number of domains of definition of the classifier grows quickly in m,
the number of training data points. For instance, with n = 2 there are 100 tiles for just 9
data points. This growth is what makes TK kernels universal - as will be seen in Section I'V.

In Figure 1(a) we see the function, f(z) = > ", asy;k(xi, z) + b, for a degree 1 TK
kernel trained for a 1-dimensional labeling problem as compared with a Gaussian kernel.
We see that the TK classifier is continuous, and captures the shape of the generator better
than the Gaussian. Note that the TK classifier is not continuously differentiable and the
derivative can change precipitously at the edges of the tiles. However, if we decrease the
inverse regularity weight C' in the objective function of Optimization Problem (2), then this
has the effect of smoothing the resulting classifier. In Figure 1(a), as C' decreases we see
that the changes in slope at edges of the tiles decrease.

To illustrate that the function k(z;,z) is a piecewise polynomial tessellated by the
training datum, we plot the value of an assortment of TK kernels in one dimension in
Figure 1(b). We use training datum z; = 5, and a selection of different positive matrices
where Pl,g = P271 = P272 =0 and P171 = AZ for i = 1, N ,4 where

0
10 1 0 10
Al_[o 0}’ A2_[0 .1]’ A3_[0 1}"44_ 8

S = O

0
0f. (14)
1

In the first three cases the monomial basis is of degree 1, while in the fourth case the
monomial basis is of degree 2 - for simplicity we exclude monomials with z. These different
matrices all illustrate changes in slope which occur at the training datum.

10
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(a) Optimal classifier, f(z) for labelling a 1 dimen- (b) Normalized kernel function k(5, z) using P, 1 =
sional dataset using a degree one TK (solid lines), A; from (14) and Py o = Py1 = P2 = 0.

and a positive combination of Gaussian kernels

(dotted lines) with three different penalty weights

C.

Figure 1: This figure depicts the optimal classifier for labelling a 1-dimensional dataset
compared to Gaussian classifiers as well as the normalized kernel function, k(5, z), using
different P;; matrices matrices and X = [0, 10].

4. Properties of the tessellated class of kernel functions
In this section, we prove that all TK kernels are continuous and universal and that the TK

class is pointwise dense in all kernels.

4.1 TK kernels are continuous

Let us begin by recalling that for any P > 0 and N(z, ),

k(:ﬂ,y):/XN(z,m)TPN(z,y)dz

is a positive kernel and recall that for the TK kernels, we have

N(z,z) =

Za(z,x) (2 — w)]
Za(z, ) (x —2) |

By the representer theorem this implies that the classifiers consist of functions of the form

m
fly) = Zai/ N(zi,2)T PN (y, 2)dz.
=1 X
The following theorem establishes that such functions are necessarily continuous.

Theorem 6 Suppose that for a < b € R", Y = X = [a,b], P > 0, N is as defined in
Eqn. (10) for some d > 0 and k is as defined in Eqn. (7). Then k is continuous and for any
{z;}1*, and o € R™, the function
m
f(Z) = Zaik(:Eivz)a
i=1
18 continuous.

11
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Proof Partition P as follows

Py Pis
P= > 0.
[Pm P22]

To prove that f(z) is continuous we need only prove that k(x,y) is continuous. Applying
Lemma 3 we may define k(x,y) as

k(z,y) = {k:g(x,y) if v —ye Xg. (15)

where the kg are polynomials defined as

b1 by
kg(z,y) —/ / Za(2,2) ' Q1Z4(2, y)dz + ko(,y),
0p,1(z,y) 0g,n(z,y)

where x —y € Xg, 03,(z,y) = Biyi + (1 — Bi)zi, Q1 = Pi1 — Pra — Po1 + Paa, and ko(z, y)
is a polynomial. To expand kg(x,y), we use multinomial notation for the monomials in

Z4. Specifically, we index the elements of Zy as Zg(x, 2); = x%2% where 6;,~; € N” for

=1 ... 0 — T™ 0ij ’YZJ
=1, ,q and where therefore z% 2% = Hj 1 xj . Then
by 2%
/ / Zy(z,2)TQ1Z4(z,y)dz = / / Z Q1) :E k2 2O
65.1(xy)  Osn(z) Op1(ay)  Opnlzy) P
b1 bn

=) (@) 2™y" o [ rdz (16)
STy

0p,1(zy) 0 n(z,y)

Expanding the integrals in (16), each has the form

by b, n b; L
/ / PALRNUN PR H / z}k’] T dz;
0p,1(2,y) Op.n(2y) 05.5(z:y)

i=1
n 'Yk g, ]+1
=1
n

=1

bj
Vg + V5T Yhj+ i+ 1 05,5 (2,y)

Vie,j 7,511 , .
b ¥ ¥ Hﬁ’j(x’y>7k,]+'yl,]+1

'7k3+7l]+1 Vg + 5+ 1

.

Since 0 j(x,y) is equivalent to max(z;,y;), and can be written as the continuous function,

1
Os,(z,y) = 5(%‘ +y; + |75 — y5l),

we conclude that k(x,y) is the product and summation of continuous functions and therefore
k and the resulting classifiers are both continuous. |

12
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4.2 TK kernels are Universal

In addition to continuity, we show that any TK kernel with P > 0 has the universal property.
Recall the following definition of universality.

Definition 7 A kernel k : X x X — R is said to be universal on the compact metric space
X if it is continuous and there exists an inner-product space W and feature map, ® : X — W
such that k(x,y) = (®(x), ®(y))w and where the unique Reproducing Kernel Hilbert Space
(RKHS),

H = {f : f(:IZ) = <U,@(l’)>, CAS W}

with associated norm || f|x = inf,{||v]w : f(z) = (v,®(x))} is dense in C(X) := {f :
X — R : fis continuous} where ||f||c := sup,ex | f(x)].

The following theorem shows that any TK kernel with P > 0 is necessarily universal.

Theorem 8 Suppose k is as defined in Eqn. (7) for some P >0, d € N and N as defined
in Eqn. (10). Then k is universal for Y = X = [a,b], a < b € R".

Proof Without loss of generality, we assume Y = X = [0,1]". If P > 0, then there exist ¢;
such that P = Py + >, ¢;P; where Py > 0 and

0 0

Pl:[o 1

}@[61,0,...,0]

where {e;} is the first canonical basis of R™. In this case

k(xvy) = I%(.T,y) + Heimin{xia yl}7
=1

kl (w,y)

where k is a positive kernel. Since the hypothesis space satisfies the additive property
(See Wang et al. (2013) and Borgwardt et al. (2006)), if k1 is a universal kernel, then k is a
universal kernel.

Recall that for a given kernel, the hypothesis space, H, can be characterized as the
closure of span{k(y,-) : y € X'}. Now, consider

Span{kl (yv ) NS X}a

which consists of all functions of the form

f@) =" c; [ [min{ly;li, =i}

i =1

x,  if ap <[yl

[yj]i, otherwise.

min{[y;li, zi} = {

13
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For n = 1, we may construct a triangle function of height 1 centered at yo as

0, if x <
3 .
o o(x — 1), ifyy <x<ya
f@)=> —ki(yi,x) = .
= € 1-90(z—y2), fyp<z<uys
0, if y3 < x,
where d = y1 — yo = yo — y3, and
o] = —(5, g = 2(5, a3 = —4.

By taking the product of triangle functions in each dimension, we obtain the pyramid func-
tions which are known to be dense in the space of continuous functions on a compact domain
(See Shekhtman (1982)). We conclude that k; is a universal kernel and hence k is universal. Bl

This theorem implies that even if the degree of the polynomials is small, the kernel is
still universal. Specifically, in the case when n =1 and d = 0, the set K3 is universal yet
contains only three parameters (the elements of the symmetric P € R?*2),

4.3 TK kernels are pointwise dense in all kernels

In the previous two subsections, we have shown that TK kernels are continuous and universal.
Furthermore, as shown in Section 3, the TK class admits a linear parameterization. The
remaining question, then, is whether TK kernels are superior in some performance metric to
other classes of universal kernels such as Gaussian kernels. First, note that the universal
property is of the kernel itself and which is extended to a class of kernels by requiring all
kernels in that class to satisfy the property. However, although a kernel may be universal,
it may not be well-suited to SVM. Expanding on this point, although it is known that
any universal kernel may be used to separate a given set of data, it can be shown that for
any given set of normalized data, {x;,y;}, there exists a universal kernel, k, for which the
solution to Optimization Problems (2) and (3) is arbitrarily suboptimal - e.g. by increasing
the bandwidth of the Gaussian kernel.

To address the question of performance, we propose the pointwise density property. This
property is defined on a set of kernels and guarantees that there is some kernel in the set of
kernels for which the solution to Optimization Problems (2) and (3) is optimal. Specifically,
we have the following.

Definition 9 The set of kernels IC is said to be pointwise dense if for any positive kernel,
k*, any set of data {x;}]" |, and any € > 0, there exists k € K such that ||k(x;, x;) — k* (x4, z5)||
€.

This definition implies that a set of kernels can approximate any given positive kernel
arbitrarily well. To illustrate the importance of the pointwise density property, in Subsub-
section 4.3.1 we show that for a large class of kernel learning problems, the value of the
optimal kernel is not pointwise positive - i.e. k(z,y) 2 0 for all z,y € X'. This is significant
because almost all commonly used kernels are pointwise non-negative. Indeed we find that
the elements of the optimal kernel matrix are negative as frequently as they are positive.

14
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4.3.1 OPTIMAL KERNELS ARE NOT POINTWISE POSITIVE

To demonstrate the necessity of negative values in optimal kernel matrices, we analytically
solve the following SDP derived from Optimization Problem (5) which determines the
optimal kernel matrix (K*) given the labels y of a problem and a “penalty” parameter C,
but with no constraint on the form of the kernel function (other than it be PD).

min t, (17)
teR,KeR™*X™m ~cR veR™ §eR™

G e+v—0+yy >0
(e+v—5+y)T t—CéTe -

v >0, o> 0, K >0, trace(K) =m, Gi,j = yiKi,jyj

subject to: <

The following theorem finds an analytic solution of this optimization problem.

Theorem 10 Let y; € {1,—1} fori=1,--- ,m and C > %, then the solution to Optimiza-
tion Problem 17 is,

m
. . Yi oo «_ lle=7"yll2
:Oa = - ) 6:07 tt = y
Sl ) m

and K* = m)}(e + v y) (e +vy)TY where Y = diag(y).

Proof We first show that K* = UXU”, where

_ (e+v*—0*+~*y) _|m 0
v=y (et —6*+v*y)ll2 ] 2= [0 0] ’

Optimization Problem (17) is equivalent to
min (e+v -0+ (YKY) YHe+v—6+y)+206Te (18)
KER™*m 4eR,vER™ JER™
subject to: v >0, 0 >0, K >0, trace(K) = m.

This problem can be separated into subproblems as

min min (e+v =56+ (YKY) He+v—38+yy)+2C6e.
YER,vER™ §€R™ KeRmxm,
v>0,6>0 K>0, trace(K)=m

Now, for any feasible K, we have that K > 0 and (K ) < m and hence

1
o (K)

(e+v—0+m)T (VEY) (e +v—0+7y) le+v—3d+yl3

v

v

1
—lle+v—26+yl3.
m

15
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Now, we propose K = UXU7 and show that it is optimal, where

_ (e+v*—8*+7*y) _m 0
U= | V), o= [o o]'

and V is any unitary completion of the matrix U. Then K > 0, trace(K) = m, and
(e+v—0+y)" (VKY) Ne+v—0+)
-1
_ T ([ (etv—5+yy) m 0| [ (e4v—i4vy) 1,17
=(etv—0+7y) ([W(M?ﬂ”zv] {o 0} [mv} > (e+v—3+y)

_le+v—=0+y)3

m

We conclude that this K solves the first sub-problem and hence Optimization Problem (17)
reduces to

[(e+v—35+y)3

min
~ER,VER™ SER™ m
v>0, 6>0,

+2C67e. (19)

Now let v*,6*,v* be as defined in the theorem statement. For the convex objective

B 2
FO,m) = Nt v =059l | o7,

m

let § = % >, yi and we have that

8f (V*75*77*) _ 2+ 2yyi > 2+ —2(1)(1) > 07
dv; m m
and for C > %
'l = > > 0.
8(52 (V 76 7’7 ) m - m - 0
Finally

OF (777 = L3 oy —ap = —2p 4213 =0
a,yy7 Y _miZI Yi Yy = Y miZIyl_ .

Hence the KKT conditions are satisfied and since the optimization problem is convex,
(v*, 0%, ~v*) is optimal. [ |

This result shows that for binary labels, the optimal kernel matrix has an analytic
solution. Furthermore, if we consider the case where > ;" y; = 0, then A* = 0 and hence
K* = yy” and K}, = yiy;. This implies that the optimal kernel matrix consists of an
equal number of positive and negative entries - meaning that kernels functions with globally
positive values will not be able to approximate the optimal kernel matrix well. Furthermore,
for values of C' less than %, we find numerically that the same kernel matrix is still optimal
- only the values of §* and v* are different.

16
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4.3.2 THE GPK AND TK CLASSES ARE POINTWISE DENSE IN ALL KERNELS

Having demonstrated the significance of pointwise density, we now establish that both the
GPK and TK kernel sets satisfy this property. For this subsubsection, we relax the strict
positivity constraint P > 0 in the definition of the TK class. In this case, the GPK class
becomes a subset of the TK class. We prove pointwise density of the GPK class - a property
which is then inherited by the TK class. The following lemma shows that the GPK class is
a subset of the TK class.

Lemma 11 K¢ C K4

Proof If k, € K%, there exists a P, > 0 such that k,(z,y) = Za(2)T P1Z4(y). Now let J be
the matrix such that JZ;(z,z) = Z4(x) and define

p_ 1 ) [JTPlJ JIrpJ

H?:l (bj — a] JTP1J JTP1J

Now let k be as defined in Equation (7). Then k € K4 and

B

1
k() = / Za(z,2)"TT (P — Py — P, + P1) J Za(2,y)dz
+ / Zy(z,2)T IV (P, — Py) JZy(z,y)dz
b
+ / Zy(z, )L TV (P, — P) JZ4(2,y)dz
Yy
b
—|— / Zd ryr PlJZd(Z y)d
G / Zu(@)" Py Za(y)d>
=1 L a\T 144d\Y
HJ 1 (b )
:kp( 'Y )
We conclude that k, = k € IC%. [ |

We now use polynomial interpolation to prove that GPK kernels are pointwise dense.

Theorem 12 For any kernel matriz K* and any finite set {x;}7",, there ezists a d € N
and k € K% such that if K;j = k(xi,x;), then K = K*.

Proof Since K* > 0, K* = MT M for some M. Using multivariate polynomial interpolation
(as in Gasca and Sauer (2001)), for sufficiently large d, we may choose @ such that

Q [Zd(xl) e Zd(a:m)] = M.

Now let
k(z,y) = Za(x)" PZa(y)

17
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where P = QTQ > 0. Now partition M as
M = [ml mm}
Then QZ4(z;) = m; and hence

Kij = Za(2:)" QT QZy(x;)

4.3.3 GPK AND TK KERNELS CONVERGE QUICKLY TO THE OPTIMAL KERNEL

In Subsubsection 4.3.1, we obtained an analytical solution to the optimal kernel matrix. In
Subsubsection 4.3.2, we used polynomial interpolation to prove that GPK and TK kernels
are pointwise dense in the set of all kernels. However, the degree of the polynomials used in
this proof increases with the number of interpolation points. In this subsubsection, we show
that in practice, a degree of only 4 or 5 can be sufficient to approximate the optimal kernel
matrix with minimal error using either GPK and TK kernels.

Specifically, we consider the problem of approximating the optimal kernel matrix for a
given set of data {x;} and given set of kernels, /I, using both the element-wise matrix ||-||;
and |[|-||cc norms.

1K — K*[ly

min||K — K*||loo  s.t. Kij = k(zi,z;) (21)

ke

The sets of kernels functions we consider are: /CZ; - the sum of K Gaussians with bandwiths
Yis IC?J - the GPKs of degree d; and ICE,Q - the TK kernels of degree d. That is, we choose
K e {K}, Ke, IC%} where for convenience, we define the class of sums of Gaussian kernels
of bandwidths v € RX as follows.

K le-uli}
KL = {k; D k(xy) = Z,uie Vi > ()} (22)
i=1

We now solve Optimization Problems (20) and (21) for K, K%, and K< as a function of
the degree of the polynomials, d and the number of bandwidths selected (K'). For this test,
we use the spiral data set with 20 samples and corresponding labels such that » ;" y; = 0.
Since half of the entries in K* are —1, and since the Gaussian kernel is globally positive, it
is easy to see that for K = K/, the minimum objective values of Optimization Problems (20)
and (21) are lower bounded by 0.5 and 1 respectively, irrespective of the choice of bandwidths,
~; and number of data points. In Figs. 2(a) and 2(b) we numerically show the change in the
objective value of Optimization Problems (20) and (21) for the optimal Gaussian, GPK, and
TK kernels as we increase the complexity of the kernel function. For the TK and GPK kernel

18
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IIK = K|

1K= K[ o

0.2 | e Tessellated Kernel
+ Polynomial Kernel
Gaussian Kernel

= Tessellated Kernel
= Polynomial Kernel

L S Gaussian Kernel iy
0 . ®
4 5 6 7 1 2 3 4 5 6 7

3
Polynomial Degree (d) Polynomial Degree (d)

(a) ”Kfn# for the TK and GPK classes of degree (b) [|[K — K*||o for the TK and GPK classes of

d and for a positive combination of m Gaussian degree d and for a positive combination of m Gaus-
kernels. sian kernels.

1 2

Figure 2: The objective of Optimization Problem 20 and 21 for the TK and GPK classes of
degree d and for a positive combination of m Gaussian kernels with bandwidths ranging from
.01 to 10. The number of bandwidths is selected so that the number of decision variables
match in the Gaussian and in the TK kernel case.

functions, we increase the complexity of the kernel function by increasing the degree of the
monomial basis while scaling the z-axis to ensure equivalent computational complexity.

The results demonstrate that, as expected, the Gaussian kernel saturates with an objective
value significantly larger than the lower bound of 0.5 for the 1-norm and exactly at 1 for the
oo-norm (the projected lower bound). Meanwhile, as the degree increases, both the GPK
and TK kernels are able to approximate the kernel matrix arbitrarily well, with almost no
error at degree d = 7. Furthermore, the TK kernels converge somewhat faster.

Note that the optimization problem considered in this subsubsection only concerns
the approximation of a kernel function. In Section 8 we will show that TK kernels also
outperform Gaussians when solving the kernel learning SVM Problem (4) for standard
datasets.

5. SDP formulation of the TK kernel learning algorithm

Section 2 gave a convex formulation of the kernel learning problem using the convex constraint
k € K. Having now defined the TK class of kernels, we now address specific implementations
of the TK kernel learning problem using both an SDP method based on Optimization
Problem (5) and a method based on the SimpleMKL toolbox. In both cases, our goal for
this section is to define an explicit linear map from the elements of the positive matrix
variable, P, to the values of the kernel function k(z;,x;).

To construct our mapping, we first create an index of the elements in the basis Z4(z, x)
which is used in N4(z, x) as defined in Eqn. (10). Recall Zy(z, x) is a vector of all monomials
of degree d or less of length ¢ := (dtlz"). We now specify that the elements of Z; are
ordered, and by default we use lexicographical ordering on the exponents of the variables

of the monomials. Specifically, we denote the jth monomial in Z;(z,x) where z,z € R"
as 209 = I, zfj’ixzj’i where d;,v; € N™ and {[d;, ;] ;1:1 is ordered lexicographically.
Note that {[5j,'yj]}§’:1 = {z € N*": ||z||; < d}. Using this notation, we have the following

representation of the TK kernel k.
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Corollary 13 Suppose that fora <b e R", Y = X = [a,b], and d € N we define the finite
set Dg:={(6,\) € N>+ ||(§,\)||1 < d}. Let {[6;, ]}, C Dy be some ordering of Dgq and
define Zg(x,2); = 2% 2% . Now let k be as defined in Eqn. (7) for some P > 0 and where N

Q R} then we have,

is as defined in Eqn. (10). If we partition P = [RT g

q
k(z,y) = Z Qij9i(x,y) + Rijtij(z,y) + R} jti j(y, z) + Sijhij(z,y)

ij=1
where g; j,t; j, hij : R" x R" = R are defined as
9ij(x,y) = 2"y T(p*(z,y),b,7 + 7 + 1) (23)

tij(z,y) = 2%y T (2, b,v + v + 1) — gij(z,y)
hi,j(x7 y) = xtsiy(sz(a’ b7 Yi + i + 1) - gi,j(xv y) - ti,j(aj7 y) - tl,](yv LL‘),

where 1 € N™ is the vector of ones, p* : R" x R" — R" is defined elementwise as p*(x,y); =
max{z;,y;}, and T : R" x R" x N* — R is defined as

n C] C-J
o= £-2)
j= ] J
Proof The proof follows from Theorem 6. |

An illustration of this map using lexicographical indexing is given in the appendix. Using
a linear map from the elements of P to the value of k(z,y), we may now write the SDP
version of the TK kernel learning problem as follows.

min t (24)
teR, yER, vER™, S€R™, Q,R,SERI*4
. G(P) e+v—0+yy
subject to: < T 9 T >0,
(6+V*5+’yy) t*mée

v >0, 0 >0, P = []?T ]Sﬂ > 0, trace(P) < 1,

q
Gra(P) = yryr Y Qigij (@, 1) + Rijtij(wr, @) + R jti (e, an) + S jhi g (xr, 1)
ij=1

Optimization Problem (24), then, is an SDP and can, therefore, be solved efficiently
using standard SDP solvers such as MOSEK in ApS (2015). Note that we use the trace
constraint to ensure the kernel function is bounded

Typically SDP problems require roughly p?n? number of operations, where p is the
number of decision variables and n is the dimension of the SDP constraint (See Doherty et al.
(2004)). The number of decision variables in (24) is moderate, increasingly linearly in the
number of training data points and the number of elements of P. However, this optimization
problem has a semi-definite matrix constraint whose dimension is linear in m, the number
of training data. As we will see in Section 7, the increase in training data increases n and
limits the amount of training data that can be processed using Optimization Problem (24).
To improve the scalability of the algorithm, we consider a variation on SimpleMKL.
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Figure 3: Log-Log Plot of Computation Time vs number of training data for 2-feature kernel

learning.

6. SimpleMKL formulation of the TK kernel learning algorithm

Recall that SimpleMKL searches for an optimal positive linear combination of kernel functions
from the set (6). The algorithm returns a vector of positive weights p, corresponding to
each kernel in the set of a priori selected kernel functions ks(z,y). Here we discuss how
SimpleMKL as implemented in Rakotomamonjy et al. (2008) can be used to find optimal

combinations of TK kernels.
To create a basis set of TK kernels, we randomly generate a set of L positive semi-definite
matrices, P° for s =1,..., L and use SimpleMKL to find the optimal linear combination of

the TK kernels defined by each matrix P® = [ ( 1?8)T ];s} . Using the basis kernels
q
ks(z,y) = Q1 i015(x,y) + RS jtij(n,y) + RS iti (v, x) + S5 jhi (2, y)
1]

where g(z,y), t(x,y), and h(z,y) are as defined in Eq. (23), we now have

m 1 L 2q
min max Y o =5 Y Y > psoiajyiyiks(vi, ;) (25)
i=1

>0 a€R™
H= ig=1 s=1 I m=1

m
s.t. Zaiyi:O, 0<ayu<C Vi=1,...,m.
i=1

While the current use of randomly generated matrices is somewhat heuristic, it may be
avoided through the development of a dedicated two-step algorithm - wherein the first step
optimizes « for a fixed P and the second step fixes « and searches over the positive matrices.

In Section 7 we will perform a numerical analysis of the complexity of both the SDP and

SimpleMKL implementations.

7. Implementation and complexity analysis

In this section we first analyze the complexity of Optimization Problem (24) with respect
to the number of training points as well as the selected degree of the TK - IC%. We then
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Figure 4: Log-Log Plot of Computation Time vs number of training data for 2-feature kernel
learning using SimpleMKL with TK kernels.

perform the same analysis on Optimization Problem (25) with respect to the number of
training points and the number of random matrices selected.

Analysis of the SDP Approach: In Optimization Problem (24) the constraint that
the kernel be a positive TK kernel can be expressed as an LMI constraint with variables
P;;. Using Optimization Problem (24), if P € R9*?, and m is the number of training data,
with a Mosek implementation, we find experimentally that the complexity of the resulting
SDP scales as approximately m?® + ¢'? as can be seen in Fig. 3 and is similar to the
complexity of other methods such as the hyperkernel approach in Ong et al. (2005). These
scaling results are for training data randomly generated by two standard 2-feature example
problems (circle and spiral - See Fig. 6) for degrees d = 1, 2, 3 and where d defines the
length of Z; (and hence ¢) which is the vector of all monomials in 2 variables of degree d or
less.

Note that the length of Z; scales with the degree and number of features, n, as ¢ =
—1)!
%. For a large number of features and a high degree, the size of Z; will become
unmanageably large. Note, however, that, as indicated in Section 4, even when d = 0, every

TK kernel is universal.

Analysis of the SimpleMKL Approach: Solving Optimization Problem (25) with
SimpleMKL we first need to generate a set of random matrices. If we have L random positive
semi-definite matrices and m training data points then we find experimentally that the
complexity of the resulting SDP scales as approximately m?' + L6 as can be seen in Fig. 4.
These scaling results are, as in the results for the SDP method, for training data randomly
generated by two standard 2-feature example problems (circle and spiral - See Fig. 6). We
select the number of training data m, to vary between 100 and 1000 points and select the
number of random matrices to be L = 100, 200, 300.

Note that the complexity of the SimpleMKL version is largely independent of the selected
degree of the polynomial. However, a larger degree means that the matrices P are larger, and
therefore a larger number of random positive semi-definite matrices, L, should be selected.
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8. Accuracy and comparison with existing methods

In this section, we evaluate the relative accuracy . ‘ ‘ ‘ ‘ ‘ ‘
of Optimization Problem (24) using SDP and Op- \ Tessellated
timization Problem (25) using SimpleMKL. To
evaluate the accuracy, we applied 5 variations of
the kernel learning problem to 5 randomly selected
benchmark data sets from the UCI Machine learn-
ing Data Repository - Liver, Cancer, Heart, Pima,
and Ionosphere. In all evaluations of Test Set Ac- _
curacy (TSA), the data is partitioned into 80% T
training data and 20% testing and this partition is 005
repeated 30 times to obtain 30 sets of training and Number of Training Inputs
testing data. For all numerical tests we use the

soft-margin problem with regularization parameter Figure 5: TSA compared with Sim-
C, where C is selected from a set of values picked a pleMKL for spiral dataset with artificial
priori by 5-fold cross-validation. To perform 5-fold additive noise.

cross-validation we split the training data set into five groups, solve the optimization problem
using each potential value of C' on four of the five groups and test the optimal classifier
performance on the remaining group. We repeat this process using each of the five groups
as the test set and select the value of C which led to the best average performance.

The 5 variations on the kernel learning problem are
[TK] We use the SDP algorithm in (24) using d = 1 (Except Ionosphere, which uses d = 0)
but set v = 0 to decrease numerical complexity. To determine the integral in (24), we first
scaled the data so that x; € [0,1]", and then set X := [0 — ¢, 1+ €]™, where € > 0 was chosen
by 5-fold cross-validation.

[SimpleMKL] We use SimpleMKL with a standard selection of Gaussian and polynomial
kernels with bandwidths arbitrarily chosen between .5 and 10 and polynomial degrees one
through three - yielding approximately 13(n + 1) kernels;

[SimpleMKL TK] We randomly generated a sequence of 300 positive semidefinite matrices
and use these as the SimpleMKL library of kernels;

[SimpleMKL TK+] We combined the libraries in [SimpleMKL] and [SimpleMKL TK]
into a single SimpleMKL implementation;

[Neural Net] We use 3 layer neural network with 50 hidden layers using MATLABs
(patternnet) implementation.

In Table 1, we see the average TSA for these four approaches as applied to several
randomly selected benchmark data sets from the UCI Machine learning Data Repository. In
all cases, either [TK] or [SimpleMKL TK] met or in some cases significantly exceeded the
accuracy of [SimpleMKL].

In addition to the standard battery of tests, we performed a secondary analysis to
demonstrate the advantages of the TK class when the ratio of training data to the number
of features is high. For this analysis, we use the liver data set (6 features) and the spiral
discriminant (2 features) from Lang (1988) (we also briefly examine the unit circle). For the
liver data set, in Figure 8, we see a semilog plot of the residual error (i.e. 1-TSA) as the size
of the training data increases as compared with SimpleMKL. This figure shows consistent
improvement of [TK] over standard usage of [SimpleMKL]|. For the spiral case, in Figure 8
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Figure 6: Discriminant Surface for Circle and Spiral Separator using method [TK] as
Compared with [SimpleMKL] for n training data.
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Figure 7: Plots demonstrating the change in accuracy of [TK]| and [SimpleMKL] with respect
to the number of training inputs. The residual error is defined as 1-TSA where TSA is the
test set accuracy.

we again see a semilog plot of the residual error as the size of the training data increases as
compared with [SimpleMKL]. In this case, both methods converge well with [TK] showing
significant improvement over [SimpleMKL] only for very large training data sets.

To explore how increasing the number of training data affects the classifier, we generated
a new 1400 point training data set with additive noise of zero mean and ¢ = .1. The results
are seen in Figure 5. In this case, we see that [TK] significantly outperform [SimpleMKL]
beginning at 600 data points.

Finally, as an illustration, we plotted the discriminant surface for both the spiral and
unit circle data sets using both the [TK] and [SimpleMKL] methods using 150 training data
points. These 2D surfaces are found in Figure 6.

9. Conclusion

In this paper, we have proposed a new class of universal kernel functions. This set of kernels
can be parameterized directly using positive matrices or indirectly using positive coefficients
combined with randomly generated positive matrices. Furthermore, any element of this
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Table 1: TSA comparison for algorithms [TK], [SimpleMKL], [SimpleMKL TK], [SimpleMKL
TK+], and [Neural Net]. The maximum TSA for each data set is bold. The average TSA,
standard deviation of TSA and time to compute are shown below. m is size of dataset and

n the number of features.

Data Set Method Accuracy Time Data Features
TK 72.32 £+ 4.92 95.75 + 2.68
Liver SimpleMKL 65.51 £ 5.10 2.61 4+ 0.42 m = 346
SimpleMKL TK 70.58 + 4.69 8.37 + 0.30 n==~06
SimpleMKL TK+  70.53 + 4.79 14.70 £+ 0.76
Neural Net 66.32 + 7.46 0.14 £ 0.04
TK 97.18 + 1.48 636.17 £+ 25.43
Cancer SimpleMKL 96.55 + 1.34 14.74 £ 1.33 m = 684
SimpleMKL TK 96.89 + 1.43 45.84 + 4.28 n=9
SimpleMKL TK+  96.89 + 1.42 65.08 £ 10.52
Neural Net 96.67 £+ 1.30 0.18 + 0.06
TK 83.46 + 4.56 221.67 + 29.63
Heart SimpleMKL 83.70 4+ 4.77 3.09 + 0.19 m = 271
SimpleMKL TK  84.38 4+ 4.34 55.48 + 2.67 n=13
SimpleMKL TK+  83.64 + 4.54 13.23 + 2.70
Neural Net 78.64 + 5.19 0.12 4+ 0.01
TK 76.32 £+ 3.10 1211.66 £+ 27.01
Pima SimpleMKL 76.00 £+ 3.33 19.04 £ 2.33 m=769
SimpleMKL TK 76.75 + 2.81 34.65 + 23.28 n=2_8
SimpleMKL TK+ 76.57 £ 2.72 96.20 + 30.42
Neural Net 75.35 + 2.98 0.24 + 0.19
TK 93.24 + 3.04 6.69 + 0.27
Tonosphere SimpleMKL 92.16 + 2.78 26.24 £+ 2.78 m = 352
SimpleMKL TK 87.65 + 2.88 8.28 £+ .16 n=34
SimpleMKL TK+  92.16 + 2.78 50.77 £+ 2.98
Neural Net 90.85 £ 3.42 0.16 4+ 0.02

class is universal in the sense that the hypothesis space is dense in Lo, giving it comparable
performance to and properties of the Gaussian kernels. However, unlike the Gaussian or
RBFs, the TK class does not require a set of bandwidths to be chosen a priori. Furthermore,
by increasing the degree of the monomial basis, we have shown that the TK class can
approximate any kernel matrix arbitrarily well.

We have demonstrated the effectiveness of the TK class on several datasets from the
UCI repository. We have shown that the computational complexity is comparable to other
SDP-based kernel learning methods. Furthermore, by using a randomized basis for the
positive matrices, we have shown that the TK class can be readily integrated with existing
multiple kernel learning algorithms such as SimpleMKL - yielding similar results with less
computational complexity. In most cases, either the optimal TK kernel or the MKL learned
sub-optimal TK kernel will outperform or match an MKL approach using Gaussian and
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polynomial kernels with respect to the Test Set Accuracy. Finally, we note that this universal
class of kernels can be trivially extended to matrix-valued kernels for use in, e.g. multi-task
learning as in Caponnetto et al. (2008).
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Appendix A. Example Calculation of g, h, and t

In this appendix, we illustrate the lexicographical ordering {[d;,v;]} and the maps g; ;(z,y), tij(x,y), ti;(y, )
and h; j(x,y) for the special case of a = [8] , b= [2] . We choose d = 1 which implies Z; is

length ¢ = 5. This yields

Zi(x,z)= | x2 |,

The associated § and  are then given by

0 0 0 0
1 0 0 0
=10 1], =100
0 0 10
0 0 01

~—

For brevity we will assemble the matrices g; j(z,y
the first, second and fourth elements of Z;(z, ).

Assembling g; j(x,y),t; j(x,v),tij(y, ) and h; j(z,y) for i,j = 1,2,4 into matrices of
size R3*3 and by using Equation (23) in Corollary 13, we have that,

(3 —p})(4 — p5) y1(3 —pi)(4 —p3) %(9— (pl)Q)( pz)
g(z,y) = w1(3 p)(A—p3)  za(3—pi)(4—p3) 12( - (1)?)
5O-DH@E—p5) nsO—EHHAE-p3) 327—(p )3)(
B-z)d-22) yB-z)@d-z2)  F(9—a7)4 -
tx,y) = | 213 —x1)(4—22) 1y (3 —21)(4—22)

; tz,j (1’, y)v tz,] (y7 CC) and hz,] (.%', y) for

L *( —2D)(d—x2) yiz(9—aD)(d—x2)  F(27—a})(4 - z2)
[ B—y)d—1) B-—y)d—w) FO-y)(d—1p)
t(y,z) = y1(3 y1)(A—y2) TG -y —y2) 3509 —y)4—y2) g(z,y)
5O0-y)@E—y2) w150 -y)d—y) 27T—y))(d—v)

12 12y 36
h($, y) = 12$1 121‘13/1 36:1;1 - g(xv y) - t(l" y) - t(ya ZL‘),
36 3611 108

where we have defined p* element wise as p} = max{x;, y;}.
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