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Abstract

Training the deep convolutional neural network for com-
puter vision problems is slow and inefficient, especially
when it is large and distributed across multiple devices. The
inefficiency is caused by the backpropagation algorithm’s
forward locking, backward locking, and update locking
problems. Existing solutions for acceleration either can
only handle one locking problem or lead to severe accu-
racy loss or memory inefficiency. Moreover, none of them
consider the straggler problem among devices. In this pa-
per, we propose Layer-wise Staleness and a novel efficient
training algorithm, Diversely Stale Parameters (DSP), to
address these challenges. We also analyze the convergence
of DSP with two popular gradient-based methods and prove
that both of them are guaranteed to converge to critical
points for non-convex problems. Finally, extensive exper-
imental results on training deep learning models demon-
strate that our proposed DSP algorithm can achieve signif-
icant training speedup with stronger robustness than com-
pared methods.

1. Introduction

The deep convolutional neural network is an important
method for solving computer vision problems such as clas-
sification, object detection, etc. However, as the neural net-
works get deeper and larger [8, 17, 10, 31, 34, 24], the re-
quired expensive training time has become the bottleneck.
Data parallelism [33, 23, 3] and model parallelism [22, 20]
are two standard parallelism techniques to utilize multiple
devices for efficient training.

The data parallelism for efficient distributed training has
been well studied and implemented in existing libraries
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[1,4, 12,35, 14, 16], but the model parallelism is still under-
explored. In this paper, we focus on the model parallelism,
where the deep neural network (DNN) benefits from being
split onto multiple devices. But the resource utilization of
standard model parallelism can be very low. The backprop-
agation algorithm [29, 21] typically requires two phases to
update the model in each training step: the forward pass
and backward pass. But the sequential propagation of ac-
tivation and error gradient leads to backward locking and
forward locking [18] respectively because of the computa-
tion dependencies between layers. The update locking [18]
exists as the backward pass will not start until the forward
pass has completed. This sequential execution keeps a de-
vice inefficiently waiting for the activation input and error
gradient.

Several works have been proposed to address these lock-
ing issues (Figure 1). [18] uses Decoupled Neural Interfaces
(DNI) to predict the error gradient via auxiliary networks,
so that a layer uses the synthetic gradient and needs not to
wait for the error gradient. [27] lets hidden layers receive
error information directly from the output layer. However,
these methods can not converge when dealing with very
deep neural networks. [2] proposes layer-wise decoupled
greedy learning (DGL), which introduces an auxiliary clas-
sifier for each block of layers so that a block updates its
parameters according to its own classifier. But the objective
function of DGL based on greedy local predictions can be
very different from the original model. GPipe [11] proposes
pipeline parallelism and divides each mini-batch into micro-
batches, which can be regarded as a combination of model
parallelism and data parallelism. However, the forward and
backward lockings of the micro-batch still exist, and the up-
date locking is not addressed because GPipe waits for the
whole forward and backward pass to finish before updating
the parameters. [15] proposes Decoupled Parallel Back-
propagation (DDG), which divides the DNN into blocks
and removes the backward locking by storing delayed er-
ror gradient and intermediate activations at each block. But
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Figure 1. Sketches of different methods with three blocks. The forward and recomputation are overlapped in DSP.

DDG suffers from large memory consumption due to stor-
ing all the intermediate results, and cannot converge when
the DNN goes further deeper. Features Replay (FR) [13, 36]
improves DDG via storing the history inputs and recomput-
ing the intermediate results. Nevertheless, blocks in DDG
and FR still need to wait for the backward error gradient.
Besides, neither DDG nor FR addresses the forward lock-
ing problem.

To overcome the aforementioned drawbacks, we first
propose Layer-wise Staleness, a fine-grained staleness
within the model to allow different parts to be trained
independently. Incorporating staleness is useful for effi-
cient asynchronous execution without synchronization bar-
rier [9], which can be interpreted as another form of lock-
ing/dependency. The introduction of preset Layer-wise
Staleness enables each part of the convolutional neural net-
work (CNN) to run in a very flexible way with a certain
degree of asynchrony. Based on the concept of Layer-wise
Staleness, we propose a novel parallel CNN training algo-
rithm named as Diversely Stale Parameters (DSP), where
lower layers use more stale information to update parame-
ters. DSP also utilizes the recomputation technique [5, 7] to
reduce memory consumption, which is overlapped with the
forward pass. Our contributions are summarized as follows:

e We propose Layer-wise Staleness and Diversely Stale
Parameters (§3) which breaks the forward, backward
and update lockings without memory issues.

e To ensure the theoretical guarantee, we provide con-
vergence analysis (§4) for the proposed method. Even
faced with parameters of different Layer-wise Stale-
ness, we prove that DSP converges to critical points for
non-convex problems with SGD and momentum SGD.

e We evaluate our method via training deep convo-
lutional neural networks (§5). Extensive empirical

results show that DSP achieves significant training
speedup and strong robustness against random strag-
glers.

2. Background

We divide a CNN into K consecutive blocks so that
the whole parameters * = (x9,Z1,...,7x_1) € R,
where x;, € R denotes the partial ;?arameters at block
ke {0,1,...,K —1}and d = S5 di. Each block
k computes activation hgy1 = fi(hg;zr), where hy de-
notes the input of block k. In particular, hg is the input
data. For simplicity, we define F'(ho;xo;21;...;x) =
fe(fi(folhos@o); x1).;2,) = hgyr.  The loss is
L(hg,1), where [ is the label. Minimizing the loss of a K-
block neural network can be represented by the following
problem:

min
zERC

f(x) = L(F(ho;zo;21; ;¥ -1),1). (1)

Backpropagation algorithm computes the gradient for
block k following chain rule via Eq. (2). The forward lock-
ing exists because the input of each block is dependent on
the output from the lower block. The backward locking
exists because each block cannot compute gradients until
having received the error gradient G, from the upper block.
Besides, the backward process can not start until the whole
forward process is completed, which is known as the update
locking.

_ OL(hk,l)

_ Ofu(he;zk)
= ol Ohiprr G dhx

G, oy
Ofk(hi;xr

Gey, = fkézzwk)ghkﬂ.
After computing the gradients, stochastic gradient de-
scent (SGD) [28] and its variants such as stochastic uni-

fied momentum (SUM) [37], RMSPROP [32] and ADAM
[19] are widely used for updating the model. SGD updates

(@3]
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Figure 2. DSP(1,1,0;4,2,0) with Layer-wise Staleness of {4,2,0} (the index difference between the forward and backward batch). Worker

k € {0, 1,2} holds block k.

via 2"t = 2" — aG(a™; €), where 2™ is the parameters
when feeding the n'" data (batch), « is the learning rate,
and G(z™; &) is the stochastic gradient. SUM updates the
parameters via Eq. (3), where [ is the momentum constant
and y is the momentum term. When s = 1, SUM reduces
to stochastic Nesterov’s accelerated gradient (SNAG) [26].

yn+1 _an o Oég(xn;g)7 ys,n-i-l =" — sag(xn7§)
xn+1 — ynJrl + ﬁ(ys,nJrl _ ys,n).
3)

3. Diversely Stale Parameters

In this section, we propose a novel training method
named Diversely Stale Parameters (Figure 2). We first de-
fine layer-wise staleness and related notations in Section
3.1, then the motivation and formulation of DSP gradient
in Section 3.2, finally the practical implementation using
queues for pipelined batch input in Section 3.3.

3.1. Layer-Wise Staleness

Let the data be forwarded with parameters z( at times-
tamp to, x1 at timestamp 1, ..., and xx_1 at timestamp
tx—1. For simplicity we denote the Forward Parame-
ters as {xfj}k:o k—1. Similarly we denote the Back-
ward Parameters as {x?K’l”“}k:ow,K,l. Then we de-
fine Layer-wise Staleness as Aty = tox 1 —tr > 0. We
preset each block’s Layer-wise Staleness to a different value
to break the synchronization barrier of backpropagation.

We also denote the maximum Layer-wise Staleness as
At = maxp=0,1, . k-1 Atg. It is worth noting that a) in
standard backpropagation algorithm (Eq. (2)), Layer-wise
Staleness Aty = 0; and b) Feeding data index is not identi-
cal to timestamp/training step.

3.2. DSP Gradient

We first set the constraints of DSP as tg < t1 < ... <
tg—1 <tg <tg41 < ...<tag—1 such that both the de-
pendencies in the forward and backward pass no longer ex-

ist, because we do not need them to finish in the same times-
tamp anymore. The non-decreasing property corresponds
to the fact that the data needs to go through the bottom lay-
ers before the top layers, and the error gradient needs to go
through the top layers before the bottom layers.

Based on backpropagation algorithm and Eq. (2), we
should compute the gradients according to the following
formulas as we are updating the Backward Parameters

{xZZKilfk Y e=0,.... K1,

Cotoxk—1, | tak-—1-k
(9F(h0,$6'0 yees T )

gwk = axij—l—k ghk+1
oF ho;xt“’l;...;xtz’(’l”“)
gh’“ = ?QK—l i:QK—Q—k ghk+1 “)
OF (ho; g Y S|
g 8£(F(h0;a:62’{’1; ...;xt[?_l),l)
h =
® F(ho;xéﬂ(’l; ---;iCt;?,l)

However, during the forward pass the input of block k is
F(ho; x5 ...; xz,’”’_’f ). Therefore we incorporate the recom-
putation technique and utilize both the Forward Parameters
and Backward Parameters to compute DSP gradient as fol-

lows,

te—1, t2K—1—k)

G = aF(hO;xf)O; t, x, G
Do
G, — 8F(ho;a:6°;...;arff:f;fzm_l_k)ghk G
0F(h0;x6°; xp ) *
G = OL(F (ho; x(; ...;m;?_-;),o'
F(ho; ;s 25%5))

The intuition behind the DSP gradient of Eq. (5) is that
it is equivalent to Eq. (4) when the model converges to a
local optimum where the gradient is zero (v} = z,”*~'~*
afterwards).



3.3. Batch Pipeline Input

The computation of the DSP gradient breaks the forward
and backward dependencies/lockings of the same data as it
will not appear in different blocks at the same timestamp.
The update locking is naturally broken.

For the parallel implementation of DSP as shown in Fig-
ure 2, we incorporate the data batch pipeline to keep all
the blocks being fed with different data batches and run-
ning. The data source consecutively feeds data input. Dif-
ferent blocks transport and process different data via FIFO
queues. As a result, the data travels each block at differ-
ent timestamps. Specifically, each block k£ maintains an in-
put queue My, output queue Py, and gradient queue Qy, of
length 14+my, 14-py and 14-q;, respectively. We denote it as
DSP(pg,...;pk—1; M0, ..., MK —1). {qx} is determined by
{pr} and {my} because the input should match the corre-
sponding error gradient. We manually split the model to dif-
ferent workers to balance the workload at the steady stage.

Apart from adopting recomputation to reduce memory
consumption, DSP overlaps recomputation with the forward
pass to save time. Using queues also make DSP overlap
the communication between blocks with computation. The
FIFO queues allow for some asynchrony which is effective
for dealing with random stragglers. The ideal time com-
plexity of DSP is O(%) and the space complexity is
O(L+ EkK:_Ol (mg +pr +qr)), where Tr and T are serial
forward and backward time, and L is the number of layers.
my, also represents the Layer-wise Staleness Aty of block
k. K and the FIFO queues length m;+1, pp+1,qx+1 < L
for deep models, so the extra space cost is trivial.

4. Convergence Analysis

The convergence of DSP with SGD is first analyzed, then
DSP with Momentum SGD. For simplicity, we denote the
Forward and Backward Parameters of data n as 2™ and z"
respectively.

Assumption 1. (Bounded variance) Assume that the DSP
stochastic gradient G(x;€) satisfies Var[G(x;€)]
Note E[G(x;8)] = G(z) # V [ ().

Assumption 2. (Lipschitz continuous gradient) Assume
that the loss and the output of the blocks have Lips-
chitz continuous gradient, that is, Vk € {0,1,.., K — 1},

and (20,1, oy Tk1), (20,25 ooy Thep) € RbOFdIFFdi ype
have |VF (ho; 20,15 ..;2k1) — VF(ho; To2; .. Tr2)]| <
Ly ||(.’E0,1, ~~ka,1) — (xO’Q, ...,;vkﬁg) N T € Rd,
[Vf(z1) = Vf(z2)| < Lk |lz1 — 22

We define L = maxgpco,1,. x5} Lr. Note that
VF (ho;xo1;..;2k,1) and VF(ho;zo2;...; Tk,2) regard-

ing parameters are Jacobian matrices. In fact, this is as-
suming that the partial model consisted of the blocks that
the data has traveled, has Lipschitz continuous gradient.

Assumption 3. (Bounded error gradient) Assume that the
norm of the error gradient that a block receives is bounded,
that is, for any x € RY Vk € {0,1,... K — 2}, we

6fk+1(hk+l’wk+1) 3fK 1(hr—1;2K-1) dﬁ(hza
8hk+1 8hK 1

have H
M and H‘B%Z?Z)HSM.

This is assuming that the error gradient at each block
does not explode. It is natural to make the above two block-
wise assumptions as we are breaking the neural networks
into blocks.

Lemma 1. If Assumptions 2 and 3 hold, the differ-
ence between DSP gradient and BP gradient regard-
ing the parameters of block k € {0,1,..,.K — 1}

. t
satisfies IV, L(F (ho,xo S TR 1) Y) —
Gur (a5 sl )| < LM IS ||afere = ate|
4.1. DSP with SGD
Theorem 1. Assume Assumptions 1, 2 and 3 hold. Let
co = M?K(K + 1)2 and ¢ = —(At? + 2) +
V(A2 +2)2 +2c0At2. If the learning rate o, <

. SN anE| Vi) 2 f(20)—F*
TooALZ then OZN*HH) | S % +

n=0 n n=0 n
Lo?(24+ KA +1Kce) SN ai
Zggol Qn

Corollary 1. (Sublinear convergence rate) According
to Theorem 1, by setting the learning rate o, =

, when N is large enough we have o, =

2 0 *
2(f(z7)—f")
< SNt

min {\/l—ﬁ, m
ﬁ and minp—g . ny_1E HVf(x"/)H
Lo?(2+KAt* + L Kcy)

TN .
Corollary 2. According to Theorem 1, if the learning
rate o, dzmmzshes and satisfies the reqmrements in [28]:
thHOOZ 0 o, = 00 and thHooZ Ola < 00,
choose x™ randomly from {m"}n o Wwith probabilities pro-
portional to {a,}N=;'. Then we can prove that it con-
verges to critical points for the non-convex problem due to
lim, 00 E |V f(z™)]|* = 0.

4.2. DSP with Momentum SGD

Theorem 2. Assume Assumption 1, 2 and 3 hold. Let
_ ((1=B)s—1)? _ a2 2 A2 2
co = CETIE , 3 = MPK(K + 1)%At*(co + s%),

cq = 3+B%co+2(1—B)2At?(co+52), and c5 = %Jr
VA Hi(-F)e;

2(1 — B)AL(cz + %) + —NVPIEZDE ir ihe fived

learning rate o satisfies o < _C4+2(1C4_;4)l$;6)263, then

2 *
Ly ]EHW ‘ < 20U | (o210

Corollary 3. (Sublinear convergence rate) According
to Theorem 2, by setting the learning rate o =
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Figure 3. Training loss (solid line) and testing loss (dash line) for ResNet98, ResNet164 on CIFAR-10. The first row and second row plots

the loss regarding the training epochs and time respectively.
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Remark 1. The convergence performance of DSP is af-

fected by Layer-wise Staleness rather than the staleness be-
tween different blocks.



Table 1. Best Top-1 Test Accuracy

ResNet164 ResNet98
CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

BP 94.41% 75.66% 93.38% 72.66%

FR 94.55% 76.25% 93.60% 73.27%

K=3 DSP(1,1,0:4,2,0) 94.68 % 76.05% 93.36% 72.99%
B DSP(2,2,0;6,3,0) 93.98% 76.00% 93.68 % 73.70 %
DSP(3,3,0;10,5,0) 93.37% 76.29 % 93.27% 73.38%

FR 94.44% 75.84% 93.26% 72.41%

- DSP(1,1,1,0;6,4,2,0) 94.32% 76.22 % 93.41% 73.14%
- DSP(2,2,2,0,9,6,3,0) 94.87 % 75.59% 93.06% 72.89%
DSP(3,3,3,0;15,10,5,0) 93.34% 75.15% 93.45% 72.96%
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Figure 4. Top left: Average difference of DSP and BP gradient regarding the number of parameters. The rest: Training loss (solid line),

testing loss (dash line) and test top-1 accuracy(dot line).

5. Experiments

Experiment Settings We implement DSP in TensorFlow
[1] and run the experiments on Nvidia Tesla P40 GPUs.
The model is divided into K blocks and distributed onto K
GPUs. Data augmentation procedures include random crop-
ping, random flipping, and standardization. We use SGD

with the momentum constant of 0.9. In CIFAR experiments,
the batch size is 128. We train ResNet98 and ResNet164
for 300 epochs. The weight decay is 5 x 10~ and the ini-
tial learning rate is 0.01 (test performance could be a little
lower than 0.1 [25]) with a decay of 0.1 at epoch 150, 225;
ResNet1001 is trained for 250 epochs. The weight decay is
2 x 10~* and the initial learning rate is 0.1 with a decay of



Table 2. Robustness (ResNet164, CIFAR-10, K=3). Each GPU is randomly slowed down.

Slow down percentage

GPU 20% 50% 100% 150%
FR 8.977% 28.52% 97.06% 359.2%
DSP(1,1,0;4,2,0) 6.017 % 16.14% 37.44% 70.99%
DSP(2,2,0;6,3,0) 7.465% 16.01% 36.57% 54.57%
DSP(3,3,0;10,5,0) 7.391% 18.15% 32.10% 53.42%
070 ImageNet, ResNetl18, K=3 ImageNet, ResNet50, K=3
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Figure 5. Test accuracy @1 on the ImageNet dataset.

0.1 at epoch 100, 150, 200; VGG-19 and ResNext-29 are
trained for 200 epochs. The weight decay is 5 x 10~* and
the initial learning rate is 0.01 with a decay of 0.1 at epoch
100, 150. We also train ResNet on ImageNet for 90 epochs.
The batch size is 256, the weight decay is 1 x 10~* and the
initial learning rate is 0.1 with a decay of 0.1 at epoch 30,
60, 80. There are four compared methods:

e BP: The standard implementation in TensorFlow. BP
(or BP-K) runs on one (or K) GPUs.

e DNI: The Decoupled Neural Interface algorithm in
[18]. The auxiliary network consists of two hidden and
one output convolution layers with 5 x 5 filters and
padding size of 2. The hidden layers also use batch-
normalization and ReLU.

e FR: The Features Replay algorithm proposed by [13].

e DSP: Our Diversely Stale Parameters.

5.1. Faster Training

The DSP convergence curves regarding training epochs
are nearly the same as FR and BP, while DNI does not con-
verge as shown in Figure 3. But the epoch time of DSP is
much less. Due to the overlap of communication and com-
putation, the overheads of DSP are much less than model
parallel BP and the speedup can even exceed K. However,

it is important that the model should be properly distributed
onto different blocks such that the workload of each com-
puting device is balanced. If not, the overall speed will be
mostly determined by the slowest device. To further demon-
strate the scalability of DSP, we also run experiments on
VGG-19 [30], ResNeXt-29 [34], ResNet1001 on the CI-
FAR dataset, and ResNet18 and ResNet50 on the ImageNet
[6] dataset as shown in Figure 4 and Figure 5 respectively.
The speedup is summarized in Table 3 (GPipe paper only
reports speedup of ResNet101 and AmoebaNet-D (4,512)).
Our proposed DSP improves the speedup compared with its
counterparts from x0.5 to x3.1 based on different datasets,
model and the value of K. Note that the implementation
of DSP involves some inefficient copy operations due to
limited supported features of the deep learning framework,
which means that DSP could achieve a potentially even
faster speedup.

5.2. Robustness

To show that DSP is more resilient to the straggle prob-
lem due to the FIFO queues introduced, we randomly slow
down each GPU by a certain percentage with a probabil-
ity of 1/3 and run the experiments on ResNet164 (Table
2). The performance of FR degrades a lot because it does
not break the forward locking nor completely decouple the
backward pass. In comparison, DSP is very robust with the
best slow down percentage always less than 1/3 of the cor-



Table 3. Speedup Comparison Results.

CIFAR-10 CIFAR-100 ImageNet
ResNet164 ResNext-29 VGG-19 ResNetl001 ResNet50 ResNet101
K, batch size (4, 128) (4, 128) (3, 128) (4, 128) (3, 256) (4, 128)
BP/BP-K x1/- x1/- x1/- -/x1 -/x1 x1/-
FR x1.7 x1.3 x1.1 x1.9 x1.6 x1.7
GPipe - - - - - x2.2
DSP x2.7 x2.4 x1.5 x4.8 x3.0 x2.7

Table 4. Best Top-1 Test Accuracy on ImageNet (K=3).

Method ResNet18 ResNet50
BP 69.89% 75.35%
FR 68.94% 74.47%
DSP(1,1,0;4,2,0) 68.95% 74.91%

responding GPU slow down percentage. When the upper
or lower block suddenly slows down, the current block’s
feeding data and gradient queues are less likely to be empty
if the length of the queue is long. When the straggler
effect is not serious, increasing the Layer-wise Staleness
will not bring performance gain; when it is serious instead,
DSP benefits a lot from increasing the Layer-wise Stale-
ness. Generally speaking, longer queues improve DSP’s re-
silience to random stragglers, which is shown in Table 2.

5.3. Generalization

Table 1 and Tabel 4 show the best top-1 test accuracy on
the CIFAR and ImageNet dataset respectively. The test per-
formance of DSP is better than BP and FR on the CIFAR
dataset. From Lemma 1 we know that the DSP gradient
deviates from the BP gradient due to the Layer-wise Stal-
eness. This difference becomes small as the training pro-
ceeds but could impose small noise and help find a better
local minimum on the comparatively less complex CIFAR
classification problem.

In comparison, on the ImageNet dataset, the Layer-wise
Staleness can lead to performance degradation. By intu-
ition, it is similar to asynchronous distributed training where
the whole gradient is of the same staleness. But in DSP, the
more fine-grained Layer-wise Staleness will impose differ-
ent blocks with different staleness effects. Potential solu-
tions could be using staleness-aware methods as proposed
in asynchronous distributed training area, e.g. gradient
compensation and staleness-aware learning rate, to alleviate
the staleness effect. Another possible direction is to balance
the staleness effect between all the blocks. Moreover, when
compared with FR, DSP’s test accuracy is slightly better.
On ResNet18, the test accuracy of FR and DSP is very sim-
ilar, but on ResNet50 there is a 0.44% gain using DSP. Be-
sides, on the more complicated ResNet50 architecture, the

performance degradation resulting from the staleness effect
is smaller than that on ResNet18.

5.4. Gradient Difference

Here we attest our theoretical analysis of Lemma 1 via
checking the difference between the DSP and the BP gradi-
ent on the CIFAR dataset with the ResNet164 model. From
the top-left figure of Figure 4, we can see that the difference
between the DSP and BP gradient drops very fast to the con-
verged value as the training proceeds. This difference drops
even faster for upper blocks where the Layer-wise Staleness
effect is milder. It confirms the motivation behind the DSP
algorithm that the DSP gradient will finally be similar to
the BP gradient. Moreover, the lower blocks suffer from a
larger difference. When the Layer-wise Staleness keeps in-
creasing, the difference will also increase, which matches
Lemma 1 well. Moreover, as the learning rate drops, the
difference between the DSP gradient and the BP gradient
will drop a lot. This implies that a smaller learning rate
should be used when we need to deal with a larger number
of blocks where the Layer-wise Staleness effect becomes
non-trivial. This is also shown in Theorem 1 and 2 that the
learning rate should be decreased to make sure it converges
at the stated speed.

6. Conclusion

In this paper, we have proposed Layer-wise Staleness
and DSP, a novel way to fast train neural networks. DSP is
proved to converge to critical points for non-convex prob-
lems with SGD and Momentum SGD optimizer. We ap-
ply DSP to train CNNs in parallel and the experiment
results confirm our theoretical analysis. Our proposed
method achieves significant training speedup, strong re-
silience to random stragglers, better generalization on the
CIFAR dataset and reasonable performance on the Ima-
geNet dataset. The speedup can exceed K compared with
the model parallel BP. Potential future works include how
to alleviate the staleness effect when we need to utilize a
further larger number of blocks; how to automatically de-
termine the proper model splitting strategy for load balance
among devices; efficiently incorporating DSP with data par-
allelism to achieve even faster training speed.



References

(1]

(2]

(3]

(4]

[5

—

(6]

(7]

(8]

[9

—

(10]

[11]

[12]

(13]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In /2th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI’ 16), pages 265-283, 2016.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oy-
allon. Decoupled greedy learning of cnns. arXiv preprint
arXiv:1901.08164, 2019.

Léon Bottou. Large-scale machine learning with stochastic
gradient descent. In Yves Lechevallier and Gilbert Saporta,
editors, Proceedings of COMPSTAT 2010, pages 177-186,
Heidelberg, 2010. Physica-Verlag HD.

Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang,
Minjie Wang, Tianjun Xiao, Bing Xu, Chiyuan Zhang, and
Zheng Zhang. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. arXiv
preprint arXiv:1512.01274, 2015.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin.
Training deep nets with sublinear memory cost. arXiv
preprint arXiv:1604.06174, 2016.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248-255. leee, 2009.

Andreas Griewank. An implementation of checkpointing for
the reverse or adjoint model of differentiation. ACM Trans.
Math. Software, 26(1):1-19, 1999.

Kaiming He, Xiangyu Zhang, Shaoqging Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEFE international conference on computer vision, pages
1026-1034, 2015.

Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee,
Jin Kyu Kim, Phillip B Gibbons, Garth A Gibson, Greg
Ganger, and Eric P Xing. More effective distributed ml via
a stale synchronous parallel parameter server. In Advances
in neural information processing systems, pages 1223-1231,
2013.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7132-7141, 2018.
Yanping Huang, Yonglong Cheng, Dehao Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, and Zhifeng
Chen. Gpipe: Efficient training of giant neural networks us-
ing pipeline parallelism. arXiv preprint arXiv:1811.06965,
2018.

Yuzhen Huang, Xiao Yan, Guanxian Jiang, Tatiana Jin,
James Cheng, An Xu, Zhanhao Liu, and Shuo Tu. Tangram:
bridging immutable and mutable abstractions for distributed
data analytics. In 2019 {USENIX} Annual Technical Con-
ference ({USENIX}{ATC} 19), pages 191-206, 2019.
Zhouyuan Huo, Bin Gu, and Heng Huang. Training neural
networks using features replay. In Advances in Neural Infor-
mation Processing Systems, pages 6659—-6668, 2018.

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

Zhouyuan Huo, Bin Gu, and Heng Huang. Large
batch training does not need warmup. arXiv preprint
arXiv:2002.01576, 2020.

Zhouyuan Huo, Bin Gu, gian Yang, and Heng Huang. De-
coupled parallel backpropagation with convergence guaran-
tee. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research,
pages 2098-2106, Stockholmsmissan, Stockholm Sweden,
10-15 Jul 2018. PMLR.

Zhouyuan Huo and Heng Huang. Straggler-agnostic
and communication-efficient distributed primal-dual algo-
rithm for high-dimensional data mining. arXiv preprint
arXiv:1910.04235, 2019.

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015.

Max Jaderberg, Wojciech Marian Czarnecki, Simon Osin-
dero, Oriol Vinyals, Alex Graves, David Silver, and Koray
Kavukcuoglu. Decoupled neural interfaces using synthetic
gradients. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 1627-1635.
JMLR. org, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Alex Krizhevsky. One weird trick for parallelizing convo-

lutional neural networks. arXiv preprint arXiv:1404.5997,
2014.

Yann LeCun, Bernhard Boser, John S Denker, Donnie
Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwrit-
ten zip code recognition. Neural computation, 1(4):541-551,
1989.

Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho,
Garth A Gibson, and Eric P Xing. On model paralleliza-
tion and scheduling strategies for distributed machine learn-
ing. In Advances in neural information processing systems,
pages 2834-2842, 2014.

Mu Li, David G Andersen, Alexander J Smola, and Kai Yu.
Communication efficient distributed machine learning with
the parameter server. In Advances in Neural Information
Processing Systems, pages 19-27, 2014.

Yuejiang Liu, An Xu, and Zichong Chen. Map-based deep
imitation learning for obstacle avoidance. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pages 8644-8649. IEEE, 2018.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
arXiv preprint arXiv:1810.05270, 2018.

Yurii Nesterov. Introductory lectures on convex optimiza-
tion: A basic course, volume 87. Springer Science & Busi-
ness Media, 2013.

Arild Ngkland. Direct feedback alignment provides learning
in deep neural networks. In Advances in neural information
processing systems, pages 1037-1045, 2016.



(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

Herbert Robbins and Sutton Monro. A stochastic approxi-
mation method. The annals of mathematical statistics, pages
400-407, 1951.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams,
et al. Learning representations by back-propagating errors.
Cognitive modeling, 5(3):1, 1988.

Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

Christian Szegedy, Vincent Vanhoucke, Sergey Iloffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 2818-2826, 2016.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop:
Divide the gradient by a running average of its recent mag-
nitude. COURSERA: Neural networks for machine learning,
4(2):26-31, 2012.

Leslie G Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103-111, 1990.

Saining Xie, Ross B. Girshick, Piotr Dolldr, Zhuowen Tu,
and Kaiming He. Aggregated residual transformations for
deep neural networks. 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5987-5995,
2017.

An Xu, Zhouyuan Huo, and Heng Huang. Optimal gradi-
ent quantization condition for communication-efficient dis-
tributed training. arXiv preprint arXiv:2002.11082, 2020.
Qian Yang, Zhouyuan Huo, Wenlin Wang, and Lawrence
Carin. Ouroboros: On accelerating training of transformer-
based language models. In Advances in Neural Informa-
tion Processing Systems 32, pages 5519-5529. Curran As-
sociates, Inc., 2019.

Tianbao Yang, Qihang Lin, and Zhe Li. Unified convergence
analysis of stochastic momentum methods for convex and
non-convex optimization. arXiv preprint arXiv:1604.03257,
2016.



