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Abstract
Most existing feature selection methods in litera-
ture are linear models, so that the nonlinear rela-
tions between features and response variables are
not considered. Meanwhile, in these feature selec-
tion models, the interactions between features are
often ignored or just discussed under prior struc-
ture information. To address these challenging
issues, we consider the problem of sparse addi-
tive models for high-dimensional nonparametric
regression with the allowance of the flexible inter-
actions between features. A new method, called
as sparse shrunk additive models (SSAM), is pro-
posed to explore the structure information among
features. This method bridges sparse kernel re-
gression and sparse feature selection. Theoreti-
cal results on the convergence rate and sparsity
characteristics of SSAM are established by the
novel analysis techniques with integral operator
and concentration estimate. In particular, our
algorithm and theoretical analysis only require
the component functions to be continuous and
bounded, which are not necessary to be in repro-
ducing kernel Hilbert spaces. Experiments on
both synthetic and real-world data demonstrate
the effectiveness of the proposed approach.

1. Introduction
Sparse feature selection has attracted much attention in
machine learning community for learning tasks with high-
dimensional data, especially useful in bioinformatics re-
lated applications. Linear models with `1-norm regulariza-
tion, such as Lasso (Tibshirani, 1996) and Dantzig selec-
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tor(Candes & Tao, 2007), have been well studied for their
theoretical properties and extensively used for feature selec-
tion applications. However, in many applications, the linear
assumption could be too restricted to select the optimal fea-
tures, because the relations between features and response
variables could be nonlinear. Because of the difficulties in
both computational algorithm and learning theory analysis,
only few of existing feature selection methods in literature
focus on the nonlinear feature selection.

To enhance the ability of feature selection models with
considering nonlinear relationship between features and
response variables, several sparse learning based additive
models were proposed for regression (Ravikumar et al.,
2009; Huang et al., 2010; Raskutti et al., 2012; Yuan &
Zhou, 2016; Yin et al., 2012; Chen et al., 2020, In press)
and classification (Zhao & Liu, 2012; Chen et al., 2017),
which are extensions of original additive models (Hastie
& Tibshirani, 1990). Note that, in these additive models,
each component function is a univariate smooth function
(Ravikumar et al., 2009; Huang et al., 2010; Raskutti et al.,
2012; Yuan & Zhou, 2016; Zhao & Liu, 2012) or is defined
on grouped features with prior structure information (Chen
et al., 2017; Yin et al., 2012). Although these sparse ad-
ditive models can conduct nonlinear feature selection, all
of them do not explore the important feature interaction
without prior structure information. Recently, the shrunk
additive least square approximation (SALSA) (Kandasamy
& Yu, 2016) method was introduced to utilizing the feature
interactions, but without feature selection mechanism.

On the other hand, the sparse sample selection arises from
learning tasks with large-scale data. The generalized Lasso
was proposed in (Roth, 2004) to handle the regression prob-
lem with addressing sample sparsity, and its learning theory
has been studied in (Shi et al., 2011). Recently, Nyström
approximation has been used for selecting important sam-
ples (landmark points) in kernel methods, which show that
the predictor can be derived efficiently from data dependent
hypothesis spaces associated with subsamples (Kumar et al.,
2012; Alaoui & Mahoney, 2015; Rudi et al., 2015). While
some fast algorithms have been developed for sparse kernel
regression, none of them is capable of the feature selection
and provides the interpretability of prediction.

To address the above challenges, in this paper, we propose
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a novel sparse shrunk additive model (SSAM) for jointly
selecting features and samples with learning the feature
interactions and mining the structure information among
features. Different to previous models, our new method
will simultaneously conduct sparse feature selection, sparse
sample selection, and feature interactions learning. Our
SSAM can utilize the component functions from general
continuous and bounded function space (Sun & Wu, 2011;
Chen et al., 2016) and can be implemented efficiently via
the optimization technique in (Nesterov, 2013).

More important, to better understand the learning theory
properties of SSAM, we investigate its convergence rate and
sparsity. The proposed SSAM involves the shrunk structure
on features and the `1-norm regularization on data depen-
dent hypothesis spaces. While these features provide the
superior flexibility and adaptivity of SSAM, there are new
technical difficulties to characterize its theory properties. To
address the new difficulties, we introduce a novel decom-
position on the excess generalization error, and develop the
recent approximation techniques with integral operator and
concentration estimates with empirical covering numbers.
Our main contributions in this paper include:

• A sparse shrunk additive algorithm is proposed to im-
prove the feature selection ability of nonlinear models.
It is a uniform framework to bridge sparse feature se-
lection, sparse sample selection, and feature interaction
structure learning tasks. SSAM can be implemented
efficiently and its effectiveness is supported by the
empirical studies.

• Generalization bound on the excess risk is provided
for SSAM under mild conditions, which implies the
fast convergence rate can be achieved. Additionally,
the necessary and sufficient condition is derived to
characterize the sparsity of SSAM.

2. Sparse Shrunk Additive Models
Let X ⊂ Rn be an explanatory feature space and let
Y ⊂ [−1, 1] be the response set. Let z := {zi}mi=1 =
{(xi, yi)}mi=1 be independent copies of a random sample
(x, y) following an unknown intrinsic distribution ρ on
Z := X × Y . Denote the marginal distribution of ρ on
X as ρX and denote the conditional distribution for given
x ∈ X as ρ(·|x). Given z, the main goal of regression learn-
ing is to infer a functional relation between the input x ∈ X
and the corresponding output y ∈ Y . Usually, the expected
risk associated with least squares loss is used to evaluate the
prediction performance, which is denoted by

E(f) =
∫
Z
(y − f(x))2dρ(x, y).

In theory, the minimizer of E(f) over all measurable func-
tions is the regression function

fρ(x) =

∫
Y
ydρ(y|x).

2.1. Sparse additive models

Additive models (Hastie & Tibshirani, 1990) aim to find
the predictor in the special hypothesis space F = {f :
f(X) =

∑n
j=1 fj(Xj), X = (X1, ..., Xn) ∈ X}. Here,

each fj ∈ Fj is one-dimensional smooth function, and
its typical examples include the spline function and the
Gaussian function. The optimization framework of standard
additive model is

min
fj

1

m

m∑
i=1

(yi −
n∑
j=1

fj(xij))
2. (1)

Theoretical analysis on (1) shows the good performance of
additive model relies on the condition that the number of
features n is not large relative to the sample size m.

The algorithm of sparse additive models (SpAM) (Raviku-
mar et al., 2009) is proposed to address the feature selection
in the high dimensional setting, which can be formulated as
the following regularized framework

min
fj

{ 1

m

m∑
i=1

(yi −
n∑
j=1

fj(xij))
2 + λ

n∑
j=1

‖fj‖
}
, (2)

where λ > 0 is a regularization parameter and
∑n
j=1 ‖fj‖

behaves liken an `1 ball across different components to
encourage functional sparsity (Ravikumar et al., 2009; Yin
et al., 2012). The SpAM (2) can be solved efficiently in
terms of the back-fitting algorithm (Hastie et al., 2001), and
has been extended to the group sparse additive regression
(Huang et al., 2010; Raskutti et al., 2012; Yin et al., 2012).

2.2. Shrunk additive models

Although SpAM (2) has nice properties, it ignores the inter-
actions between features. Recently, a novel method, called
shrunk additive least squares approximation (SALSA), is
proposed in (Kandasamy & Yu, 2016) and has shown satis-
factory prediction performance.

For any given 1 ≤ k ≤ n and {1, 2, ..., n}, we denote
d =

(
n
k

)
as the number of index subsets with k elements . It

is easy to see that d = n as k = 1 and d = n(n−1)
2 as k = 2.

Let x(j) ∈ Rk be a subset of x with k features and denote
its corresponding space as X (j).

DenoteHK(j) as a reproducing kernel Hilbert space (RKHS)
(Aronszajn, 1950; Scholköpf & Smola, 2001; Shawe-Taylor
& Cristianini, 2004) associated with a symmetric and posi-
tive definite kernel K(j) : X (j)×X (j) → R, j ∈ {1, ..., d}.
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The SALSA is dependent on the hypothesis space with ad-
ditive kernels, which is defined by:

H =
{ d∑
j=1

f (j) : f (j) ∈ HK(j) , j = 1, 2, ..., d
}
.

Indeed, (H, ‖ · ‖K) also is an RKHS for K =
∑d
j=1K

(j),

where ‖f‖2K = inf{
∑d
j=1 ‖f (j)‖2K(j) : f =

∑d
j=1 f

(j)}
(Raskutti et al., 2012; Christmann & Zhou, 2016; Yuan &
Zhou, 2016).

Given training samples z = {(xi, yi)}mi=1, the SALSA in
(Kandasamy & Yu, 2016) can be formulated as the following
optimization problem:

f̃z = argmin
f=

∑d
j=1 f

(j)∈H

{ 1

n

m∑
i=1

(
yi −

d∑
j=1

f (j)(x
(j)
i )
)2

+η

d∑
j=1

‖f (j)‖2K(j)

}
, (3)

where η > 0 is a regularization parameter.

Remark 6 in (Kandasamy & Yu, 2016) tells us that the
predictor of SALSA can be expressed as:

f̃z =
d∑
j=1

f̃ (j)z =
d∑
j=1

m∑
i=1

wiK
(j)(x

(j)
i , ·), wi ∈ R .

It also has been demonstrated that SALSA in (3) can be con-
sidered as kernel ridge regression with shrunk features and
additive kernels (Kandasamy & Yu, 2016). Despite nice the-
oretical and empirical analysis, SALSA does not address the
sparsity of shrunk features. For high dimensional data, the
sparsity on shrunk features usually is benefit to explore the
structure information among features, which will improve
the interpretability of learning model.

2.3. New sparse shrunk additive models

To improve the sparsity of SALSA, we propose a new al-
gorithm, named as sparse shrunk additve models (SSAM).
Some sparse methods (e.g., Lasso (Tibshirani, 1996) and
kernelized Lasso (Roth, 2004)) can be considered as the spe-
cial cases of our new model. It is interesting that SSAM also
is a natural but nontrivial extension of sparse regularized
regression in data dependent hypothesis spaces (Shi et al.,
2011; Sun & Wu, 2011; Feng et al., 2016).

For any given training samples z, we introduce the following
data dependent hypothesis space:

Hz = {f : f(x) =
d∑
j=1

f (j)(x(j)), f (j) ∈ H(j)
z }, (4)

where H(j)
z = {f (j) =

∑m
i=1 α

(j)
i K(j)(x

(j)
i , ·) : α

(j)
i ∈

R} and K(j) : X (j) ×X (j) → R be a continuous function
satisfying ‖K(j)‖∞ < +∞. Without loss of generality, this
paper assumes ‖K(j)‖∞ ≤ 1 for each 1 ≤ j ≤ d.

The predictor of SSAM can be expressed as

fz =
d∑
j=1

f (j)z =
d∑
j=1

m∑
t=1

α̂
(j)
t K(j)(x

(j)
t , ·),

where, for 1 ≤ t ≤ m and 1 ≤ j ≤ d,

{α̂(j)
t } = argmin

α
(j)
t ∈R,t,j

{
λ

d∑
j=1

m∑
t=1

|α(j)
t |

+
1

m

m∑
i=1

(
yi −

d∑
j=1

m∑
t=1

α
(j)
t K(j)(x

(j)
t , x

(j)
i )
)2}

.(5)

Let α(j) = (α
(j)
1 , ..., α

(j)
m )T ∈ Rm and K

(j)
i =

(K(j)(x
(j)
1 , x

(j)
i ), ...,K(j)(x

(j)
m , x

(j)
i ))T ∈ Rm. De-

note Ki = ((K
(1)
i )T , ..., (K

(d)
i )T )T ∈ Rmd and

α = ((α(1))T , ..., (α(d))T )T ∈ Rmd, we can see∑d
j=1(K

(j)
i )Tα(j) = KT

i α. Moreover, by denoting
Y = (y1, y2, ..., ym)T ∈ Rm and K = (K1, ...,Km)T ∈
Rm×md, we have

α̂ = argmin
α∈Rmd

{ 1

m
‖Y −Kα‖22 + λ‖α‖1

}
. (6)

Moreover, for j ∈ {1, ..., d} and q ∈ {1, 2}, define

‖f (j)‖q`q = inf
{
mq−1

m∑
t=1

|α(j)
t |q :

f (j) =

m∑
t=1

α
(j)
t K(j)(x

(j)
t , ·)

}
and ‖f‖q`q :=

∑d
j=1 ‖f (j)‖

q
`q

for f =
∑d
j=1 f

(j). Then,
we can formulate SSAM from the viewpoint of function
approximation as below

fz = argmin
f∈Hz

{ 1

m

m∑
i=1

(yi − f(xi))2 + λ‖f‖`1
}
. (7)

Except the additive structure onHz, (7) is consistent with
the sparse kernel machine in data dependent hypothesis
spaces (Roth, 2004; Shi et al., 2011).

SSAM can be transformed to other methods by explicit
selections on k,K(j). When k = 1 and K(j)(x(j), x̃(j)) =
x(j), our model is equivalent to Lasso (Tibshirani, 1996).
When k = n and K(j)(x(j), x̃(j)) = K(x, x̃), SSAM can
be considered the kernelized Lasso (Roth, 2004).
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Different from SALSA (Kandasamy & Yu, 2016), our SSAM
is based on general kernel, which is not necessary to be a
Mercer kernel. Moreover, our SSAM not only can handle
regression prediction by using the interactions between fea-
tures, but also can explore the structure of shrunk features
for model selection. The previous SALSA only works for
prediction task.

2.4. Comparisons with the related methods

Now we provide some comparisons for SSAM in (5)
with the related regularized methods, including Kernel
ridge regression (KRR), Least absolute shrinkage and se-
lection operator (Lasso) (Tibshirani, 1996), Kernelized
Lasso (KLasso) (Roth, 2004; Sun & Wu, 2015), Additive
model with kernel regularization (KAM) (Christmann &
Zhou, 2016), Sparse additive models (SpAM) (Ravikumar
et al., 2009), Component selection and smoothing opera-
tor (COSSO) (Lin & Zhang, 2006), and Shrunk additive
least squares approximation (SALSA) (Kandasamy & Yu,
2016). A brief summary is presented in Table 1 to show the
algorithmic properties including the component function,
the regularizer on each component, sample/feature sparsity,
feature interaction, and the number of additive components.

From Table 1, we know that SSAM bridges sparse kernel
regression and sparse additive models. In theory, SSAM
not only can exploit the interactions among features for pre-
diction, but also handle the selections on features and sam-
ples simultaneously. In particular, the selection of shrunk
features can be used to characterize the structure among
features, which is essentially different from the grouped
features under prior knowledge (Yin et al., 2012). By intro-
ducing the shrunk features, the proposed SSAM encourages
the group features to be selected simultaneously, while the
previous sparse additive models (Meier et al., 2009; Huang
et al., 2010) usually select feature individually.

Indeed, as shown in (Bach, 2008) ,the nonparametric group
Lasso can be seen as a variable selection method in a gen-
eralized additive model, and can also be seen as equivalent
to learning a convex combination of kernel, a framework re-
ferred to multiple kernel learning (MKL). The link between
the group Lasso and MKL is established in (Bach, 2008)
based on the works in (Bach et al., 2004; G.R.G.Lanckrit
et al., 2004). However, there are key deferences between
our SSAM and MKL (or group Lasso in (Bach, 2008)):
1) Hypothesis space (continuous and bounded function
space VS RKHS). The proposed SSAM only requires the
component functions to be continuous and bounded, which
are not necessary to be in reproducing kernel Hilbert spaces
(RKHS). That is to say, we consider the generalized kernel-
based hypothesis space (Shi et al., 2011; Sun & Wu, 2011;
Chen et al., 2016), which is not necessary to be associated
with positive definite kernel used in (Bach, 2008).

2) Regularization (1-norm with data-dependent hypothesis
space VS Hilbert norm with data-independent RKHS). We
use the 1-norm on coefficients, which is different from the
Hilbert norm used in the nonparametric group Lasso (Bach,
2008). From the function approximation point of view, we
find the prediction function from data dependent hypothesis
spaces (Shi et al., 2011; Sun & Wu, 2011; Chen et al., 2016;
Feng et al., 2016) with sparsity restriction on samples and
features simultaneously (via 1-norm). However, the non-
parametric group Lasso (Bach, 2008) is associated with data
independent RKHS and only addresses the feature sparsity.
In addition, the kernel Lasso (Roth, 2004) only focuses on
the sample sparsity since it does not consider the input vari-
able decomposition.
3) Learning theory (Error bound based on integral operator
approximation and concentration estimate with empirical
covering numbers VS Consistency based on covariance op-
erator analysis). According to 1) and 2), the theory analysis
for MKL (e.g. (Bach et al., 2004; G.R.G.Lanckrit et al.,
2004)) or group Lasso (Bach, 2008) doesn’t hold true for
our approach under mild restriction on component function.
As studied in (Shi et al., 2011; Sun & Wu, 2011; Chen et al.,
2016; Feng et al., 2016), the learning theory analysis is
much more difficult for data-dependent hypothesis space
with generalized kernel. In this paper, we overcame the dif-
ficulty of theoretical analysis by developing and integrating
the integral operator approximation (Smale & Zhou, 2007;
Sun & Wu, 2011; Shi, 2013) and the concentration estima-
tion with empirical covering numbers (Wu et al., 2007; Shi
et al., 2011).

3. Theoretical Analysis
We begin this section with some necessary definitions and
assumptions used in our analysis. Let L2

ρX(j)
be a square-

integrable function space on X (j) with distribution ρX (j) .
For each j ∈ {1, 2, ..., d} and f ∈ L2

ρX(j)
, define the inte-

gral operator LK(j) : L2
ρX(j)

→ L2
ρX(j)

as

LK(j)(f)(x(j)) =

∫
X (j)

K(j)(x(j), u)f(u)dρX (j)(u).

Define K̃(j)(x(j), x̃(j)) =∫
K(j)(x(j), u)K(j)(x̃(j), u)dρX (j)(u). It has been

verified in (Sun & Wu, 2011) that K̃(j) is a Mercer
kernel and LK̃(j) = LK(j)LTK(j) : L2

ρX(j)
→ L2

ρX(j)
is a

self-adjoint positive operator with decreasing eigenvalues
{λ(j)t }∞t=1 and eigenfunctions {ψ(j)

t }∞t=1, where {ψ(j)
t }∞t=1

form an orthonormal basis of L2
ρX(j)

. For given r > 0,
define the r-th power Lr

K̃(j) of LK̃(j) by

Lr
K̃(j)(

∑
t

cj,tψ
(j)
t ) =

∑
t

cj,t(λ
(j)
t )rψ

(j)
t ,∀(cj,t)t∈N ∈ `2.



Sparse Shrunk Additive Models

Table 1. Properties of kernel methods and additive models (
√

means using the given formulation or information and×means not available
for the information)

property KRR KLasso Lasso KAM SpAM COSSO SALSA SSAM

Component function RKHS continuous linear RKHS Hilbert Spline RKHS continuous
Regularization K-norm 1-norm 1-norm K-norm 2,1-

norm
2,1-

norm
K-norm 1-norm

Sparsity (sample) ×
√

× × × × ×
√

Sparsity (feature) × ×
√

×
√ √

×
√

Feature Interaction −− −− × × ×
√ √ √

Component number 1 1 n n n
∑d
k=1

(
n
k

) (
n
k

)
∗

(
n
k

)
∗

K-norm:=Kernel norm. *The number can be reduced largely by incorporating prior information of features.

Assumption 1. Assume that fρ =
∑d
j=1 f

(j)
ρ , where for

each j ∈ {1, 2, ..., d}, f (j)ρ : X (j) → R is a function of
the form f

(j)
ρ = Lr

K̃(j)(g
(j)
ρ ) with some r > 0 and g(j)ρ ∈

L2
ρX(j)

.

This regularity condition on fρ has been studied for
coefficient-based regularized regression with general kernel
(Sun & Wu, 2011; Shi, 2013). For the additive model with
Mercer kernel, similar assumption has been introduced in
(Christmann & Zhou, 2016).

We also need the Lipschitz continuous condition on each
kernel K(j). The restrictive condition has been studied
extensively in learning theory of kernel methods, e.g., (Shi
et al., 2011; Shi, 2013). In particular, the Gaussian kernel
satisfies this condition.
Assumption 2. For each j ∈ {1, 2, ..., d}, the kernel func-
tion K(j) : X (j) × X (j) → R is Cs with some s > 0
satisfying

‖K(j)(u, v)−K(j)(u, v′)‖ ≤ cs‖v − v′‖s2,∀u, v, v′ ∈ X (j)

for some positive constant cs.

From the definition of fρ and Y ∈ [−1, 1], we know that
|fρ(x)| ≤ 1 for any x ∈ X . Thus, we can utilize the
following projection operator to get tight error estimate
which is a standard technique in error analysis (Cucker &
Zhou, 2007; Steinwart et al., 2009).
Definition 1. The projection operator π is defined on the
space of measurable functions f : X → R as π(f)(x) =
max

{
− 1,min{f(x), 1}

}
.

Denote

p =

 2k/(k + 2s), if s ∈ (0, 1];
2k/(k + 2), if s ∈ (1, 1 + k/2];
k/s, if s ∈ (1 + k/2,∞).

(8)

Our first theoretical result is the upper bound of E(π(fz))−
E(fρ).

Theorem 1. Let Assumptions 1 and 2 be true. For any
0 < δ < 1, with confidence 1 − δ, there exists positive
constant c̃1 independent of m, δ such that:

(1) If r ∈ (0, 12 ) in Assumption 1, setting λ = m−θ1 with
θ1 ∈ (0, 2

2+p ),

E(π(fz))− E(fρ) ≤ c̃1 log(8/δ)m−γ1 ,

where γ1 = min
{
2rθ1,

1−θ1+2rθ1
2 , 2

2+p − (2 −
2r)θ1,

2(1−pθ1)
2+p

}
.

(2) If r ≥ 1
2 in Assumption 1, taking λ = m−θ2 with some

θ2 ∈ (0, 2
2+p ),

E(π(fz))− E(fρ) ≤ c̃1 log(8/δ)m−γ2 ,

where γ2 = min
{
θ2,

1
2 ,

2
2+p − θ2

}
.

Theorem 1 provides the upper bound of generalization error
to SSAM with Lipshitz continuous kernel. For r ∈ (0, 12 ),
as s → ∞, we have γ1 → min{2rθ1, 12 + (r − 1

2 )θ, 1 −
2θ1 + 2rθ1}. Moreover, when r → 1

2 and θ1 → 1
2 , the

convergence rate O(m−
1
2 ) can be reached.

For r ≥ 1
2 , taking θ2 = 1

2+p , we get the convergence rate

O(m−
1

2+p ).

The following result is about a special case when f (j)ρ ∈
H(j).

Theorem 2. Assume that f (j)ρ ∈ H(j) for each 1 ≤ j ≤
d. Take λ = m−

2
2+3p in (5). For any 0 < δ < 1, with

confidence 1− δ we have

E(π(fz))− E(fρ) ≤ c̃2 log(1/δ)m−
2

2+3p ,

where c̃2 is a positive constant independent of m, δ, and p
is defined in (8).

Under the strong condition on fρ, the convergence rate can
be arbitrary close to O(m−1) as s→∞.
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Now we summarize the comparisons on the related conver-
gence analysis of additive models with feature interactions.

• For SALSA in (Kandasamy & Yu, 2016), the con-
vergence rate with polynomial decay is also obtained
under mild condition on fρ. Different from our work,
the previous analysis is limited to the Mercer kernel
and the error is expressed with the expectation version.

• For the generalized SpAM in (Tyagi et al., 2016), the-
oretical analysis demonstrates its effectiveness to esti-
mate the underlying component functions, which pro-
vides stronger guarantees than generalization bound.
However, the condition on H(j) is much restrictive
than SSAM.

• For the fixed design setting, the COSSO estima-
tor in (Lin & Zhang, 2006) has a convergence rate
O(m−

s̃
2s̃+1 ), where s̃ is the order of smoothness of

the components in Sobolev space. It can be seen from
Theorem 2 that the faster learning rate of SSAM can
be reached as K ∈ C∞.

In the future, it is natural to extend the current result from
uniform boundedness to unbounded sampling by the anal-
ysis techniques in (Steinwart et al., 2009; Wang & Zhou,
2011; Guo & Zhou, 2013).

Besides the generalization ability, SSAM also advocates
the sparsity on features and samples by employing the `1
regularization. The sparsity of SSAM can be characterized
as below.

Theorem 3. For t ∈ {1, 2, ...,m} and j ∈ {1, 2, ..., d},
α̂
(j)
t = 0 if and only if∣∣∣ 1

m

m∑
i=1

(yi − fz(xi))K(j)(x
(j)
t , x

(j)
i )
∣∣∣ < λ

2
.

Theorem 3 provides a necessary and sufficient condition
for the zero pattern of α̂. In terms of the discussions in
(Shi et al., 2011), Theorem 3 also implies the probabilistic
confidence bound to ensure the sparsity of α̂(j)

t in (5). In
particular, for the fixed design setting, the sparsity recovery
may be achieved by adding some conditions (Feng et al.,
2016; Yang et al., 2016). We leave it for future study.

4. Proof Sketches
The proofs of Theorems 1 and 2 involve a integration of
techniques for error analysis with integral operator approxi-
mation (Smale & Zhou, 2007; Sun & Wu, 2011; Shi, 2013;
Nie & Wang, 2015) and the empirical process theory for
analyzing kernel methods (Pinelis, 1994; Wu et al., 2007;

Christmann & Zhou, 2016). The proof of Theorem 3 fol-
lows the analysis technique for sparse characterization (Shi
et al., 2011; Sun & Wu, 2015).

The key to bound E(π(fz))− E(fρ) is a novel error decom-
position, where some intermediate functions are constructed
as the stepping stone functions. Then, we bound the decom-
posed terms respectively in terms of operator approximation
and concentration equalities for empirical processes.

From Proposition 1 in (Shi, 2013), we know that LT
K(j) =

UL
1
2

K̃(j)
and LK(j) = L

1
2

K̃(j)
UT for each j ∈ {1, 2, ..., d},

where U is a partial isometry on L2
ρX(j)

with UTU being
the orthogonal prediction onto the RKHSHK̃(j) .

For any j ∈ {1, 2, ..., d}, define the intermediate function
f
(j)
λ by

f
(j)
λ = argmin

f∈L2
ρ
X(j)

{
‖LK(j)f (j) − f (j)ρ ‖2L2

ρ
X(j)

+λ‖UT f (j)‖2L2
ρ
X(j)

}
. (9)

Denote fλ =
∑d
j=1 f

(j)
λ and gλ =

∑d
j=1 g

(j)
λ with g(j)λ =

LK(j)f
(j)
λ .

Define the empirical version of gλ as

ĝλ(x) =
1

m

m∑
i=1

d∑
j=1

f
(j)
λ (x

(j)
i )K(j)(x

(j)
i , x(j)), x ∈ X . (10)

Now we give the following error decomposition.

Proposition 1. For fz, ĝλ defined in (5) and (10), respec-
tively, there holds

E(π(fz))− E(fρ) ≤ E1 + E2 + E3,

where

E1 = E(π(fz))− Ez(π(fz)) + Ez(ĝλ)− E(ĝλ),
E2 = E(ĝλ)− E(gλ) + λ‖ĝλ‖`1

and

E3 = E(gλ)− E(fρ).

Proof. According the definition of fz, we have

E(π(fz))− E(fρ)
≤ E(π(fz))− Ez(π(fz)) + Ez(ĝλ)− E(fρ) + λ‖ĝλ‖`1

+
{
Ez(fz) + λ‖fz‖`1 − (Ez(ĝλ) + λ‖ĝλ‖`1)

}
≤ E(π(fz))− Ez(π(fz)) + Ez(ĝλ)− E(fρ)

+λ‖ĝλ‖`1 . (11)
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Note that

Ez(ĝλ)− E(fρ) = (E(ĝλ)− E(gλ)) + E(gλ)− E(fρ)
+Ez(ĝλ)− E(ĝλ). (12)

Combining both (11) and (12), we get the desired decompo-
sition.

The error term E1 measures the divergence between the
empirical risk and the corresponding expected risk, which
usually is called sample error in learning theory. In terms of
recent theoretical progress for learning with data dependent
hypothesis spaces (Shi et al., 2011; Shi, 2013; Feng et al.,
2016), we can bound sample error E1 via concentration
inequality associated with empirical covering numbers (Wu
et al., 2007; Christmann & Zhou, 2016).

The error term E2 reflects the drift risk for learning with
hypothesis spaces Hz and H, and hence is called as
the hypothesis error. By relating E(ĝλ) − E(gλ) with∑d
j=1 ‖ĝ

(j)
λ − g

(j)
λ ‖L2

ρ
X(j)

, we can estimate this hypothesis

error through the inequality in Hilbert space (Pinelis, 1994;
Smale & Zhou, 2007).

The error term E3 is called the approximation error, which
describes the approximation ability of regularized scheme.
Following the approximation analysis with integral operator
in (Smale & Zhou, 2007; Shi, 2013; Nie & Wang, 2015),
we derive the upper bound of E2 based on the properties of
LK̃(j) , 1 ≤ j ≤ d.

Detail technical proofs are provided in the supplementary
materials.

5. Experimental Results
This section shows the empirical evaluation of SSAM. We
first introduce the experimental setups following (Kan-
dasamy & Yu, 2016), and then validate SSAM’s ability
for feature selection and regression prediction.

We consider SSAM for pairwise interaction setting, and set
k = 2, d =

(
n
2

)
. Similar with (Kandasamy & Yu, 2016),

each kernel on X (j) is generated from Gaussian kernel. For
example, when x(j)s = (xs1, xs2) and x(j)t = (xt1, xt2),
the shrunk kernel K(j)(x

(j)
s , x

(j)
t ) = exp{− (xs1−xt1)2

2µ2
1
} ·

exp{− (xs2−xt21)2
2µ2

2
}, where µi = 4.5σim

− 1
10 and σi is the

standard deviation on i-th coordination. The regularization
parameter λ is chosen via five-fold cross validation with
respect to the mean square error (MSE).

We implement our SSAM method via accelerated proximal
gradient methods (Nesterov, 2013) to get the coefficient

vector α̂. For sparse representation and feature selection,

we compute
m∑
t=1

α̂
(j)
t on the j-th pairwise features, and then

select the informative shrunk features. For synthetic data,
we compare our model with COSSO (Lin & Zhang, 2006) to
validate our motivation for feature selection. For real-word
benchmark data, we compare MSE of SSAM with SALSA
(Kandasamy & Yu, 2016), COSSO (Lin & Zhang, 2006),
SpAM (Ravikumar et al., 2009), and Lasso (Tibshirani,
1996).

5.1. Experiments with synthetic data

Following the ideas in (Lin & Zhang, 2006; Yin et al., 2012),
we use two different types of data to evaluate the model
selection ability of SSAM. The first type of synthetic data
has at most one informative pairwise features and the second
one has at least two pairwise features. Since SALSA does
not concern the selection of shrunk features, we compare the
performance SSAM with COSSO (Lin & Zhang, 2006). As
shown in Table 1, COSSO is based on component functions
on both single and pairwise input features.

Generate synthetic data: We generate the n-dimensional
input xi = (xi1, xi2, ..., xin)

T with xij =
Wij+ηUi

1+η and
n = 10, where W and U are sampled from independent
uniform distributions defined in [−0.5, 0.5]. Parameter η
controls the magnitude of correlation. Inputs are indepen-
dent if η = 0 and correlated if η = 1.

Example set I: We apply SSAM with 100 training samples
on three underlying functions (a. simple additive model, b.
simple pairwise interaction model, c. multi-ways interaction
model). For xt = (xt1, xt2, ..., xtn)

T ,

a. f∗(xt) = xt1 + xt2 + xt3 + exp(−xt4)
b. f∗(xt) = (2xt1 − 1)(2xt2 − 1)

c. f∗(xt) = (2sin(xt1)− 1)(2sin(xt2)− 1)

·(2sin(xt3)− 1)(2sin(xt4)− 1)

Example set II: We also apply SSAM with 100 training
samples on much complicated interaction models (e. over-
lapped pairwise interaction, f . independent pairwise inter-
action, g. circle related pairwise interaction):

e. f∗(xt) = (2sin(xt1)−1)(2sin(xt2)−1)
+sin(xt1)sin(xt3),

f. f∗(xt) = 2exp(xt1+xt2+0.2)+2exp−1(xt3+xt4),

g. f∗(xt) = (2xt1−1)(2xt2−1)+(2xt2−1)(2xt3−1)
+(2xt1−1)(2xt3−1).

The final output is y = f∗(x) + ε, where ε ∼ N (0, 0.25).
For each example, we make feature selection according to

the values of
100∑
t=1

α̂
(j)
t for j ∈ {1, ..., 45}. The Precision@τ
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Table 2. Precision@τ for feature selection
(a) Synthetic data I

f∗ (m,n, η) τ SSAM COSSO
4 3.88 3.69
5 3.92 3.81(100,10,0)
6 3.93 3.85
4 3.37 2.58
5 3.68 2.80

a

(100,10,1)
6 3.82 2.91
1 0.97 1
2 0.97 1(100,10,0)
3 0.97 1
1 0.95 0.62
2 0.95 0.65

b

(100,10,1)
3 0.98 0.68
4 3.94 0.63
5 3.97 0.68(100,10,0)
6 3.97 0.75
4 3.69 0.84
5 3.87 0.91

c

(100,10,1)
6 3.92 0.94

(b) Synthetic data II

f∗ (m,n, η) τ SSAM COSSO
2 1.05 0.73
3 1.13 0.90(100,10,0)
4 1.20 0.90
2 1.04 0.13
3 1.10 0.16

e

(100,10,1)
4 1.12 0.20
2 0.72 0.88
3 0.93 1(100,10,0)
4 1.23 1
2 1.90 0.94
3 1.94 0.94

f

(100,10,1)
4 1.95 0.97
3 2.94 2.98
4 2.94 2.98(100,10,0)
5 2.94 3
3 2.85 2.14
4 2.85 2.40

g

(100,10,1)
5 2.85 2.49

is used to measure the performance of feature selection,
which describes the number of truly informative features in
the top-τ selected results. Tables 2(a) and 2(b) provide the
average results on Precision@τ after repeating 100 times.
In most cases, SSAM performs better than COSSO for fea-
ture selection. Especially, SSAM behaves more stable than
COSSO in complicated models (e.g. c, g) and dependent
features.

Table 3. Average MSE on real data.

SSAM SALSA COSSO SpAM Lasso
Insulin 1.0146 1.0206 1.1379 1.2035 1.1103
Skillcraft 0.5432 0.5470 0.5551 0.90545 0.6650
Airfoil 0.4866 0.5176 0.5178 0.9623 0.5199
Forestfire 0.3477 0.3530 0.3753 0.9694 0.5193
Housing 0.3787 0.2642 1.3097 0.8165 0.4452
CCPP 0.0694 0.0678 0.9684 0.0647 0.0740
Music 0.6295 0.6251 0.7982 0.7683 0.6349
Telemonit 0.0689 0.0347 5.7192 0.8643 0.0863

5.2. Experiments with real-world benchmark data

We compare the prediction performance of SSAM with
the most related additive models, where eight data sets
are used under the same experimental setups in (Kan-
dasamy & Yu, 2016). The data sets from UCI reposi-
tory (http://archive.ics.uci.edu/ml) and (Tu et al., 2012),
which include Insulin (n = 50,m = 256), Skillcraft
(n = 18,m = 1700), Airfoil (n = 40,m = 750), Forestfire
(n = 10,m = 211), Housing (n = 12,m = 256), CCPP
(n = 59,m = 2000), Music (n = 90,m = 1000), Tele-
monit (n = 19,m = 1000). As shown in Table 3, on all
eight benchmark datasets, our SSAM has best results on
four of them, second best results on three of the rest, and
third best result on the rest one. Experimental results show
that our SSAM has comparable performance with SALSA,
even if only pairwise interaction features are used.As shown
in (Kandasamy & Yu, 2016), SALSA has shown compet-
itive performance with many nonparametric models and
parametric models (but SALSA cannot do feature selection).
Therefore, SSAM is effective for regression prediction be-
sides its capacity for sparse feature selection.

5.3. More experimental results

According to the reviewer comments of scalability, we did
new experiments on simulated data for the high dimensional
setting (20,000 samples and other settings remain the same).
The average results (with 20 repeats) in Table 4 demonstrate
that SSAM scales well in high dimensional setting.

One reviewer suggested us to compare with more methods
beside COSSO. We added new comparison results on sim-
ulated data with SpAM and the other new method RMR
(Wang et al., 2017) in Table 6. The new results also verify
the effectiveness of the proposed method.

In addition, we added new experimental results on real data
with RMR in Table 5, This results also show the proposed
method is better.
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Table 4. Precision@τ for feature selection
f∗ (m,n, η) τ SSAM

4 3.95
5 4.00(20000,10,0)
6 4.00
4 3.90
5 3.90

a

(20000,10,1)
6 4.00
4 3.90
5 4.00(20000,10,0)
6 4.00
4 3.70
5 4.00

c

(20000,10,1)
6 4.00
3 2.90
4 2.95(20000,10,0)
5 3.00
3 2.85
4 2.85

g

(20000,10,1)
5 3.00

Table 5. Average MSE on real data.
SSAM RMR

Insulin 1.0146 1.0198
Skillcraft 0.5432 0.6486
Airfoil 0.4866 0.5314
Forestfire 0.3477 0.3765
Housing 0.3787 0.4375
CCPP 0.0694 0.0667
Music 0.6295 0.6210
Telemonit 0.0689 0.0824

6. Conclusion
In this paper, we proposed a uniform scheme for nonlin-
ear feature and sample selections under additive models.
Learning theory analysis has been provided to demonstrate
the convergence and sparsity properties of SSAM, where
involves novel analysis technique with integral operator and
concentration estimation. Experiments on both synthetic
and real-world datasets support the effectiveness of our new
model.
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