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Abstract

Nonnegative Matrix Factorization (NMF) has be-
come an increasingly important research topic
in machine learning. Despite all the practical
success, most of existing NMF models are still
vulnerable to adversarial attacks. To overcome
this limitation, we propose a novel Adversarial
NMF (ANMEF) approach in which an adversary
can exercise some control over the perturbed data
generation process. Different from the traditional
NMF models which focus on either the regular
input or certain types of noise, our model consid-
ers potential test adversaries that are beyond the
pre-defined constraints, which can cope with var-
ious noises (or perturbations). We formulate the
proposed model as a bilevel optimization problem
and use Alternating Direction Method of Mul-
tipliers (ADMM) to solve it with convergence
analysis. Theoretically, the robustness analysis
of ANMF is established under mild conditions
dedicating asymptotically unbiased prediction.
Extensive experiments verify that ANMF is ro-
bust to a broad categories of perturbations, and
achieves state-of-the-art performances on distinct
real-world benchmark datasets.

1. Introduction

The nonnegative matrix factorization (NMF) has been a
prevalent nonnegative dimensionality reduction method and
successfully applied to many fields such as feature extraction
(Zhi et al., 2011), video tracking (Bucak & Gunsel, 2007),
image processing (Geng et al., 2012) and document cluster-
ing (Guan et al., 2012). Given a data matrix Y € R™*N
with non-negative entries, the goal of NMF is to factorize
Y into the product AX of two nonnegative matrices, with n
columns in A, where n is generally small.
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Since NMF was popularized by Lee and Seung (Lee &
Seung, 1999), various NMF methods have been proposed.
However, most of them independently deal with each ele-
ment of X, regardless of the relationship between elements.
To address this issue, some scholars considered the struc-
tural information of data or variate in modeling. Specifically,
Cai et al. (Cai et al., 2010) exploited the intrinsic geometry
of the data distribution and constructed a nearest neighbor
graph to model the manifold structure term. Kim ez al. (Kim
et al., 2012) leveraged a mixed norm regularization to pro-
mote group sparsity in the factor matrices of NMF. Haeffele
et al. (Haeffele et al., 2014) explored a matrix factorization
technique suitable for large datasets that captures additional
structure in the factors by using a projective tensor norm.

It is noteworthy that the NMF models mentioned above are
limited to the regular input, and they are more inclined to
use the simple Lo-norm to characterize the residual between
matrices Y with AX. Such a strategy obviously contradicts
to the practical observations where data often contains noise
which may have heavy-tailed attribute. Thus, in recent re-
search, Robust Nonnegative Matrix Factorization (RNMF)
methods have gained increasing attentions. For instance,
Kong er al. (Kong et al., 2011) presented a novel robust for-
mulation of NMF by using Lo ;-norm loss function which
can accommodate outliers and noises in a better way than
Ly-norm. Subsequently, Huang et al. (Huang et al., 2014)
generalized (Kong et al., 2011) by adopting manifold regu-
larization. Based on the correntropy induced metric, Du et
al. (Du et al., 2012) introduced a robust NMF method which
can effectively cope with the practical noise. Guan et al.
(Guan et al., 2017) proposed a Truncated Cauchy NMF loss
that handles outliers by truncating large errors, while Gao
et al. (Gao et al., 2015) employed capped norm to remove
the effect of extreme data outliers in NMF.

However, the RNMF methods are only suitable for some
special types of noises, e.g., Laplacian or Cauchy noise,
which cannot show the flexibility in facing the worst-case
(i.e., adversarial) perturbations of data points. Compared
with random noise, perturbations caused by specific fea-
tures or the noise are more common and complex, but often
contaminate the input data in practical applications. Some-
times, they are hardly perceptible to the human eye, yet
sufficient to change the output of an algorithm. As a result,
how to increase the robustness of models against the general
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perturbations has become a very important task in NMF.

To address this challenging problem, in this paper, we intro-
duce a novel Adversarial Nonnegative Matrix Factorization
(ANMF) model by emphasizing potential test adversaries
that are beyond the pre-defined constraints. Specifically, we
leverage adversarial perturbations of Y to learn the adver-
sarial feature matrix A data and weight matrix X. Differing
from the traditional NMF models which either focus on
the regular data point or use the simple matrix norm to
characterize error between matrices AX and Y, our model
fully utilizes an adversary of input data Y to exercise some
control over the data generation process to improve the sta-
bility of A. Thus, it does not rely on any noise assumption.
The proposed model is formulated as a bilevel optimization
problem and an efficient optimization algorithm is derived
to solve it with the convergence analysis. In addition, we
establish the complete theoretical guarantees for ANMF
under mild conditions. These results soundly support the
rationality of ANMF. The main contributions of this paper
are summarized as follows:

e From learner and attacker perspectives, we propose a
novel Adversarial Nonnegative Matrix Factorization
(ANMF) model which can handle different types of
noise or perturbations.

e The robustness analysis is provided under different
conditions, which theoretically guarantees the sound-
ness of our model.

e Alternating Direction Method of Multipliers is applied
to solving ANMF, where we can achieve the closed-
form solution for each sub-problem.

e Empirical studies are performed on real-world bench-
mark data sets with various noise conditions. All re-
sults demonstrate that the proposed algorithm can con-
sistently outperform other related methods.

Notations: Throughout this paper, the bold capital and bold
lowercase symbols are used to represent matrices and vec-
tors, respectively. If all elements of a matrix A are greater
than or equal to 0, we denote it by A > 0. ||A|| 7 and ||A||2,1
mean Frobenius norm and L ;-norm of the matrix A, re-
spectively. Finally, a p x p-identity matrix is denoted by L,
and 0 denotes is a zero matrix.

2. Backgrounds

Nonnegative matrix factorization. The standard NMF mod-
els factorize an observation matrix Y = [y;,¥,, -+, Yn] €
Rm*N as two nonnegative factors A = [a;,az,- -+ ,a,] €
X and X = [x1,X2,- - -, Xy] € R™*N such that
Y ~ AX. A is often referred to as feature matrix and X re-
ferred as weights. It has been shown that the non-negativity
constraint on the coefficients forcing features to combine,

but not cancel out, can lead to much more interpretable fea-
tures and improved downstream performance of the learned
features. The standard NMF can be formulated as follows:

i — 2,56, A> > 0.
min | Y — AX ||z, 5.2,A 20, X >0 (1)

Numerous algorithms have been developed in the literature
for finding its high-quality solutions. The most represen-
tative algorithm is multiplicative update which alternates
between solving certain surrogate functions for A and X,
respectively (Gonzalez & Zhang, 2005). The Alternating
Nonnegative Least Square (Lin, 2007) is another class of
useful algorithms, which includes the projected gradient
descent method (Hajinezhad et al., 2016).

Since the Ly-norm is sensitive to the practical noises, in-
tensive efforts have been put to design robust NMF models.
The common strategy of these methods is to adopt a spe-
cial loss function to characterize the errors between Y and
AX, e.g., Ly 1-norm (Kong et al., 2011), Capped norm (Gao
et al., 2015), Correntropy induced metric (Du et al., 2012)
and Truncated Cauchy function (Guan et al., 2017).

Adversarial Perturbations. State-of-the-art machine learn-
ing models have achieved high accuracy on a broad range of
datasets, yet can be easily misled by small perturbations of
their input. While such perturbations may be simple noise
to a human or even imperceptible, they often cause modern
models to misclassify their input with high confidence. To
provide adversarial robustness against the adversarial attack,
a standard technique, which is called adversarial training
(Farnia et al., 2018), follows empirical risk minimization
training over the adversarially-perturbed samples by solving

N

min = S Ufa(vit D)) b), @)

i=1

where [(+, -) is a loss function, fy(-) is the output function,
Ay (v;) is the adversarial additive perturbation (or noise) for
sample v; and each b, is a test sample or the label vector.

3. Adversarial Nonnegative Matrix
Factorization

Model (1) can be further written as:

N

P AXi 27
> Iy, - Axi 2 o

=1
S.t., AZO, Xi207i2172,"' ’N.

min
AX1, 0 XN

Although some robust NMF methods (Kong et al., 2011;
Gao et al., 2015; Du et al., 2012) may be effective for han-
dling practical noise, their aim is to search for an appro-
priate loss function to characterize the errors with special
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properties such that outlying data have a relatively smaller
influence in the process of learning variables. Thus, the
given loss function is only suitable for some specific noise.
For other types of noises, it may be ineffective. Additionally,
these robust NMF methods highly rely on the independence
assumption of noise pixels, which is unrealistic for some
structured noises caused by occlusions or illumination.

More recently, several efforts have focused on proactive ap-
proaches of modeling the learner and adversary as players in
a game in which the learner chooses a classifier or a learning
algorithm, and the attacker modifies either the training or
test data (Li & Vorobeychik, 2014; GroBhans et al., 2013;
Tong et al., 2018). These methods have shown great poten-
tial when handling data with adversarial perturbations. In
this paper, we consider the data perturbed by noises as the
attacker and present an adversarial version of (3) to improve
the performance of NMF, where our main task is to model
the adversary’s attack strategy and develop robust learning
models to mitigate the attack.

For the convenience, we assume that the learned feature data
A and given data Y are drawn from an unknown distribution
D at training time. By contrast, at application time, the test
data can be generated either from D, the same distribution
as the training data, or from ﬁ, a modification of D gener-
ated by an attacker. The action of the learner is to select
parameters {X1,Xa, -+ ,Xy } of the Eq. (3). It is assumed
that the attacker has an instance-specific target, and encour-
ages that the prediction made by learner on the modified
instance, y; = Ax; (i = 1,--- , N), is close to this target.

The cost functions of each learner (C') and the attacker (C'a)
are estimated by:

CI(X,A,A) = aG(AX,Y) + SG(AX,Y)  (4)

and
Ca(X,A,A) = G(AX,Z) + A\G(A,A). (5)

Here parameters «, 3, A > 0, G(,-) is a given metric and
Z = Z(Y) is the instance-specific target for attacker.

Ultimately, our model is expressed as:

win CUX, A™(X), A) ©)

st.  A'(X) =argminCa(X,A,A),X >0,A > 0.
A

Our method provides a general framework for dealing with
practical perturbations which may be caused by Laplace,
Gaussian or structured noises. It does not depend on any
assumption on perturbations (or noises). Thus, compared
with those robust methods, model (6) is more adaptive for
the practical NMF problems.

Remark 1. In general, Z can be set using two approaches:
(a) Z = Y + 1, where ¢ is sampled from [0, 50,] and o,

is the standard deviation of test image samples [y, ¥o, - - ,
¥ ], 1is a matrix with all elements equal to one; (b) Z =
Y + A, where A is the practical noises caused by outlier,
illuminations or occlusions.

Remark 2. We use manual perturbations in model (6).
In fact, we can impose some priors on perturbations to
automatically learn them. But here we omit such a process.

Model (6) is factually a bilevel optimization problem. Spe-
cially, if the feature matrix A is fixed, it can be considered
as the matrix version of the Stackelberg Equilibrium prob-
lem (Tong et al., 2018) (More details can be seen in the
supplementary materials). In this paper, we set G(A, A) =
| A—A ||2.. Then, for the lower level, we have the following
closed-form solution:

Theorem 1. Given X, the best response of the attacker is

~ %

A (X) = DA +2X) (1, + Xx5) 71 (7)

Since there is an inverse of complicated matrix in (7), it
is difficult to solve problem (6) by directly substituting (7)
into (6). To mitigate this limitation, we consider (7) as a
constraint of (6), which leads to the following problem:

min CI(X, A, A), ®)
X,AA

st AQAI+XXT) — (A 4+2XT) =0,X > 0,A > 0.

Let (A, X) = A4 XXT) — (AA + ZXT). Problem (8)
can be approximated as:

min CI(X, A, A) +7[l¢(A, X)|F, s.2,X > 0,A>0. (g
X,AA

Thus, we focus on model (9) in this paper.

4. Theoretical Analysis

We define the empirical reconstruction error of NMF as
follows:

N
1 .
Ry(A) =+ > min|ly, — Ax|[3. (10)
=1

Denote the expectation operator by £. Then, the expected
reconstruction error of ANMF can be written as

R(A) = &,Rn(A). (11)

The Rademacher complexity is defined as:

2 n
R(F)=Espsup — » oif(x;) (12)
fer m Z;
o1, ,0p, are independent Rademacher variables, f(-)

belongs to the [a, b]-value function class on X and x =
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(1,22, ,on)T € RN are independent and identically
distributed examples.

Based on the above theorems and definitions, we can obtain
the generalization bound of ANMF.

Theorem 2. For ANMF problem, assume that Y is upper
bound by 1. For any learned normalized A and any § > 0,
with probability at least 1 — §, we have

14n/n N n2In(16 Nn)
VN AN

\/mnln(él(l +n)y/mnN) — In2
2N

|R(A) — Ry(A)| < min{
In2/5 2
Voavow T

It is easy to see that standard NMF problem (1) is a special
case (a,y = 0) of ANMF. Similar to (Liu et al., 2016),
we can obtain a dimensionality independent generalization
bound for standard NMF problem (1) when the feature matrx
A is orthogonal, i.e.,

13)

Theorem 3. For orthogonal NMF problem, assume that Y
upper bounded by 1. For any learned normalized A with
and any 0 > 0, with probability at least 1 — d, we have

IR(A) — Rn(A)] < Gn\/EJr \/ 122]\/[5. (14)

Both Theorems 2 and 3 point out the asymptotically unbi-
ased prediction of NMF methods. Specifically, Theorem 2
provides a slightly weaker but meaningful generalization
bound for ANMF. Although Theorem 3 depends on the mild
orthogonality assumption, its explicit representation can re-
flect more clearly the effectiveness of orthogonal ANMF
than Theorem 2. All proofs are in supplementary materials.

5. Optimization Algorithm

In this section, we apply the Alternating Direction Method
of Multipliers (ADMM) optimization algorithm to solve
problem (9). The ADMM or the Augmented Lagrange Mul-
tipliers (ALM) method was presented originally in (Gabay
& Mercier, 1975) and (Fortin & Glowinski, 2000), which
has been extensively studied in the theoretical frameworks
of Lagrangian functions (Fortin & Glowinski, 2000). Re-
cently, it has been shown that ADMM are efficient for many
convex and nonconvex programming problems arising from
various applications (Chartrand & Wohlberg, 2013; Wang
etal.,, 2015; Mei et al., 2018).

It should be noted that the iterative scheme of ADMM in-
tegrates the Gaussian-Seidel decomposition into iterations
of the ALM in (Wang et al., 2015), which implies that the
functions with regard to different variables are treated in-
dividually. Accordingly, the easier sub-problems could be

Algorithm 1 Solving Eq. (9) via ADMM

Input: Y € R™*V and instance-specific target Z
Output: feature matrix A € R”*" and weight matrix
X € RN,
Initialization: A and X using the traditional K-means
method, A° = A, where Ak is the clustering centroid
obtained by K-means method, X" = Xj + 0.2, where
X is the K-means clustering result. Uuo = XOT, ]§O =
AY = A MO —o.
repeat

Update (H, B, J) by

HE ! Ry (200 + ply + 29URUF )1,

R>
28+ p’

~, o1
B" « max(0,A + ~MF), J+1
I

Update (U, B) by

UF T max(0,(2y(HF T — 2)T
(H""' = Z) 4+ pIn) " 'Rs),

1
B max (0, A* + —M¥),
7
Update A by
AR Ry (2902, + g, + XFXFT )

Update A by

AT Ry (2902, + o, + XEXET)

Update X by

k+1)T~k+1

XEHL (A AT AR AR IR

Update M by

M ME (oA ARy (x)
—u(H’;“ Jht BEF! g+t URtY).

until Converge

generated. For the splitting, several auxiliary variables are
introduced, and (9) is transformed into the following equiv-
alent form:

min__o|H-Y|%+ 8|J — Y%
H,J,UX,AA BB

+7|HU + A — XA — ZU||%,
st. AX=H,AX = J, X" = U,A =B,
A=B,B >0,B >0,U >0.

5)
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Let us write the augmented Lagrange function for the prob-
lem (15) as :

L.(H,B.J,U.B.A A X M)
= ol H- Y%+ 8IJ - Y[
~ -~ o~ 1
+7|HU 4+ 2A — A& — ZUJ% + L (JA - B + M

1 ~ 1
+A-B+ ;leli +|AX — H + ;M3||%

1 1
+IAX = J 4+ - Millf + X7 = U+~ Ms|l7),
(16)
where p > 0 is a tunable penalty parameter.

Then, ADMM is applied to minimizing the augmented La-
grangian problem (16) with respectto H, J, U, X, A, A B, B
alternately.

The iterative scheme of ADMM for problem (15) is summa-
rized in Algorithm 1, where

P(A,A) = diag(A,A, A, A Iy),

A (a7)
¢(X) = diag(X7 X, L, I,,X )a
v(H,J,B,B,U) = diag(H, J, B, B, U), as)
M= diag(Ml, Mg, M37 M4, M5)7
R; = 20Y + 2y(AAF + ZUF — \A")Uur"
~kor 1
- 1,
R = 28Y + p(A"XF + ~ME),
1
Rs = 2y(H* — 2)" (A" — AA") + u(x*" + iM’g), (20)
Ry =2 \HIUR A" - zuk )
1 @D

1
+ p(BEH — ;MS) +pIE - ;ME)X

R5 :2’)/)\(>\Ak+1 4 ZUk+1 _ Hk+lUk+1)

L k41 1 1 T
+uB = SME) 4 - SMEXET
p 0
(22)
~k 1
Re = (AT (HF - M)

23
1 LT (23)

+ (Ak+1)T(Jk+1 _ *MZ) +Uk+1T _ 7Mlg )
H H

For detailed derivations of Algorithm 1, we refer the readers
to the supplementary materials.

Convergence Analysis. We provide a partial result on the
convergence of the proposed Algorithm 1 by virtue of KKT

conditions of problem (9). To simplify notations, let us
define 3 R
Q=H,B,J,UBAAXM). (24)

Theorem 4. Let {Q;}7° , be a sequence generated by Al-
gorithm 1 that satisfies the condition
lim (Q*1 — QF) = 0. (25)
k—o0

Then any accumulation point of {Q%}2° | is a KKT point
of problem (15). Consequently, any accumulation point of

(Ak, Ak, Xk) . 18 a KKT point of problem (9).

Corollary 1. Whenever {Q,}7° | converges, it converges
to a KKT point.

As a consequence, for Algorithm 1, it is enough that we
only need to choose a proper termination parameter € > 0,
and use the termination condition:

Y — AFXF||Z <€ and |[AFT —A¥Z <e. (26)

All proofs of above theorem and corollary can be found in
supplementary materials

6. Experiments and Discussions

Experiments were carried out on multiple real-world data
sets. Throughout the experiments, we set ANMF parameters
asa=0688=10"°~v=103A=10"3,and p = 1.
For detailed description of datasets and more comprehensive
results, we refer the readers to supplementary materials.

6.1. Comparison with Baselines

Some representative methods, including Standard Nonnega-
tive Matrix Factorization (SNMF), Ly ;-norm based NMF
model (Ding et al., 2006), Orthogonal Nonnegative Ma-
trix Factorization (ONMF) (Kong et al., 2011), and Capped
norm Nonnegative Matrix Factorization (CNMF) (Gao et al.,
2015), are compared with the ANMF. It should noted that
the main novelty of this paper is to consider potential test
adversaries in modeling, not the robust characterization for
noise. Thus, it is unfair to compare our method with some
robust methods such as Correntropy induced NMF model
and Truncated CauchyNMF model.

The detailed results for clustering accuracy and normalized
mutual information results are shown in Table 2 and Table 3
(The best results are marked in bold). It can be observed that
the advantage of ANMF is quite evident. Although L ;-
norm based NMF is a robust NMF method, the ignoring of
test adversaries leads to the undesired performance. Com-
pared to NMF, ONMF achieves the better results, which
indicates that the orthogonal constraint w.r.z. weight matrix
X is helpful for improving the performance. However, our
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Table 1. Description of Benchmark Datasets

Dataset Number of Instances Dimensions Classes Category
MNIST 150 784 10 image
Yale 165 1024 15 image
ORL 400 644 40 image
UMIST 575 644 20 image
COIL-20 1440 1024 20 image
USPS 9298 256 10 image
BBCsports 737 4613 5 text
BBCNews 2225 9635 5 text
WebKB 4199 7770 4 text
Reuters 9298 256 10 text
RCV 9625 29992 4 text
TDT2 9394 36771 30 text

Table 2. ACC of noise-free Real Datasets. The best results are marked in bold.

ONMF

L2, 1-norm NMF

CNMF

ANMF

0.7987(£0.0441

0.8027(+0.0410)

0.7947(+0.0228

0.8067(+0.0490

0.4145(40.0360

0.4424(40.0235

0.4036(40.0380

0.4509(£0.0164

0.6420(%0.0356

0.6895(40.0139

0.5935(40.0323

0.7305(+0.0294

0.4616(%0.0295

0.4845(£0.0255

0.4442(£0.0235

0.4946(+0.0186

0.6626(+0.0264

0.6578(+0.0130

0.6601(£0.0300

0.6833(+0.0162

0.7738(4:0.0003

0.7550(4-0.0002

0.7429(4-0.0050

0.7780(£0.0002

0.9619(40.0028

0.9597(40.0002

0.9202(40.0032

0.9649(£0.0010

0.6657(%0.0038

0.6618(40.0083

0.6525(+0.0117

0.6672(+0.0084

0.7495(+0.0164

0.7788(£0.0071

0.7197(£0.0112

0.8047(+0.0098

0.6493(£0.0054

0.6420(%0.0183

0.6280(40.0021

0.6516(+0.0137

)

( )
( )
( )
( )
( )
0.9460(£0.0024)
( )
( )
( )
( )
( )

0.8246(+0.0119

( )
( )
( )
( )
( )
0.9468(=£0.0006)
( )
( )
( )
( )
( )

0.8448(4-0.0046

)

( )
( )
( )
( )
( )
0.9327(£0.0064)
( )
( )
( )
( )
( )

0.8062(4-0.0150

)

( )
( )
( )
( )
( )
0.9531(£0.0031)
( )
( )
( )
( )
( )

0.8638(+0.0176

Table 3. ACC of noisy Real Datasets. The best results are marked in bold.

ONMF

L2, 1-norm NMF

CNMF

ANMF

0.8093(£0.0379)

0.8080(£0.0477)

0.8067(£0.0254)

0.8160(£0.0421)

0.3527(£0.0248)

0.3806(£0.0168)

0.3576(£0.0223)

0.4036(L0.0180)

0.4602(+£0.0268)

0.48T4(£0.0036)

0.4275(£0.0162)

0.5078(£0.0124)

0.5475(£0.0083)

0.6225(£0.0275)

0.5350(£0.0173)

0.6670(£0.0248)

0.6547(£0.0190)

0.6762(£0.0175)

0.6782(£0.0316)

0.6830(0.0194)

0.7716(£0.0003)

0.7592(%£0.0003)

0.7505(£0.0058

0.7793(£0.0002)

0.7733(£0.0194)

0.7800(+0.0481)

0.7453(£0.0202

0.8027(£0.0293)

0.3261(£0.0464)

0.3576(£0.0424)

0.3394(£0.0346

0.4012(£0.0286)

0.4483(£0.0170)

0.4720(£0.0235)

0.4310(£0.0269

0.4866(L0.0223)

0.4850(£0.0157)

0.5145(£0.0192)

0.4650(£0.0190

0.5600(L0.0366

0.6469(+£0.0209)

0.6850(£0.0293)

0.6229(£0.0345

0.6924(£0.0337

0.7638(£0.0009)

0.7527(£0.0007)

0.7269(£0.0003

0.7654(L0.0006

0.8093(+0.0543)

0.7920(40.0311

0.8160(1£0.0423

0.3547(£0.0309)

0.3519(£0.0158

0.3852(+£0.0273

0.4737(£0.0242)

0.4710(£0.0259)

0.4828(£0.0251

0.5145(£0.0288)

0.5520(£0.0198)

0.5680(L0.0207

0.5145(£0.0121)

0.5278(+£0.0054)

0.5293(40.0284

0.5296(£0.0074)

0.5195(£0.0018)

0.5306(+0.0078

0.5327(£0.0065

0.2440(£0.0060)

0.2427(£0.0060)

0.2480(£0.0056

0.2497(+0.0163

0.4982(+£0.0458)

0.5406(£0.0266)

0.4861(£0.0262

0.5549(20.0301

0.2115(£0.0089)

0.2235(+£0.0087)

0.2136(40.0051

0.2271(£0.0057

0.2880(+0.0132)

0.3230(£0.0110)

0.2780(%0.0082

0.3485(+£0.0146

0.6706(+0.0228)

0.6782(£0.0181)

0.6586(+0.0177

0.6827(+0.0145

Dataset NMF
MNIST 0.7933(£0.0497)
Yale 0.4388(+0.0233)
ORL 0.7005(+0.0060)
UMIST 0.4880(£0.0285)
COIL-20 0.6692(£0.0215)
USPS 0.7468(+0.0004)
BBCSport | 0.9493(£0.0007)
BBC 0.9604(£0.0011)
WebKB 0.6619(+0.0095)
Reuters 0.7836(£0.0059)
RCV 0.6458(+0.0194)
TDT2 0.8546(+0.0067)
Noise Dataset NMF

MNIST 0.8067(£0.0464)

Yale 0.3879(£0.0321)

Sp UMIST 0.4800(+£0.0150)

ORL 0.6155(£0.0252)

COIL-20 | 0.6723(%0.0247)

USPS 0.7542(£0.0004)

MNIST 0.7880(+£0.0417)

Yale 0.3867(£0.0301)

Pixel UMIST 0.4706(£0.0261)

ORL 0.5370(£0.0141)

COIL-20 | 0.6829(%0.0117)

USPS 0.7520(£0.0002)

MNIST 0.8107(£0.0494)

Yale 0.3597(£0.0175)

regular UMIST 0.4525(+£0.0302)

ORL 0.5465(£0.0243)

COIL-20 | 0.5274(%0.0209)

USPS 0.5210(£0.0005)

MNIST 0.2493(+£0.0037)

Yale 0.5468(£0.0261)

irregular UMIST 0.2247(+£0.0056)

ORL 0.3250(£0.0127)

COIL-20 | 0.6792(+0.0202)

USPS 0.7388(£0.0002)
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(b) pixel (c) regular (d) irregular

(f) pixel

(e)S&P

(g) regular (h) irregular

Figure 1. Illustrations of face datasets Yale (a)-(d) and ORL (e)-(h) with different types of noises (pixel, regular, irregular). From top row

to bottom row: origin, noisy data, noisy Z, A, A

(a) A on ORL (b) A on ORL

(c) A on Yale (d) A on Yale

Figure 2. Visualizing Feature Matrices A and A via T-SNE on ORL and Yale Datasets

Table 4. ACC of Real Datasets with Salt & Pepper Noise. The best results are marked in bold.

Dataset K-Means NMF ONMF l5,1 NMF CNMF ANMF

MNIST | 0.7893(4£0.0342) 0.8067(£0.0464) 0.8093(£0.0379) 0.8080(+0.0477) 0.8067(+0.0254) 0.8160(+0.0421)
Yale 0.3503(+0.0259)  0.3879(+0.0321)  0.3527(+0.0248)  0.3806(£0.0168) 0.3576(+0.0223)  0.4036(+0.0180)
UMIST | 0.4734(£0.0157)  0.4800(4+0.0150) 0.4602(+0.0268) 0.4814(£0.0086) 0.4275(+0.0162) 0.5078(+0.0124)
ORL 0.5720(£0.0195)  0.6155(£0.0252)  0.5475(£0.0083)  0.6225(£0.0275) 0.5350(£0.0173)  0.6670(+0.0248)
COIL-20 | 0.6678(£0.0123) 0.6723(£0.0247) 0.6547(+0.0190) 0.6762(+0.0175) 0.6782(£0.0316) 0.6830(£0.0194)
USPS 0.7706(+0.0008)  0.7542(+0.0004) 0.7716(£0.0003)  0.7592(£0.0003) 0.7505(£0.0058)  0.7793(+0.0002)

Table 5. NMI of Real Datasets with Salt & Pepper Noise. The best results are marked in bold.

Dataset K-Means NMF ONMF l5,1 NMF CNMF ANMF

Yale 0.4008(+0.0268)  0.4393(+0.0261) 0.4070(£0.0277)  0.4255(£0.0229) 0.4144(£0.0203)  0.4509(+0.0168)
UMIST | 0.5917(4+0.0123)  0.5941(£0.0168) 0.5821(£0.0198)  0.5959(+0.0098) 0.5467(+0.0157)  0.6123(+0.0083)
ORL 0.7651(4+0.0136)  0.7807(+0.0132)  0.7410(£0.0049) 0.7844(4+0.0234) 0.7265(£0.0156) 0.8077(+0.0154)
MNIST | 0.7464(£0.0175) 0.7648(£0.0241)  0.7689(£0.0217) 0.7676(+0.0242) 0.7580(£0.0179)  0.7776(+0.0252)
USPS 0.6565(+0.0011)  0.6349(4£0.0003)  0.6581(£0.0002) 0.6478(£0.0001) 0.6356(£0.0053)  0.6594(+0.0006)
COIL-20 | 0.7528(£0.0149) 0.7506(+£0.0174) 0.7497(+0.0131)  0.7546(+0.0079) 0.7512(£0.0136) 0.7584(£0.0173)

method is more competitive than others on the all databases.
Therefore, considering the adversarial perturbations in mod-
eling can increase the robustness of NMF.

Figure 1 provides the visual decomposition results on Yale
and ORL under different noise. For each figure, we present
the noise-free images, Z, Z, A and A from top to bottom.
The results indicate that our method can successfully avoid
redundancy of features and learn the desired feature matrices

A and A with good representation performance. Figure 2
illustrates distribution of A and A with dimensionality re-
duced using T-SNE (Maaten & Hinton, 2008). We can see
that all data points are fully separated.

To demonstrate the robustness of the proposed method, we
also include the experimental results on image data cor-
rupted by various noise. For each type we corrupt images
successively to generate X, Z and Z (which includes three
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Table 6. ACC of Real Datasets with Corrupt Pixel Noise. The best results are marked in bold.

Dataset K-Means NMF ONMF {51 NMF CNMF ANMF
Yale 0.3188(+0.0355)  0.3867(+0.0301) 0.3261(+0.0464) 0.3576(£0.0424) 0.3394(+0.0346)  0.4012(+0.0286)
UMIST | 0.4557(£0.0134) 0.4706(4+0.0261) 0.4483(+0.0170) 0.4720(£0.0235) 0.4310(4+0.0269)  0.4866(+0.0223)
ORL 0.4775(£0.0137)  0.5370(£0.0141)  0.4850(£0.0157) 0.5145(£0.0192) 0.4650(£0.0190) 0.5600(+0.0366)
MNIST | 0.7547(4£0.0145) 0.7880(£0.0417) 0.7733(£0.0194) 0.7800(+0.0481)  0.7453(+0.0202)  0.8027(+0.0293)
USPS 0.7619(+0.0007)  0.7520(£0.0002)  0.7638(£0.0009)  0.7527(£0.0007) 0.7269(£0.0003)  0.7654(+0.0006)
COIL-20 | 0.6332(£0.0262) 0.6829(+0.0117) 0.6469(+0.0209) 0.6850(+0.0293)  0.6229(£0.0345)  0.6924(+0.0337)
Table 7. NMI of Real Datasets with Corrupt Pixel Noise. The best results are marked in bold.
Dataset K -Means NMF ONMF {21 NMF CNMF ANMF
Yale 0.3618(+0.0334)  0.4200(£0.0274)  0.3755(£0.0466)  0.3983(£0.0360) 0.3908(+0.0287)  0.4332(+0.0226)
UMIST | 0.5627(4£0.0061) 0.5760(£0.0162) 0.5542(£0.0115) 0.5782(+0.0143) 0.5416(+0.0247)  0.5857(+0.0147)
ORL 0.6868(+0.0120)  0.7195(+0.0148)  0.6830(£0.0132)  0.7120(£0.0134)  0.6722(£0.0161)  0.7295(+0.0240)
MNIST | 0.7170(£0.0278) 0.7576(4£0.0306) 0.7540(£0.0202)  0.7534(£0.0364) 0.7192(+0.0180) 0.7642(+0.0144)
USPS 0.6487(+0.0007)  0.6358(£0.0002)  0.6486(£0.0008)  0.6358(£0.0005) 0.6079(£0.0007)  0.6495(+0.0011)
COIL-20 | 0.7548(£0.0139) 0.7670(£0.0100) 0.7529(+0.0151) 0.7659(4+0.0174) 0.7369(£0.0181) 0.7685(£0.0093)
Table 8. ACC of Real Datasets with regular patch noise. The best results are marked in bold.
Dataset K-Means NMF ONMF {51 NMF CNMF ANMF
MNIST | 0.7947(+0.0296) 0.8107(+0.0494) 0.8040(£0.0376) 0.8093(+0.0543) 0.7920(+0.0311)  0.8160(+0.0423)
Yale 0.3464(40.0308)  0.3597(+0.0175)  0.3547(£0.0309) 0.3651(4+0.0330) 0.3519(£0.0158)  0.3852(40.0273)
UMIST | 0.4525(£0.0302) 0.4737(£0.0242)  0.4449(£0.0272)  0.4710(£0.0259) 0.4223(£0.0248)  0.4828(+0.0251)
ORL 0.5430(+0.0151)  0.5465(+0.0243)  0.5145(£0.0288)  0.5520(£0.0198)  0.4695(+0.0368)  0.5680(+0.0207)
COIL-20 | 0.5188(£0.0095) 0.5274(£0.0209) 0.5145(+0.0121) 0.5278(4+0.0054)  0.5293(£0.0284)  0.5315(£0.0198)
USPS 0.5218(40.0057)  0.5210(+0.0005)  0.5296(£0.0074)  0.5195(4+0.0018)  0.5306(£0.0078)  0.5327(40.0065)
Table 9. NMI of Real Datasets with regular patch Noise. The best results are marked in bold.
Dataset | K-Means NMF ONMF {21 NMF CNMF ANMF
MNIST | 0.7538(£0.0141) | 0.7731(£0.0237) 0.7725(£0.0197) 0.7723(£0.0327) 0.7420(£0.0222) 0.7775(+0.0217)
Yale 0.3805(+0.0467) | 0.3967(£0.0184)  0.3860(£0.0175)  0.3989(£0.0536)  0.3905(£0.0267)  0.4166(+0.0319)
UMIST | 0.5311(£0.0247) | 0.5458(+0.0167) 0.5204(+0.0260)  0.5424(£0.0207) 0.4942(+0.0210) 0.5511(+0.0209)
ORL 0.7117(4£0.0150) | 0.7146(+0.0169) 0.6876(£0.0266) 0.7159(+0.0140) 0.6579(£0.0334) 0.7257(4+0.0141)
COIL-20 | 0.6104(£0.0147) | 0.6073(£0.0153) 0.6138(+0.0119) 0.6027(£0.0064)  0.6157(+0.0218)  0.6157(£0.0155)
USPS 0.3924(+0.0079) | 0.3720(£0.0031)  0.3846(£0.0039)  0.3730(£0.0065) 0.3703(£0.0173)  0.4001(+0.0137)

stages of noise). In detail, two types of noise are considered:
salt & pepper noise, in which we corrupt 10% pixels in each
stage and the results are summarized in Table 4 and Table 5;
random corrupted pixels, in which we corrupt 20%, 5%, and
5% pixels in each stage and the results are summarized in
Table 6 and Table 7; random corrupted regular patches (), in
which we corrupt 50%, 25%, and 25% pixels in each stage
(see Figure 1) and the results are summarized in Table 8
and Table 9. The robustness of the proposed method is
clearly verified according to these tables. Due to the space
limitation, experimental results for more types of noise, con-
vergence curves of Algorithm I and the comparison with

other methods can be found in supplementary materials.

7. Conclusion

This paper focuses on nonnegative matrix factorization prob-
lem. To provide the robustness against real perturbations,
we propose a new Adversarial Nonnegative Matrix Factor-
ization model The adversarial perturbations of Y is used to
learn the desire feature matrix A and weight matrix X. Dif-
ferent from the traditional NMF models which only focus
on the regular data points, our models emphasizes potential
test adversaries that are beyond the pre-defined constraints.
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We formulate the proposed model as a bilevel optimization
problem and utilize ADMM to solve it with convergence
guarantee. Experimental results on real data sets validate
the effectiveness and robustness of the proposed algorithm.
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