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Abstract. Addiction to drugs between young people is one of the most
severe problems in the real world, and it imposes a huge financial and
emotional burden on their families and societies. Therefore, predicting
potential inclination to drugs at earlier ages can prevent lots of detri-
ments. In this paper, we propose a new semi-supervised deep ordinal
regression model to predict the possible propensity of adolescents to mar-
ijuana using the diffusion MRI-derived mean diffusivity (MD) from 148
Regions of Interest (ROIs). The traditional deep ordinal regression mod-
els cannot be directly applied to our biomedical problem which only has
a small number of labeled data, not enough to train the deep learning
models. Thus, we design a semi-supervised learning mechanism for deep
ordinal regression, such that both labeled and unlabeled data can be used
to enhance the model training. In our experiments, we use the ABCD
dataset, which contains MRI images of the adolescents under study and
their answers in the Likert scale to a questionnaire containing questions
about Marijuana. Experimental results on the ABCD dataset validate
the superior performance of our new method. Our study provides an
inexpensive way to predict the drug tendency using brain MRI data.

Keywords: Adolescent - Marijuana - Deep Learning - Ordinal Regres-
sion - Semi-Supervised Learning - diffusion MRI - mean diffusivity.

1 Introduction

Predicting a potential tendency of adolescents to drugs in the future enables us
to take effective preventive actions against the risk of their addiction to drugs.
One of the approaches to do so is to study brain condition and its possible cor-
relation with different behavioral patterns. In this regard, a study called Adoles-
cents Brain Cognitive Development (ABCD)! is in progress, which is the largest
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long-term study of brain development in the United States. This study aims to
monitor the brain condition of children from the age of 9-10 to primary stages of
adulthood using diffusion and functional Magnetic Resonance Imaging (dMRI
and fMRI respectively), and by doing so analyzing the factors that impact differ-
ent aspects of the young people’s life such as the potential inclination to drugs.
ABCD dataset is the fruit of this project. It contains dMRI and fMRI images of
the cases under study. Also, these cases have answered some questionnaires on
the Likert Scale, and their answers can reflect their viewpoint regarding drugs.
Therefore, developing a method that can predict answers of a new case to the
questionnaires based on their MRI features can be a solution to the goal of drug
tendency prediction.

In ABCD data, the answers to the questions (labels) are on the Likert Scale
where answers 1, 2, 3, 4, and 5 correspond to Strongly Disagree, Disagree, Nei-
ther Agree nor Disagree, Agree, and Strongly Agree respectively. This is nei-
ther a traditional regression problem nor a multi-class classification one because
the typical regression and classification tasks don’t consider the order relations
between response variables. But in this study, the answers’ values have order
meanings. For example, if the correct answer is 5, predicting 4 should have a
lower negative impact than predicting 1. Thus, the ordinal regression models
should be used for such an answer prediction.

In recent research, the deep ordinal regression models have achieved much
better results in various applications than traditional ordinal regression methods.
However, these deep ordinal regression models cannot be applied to our study.
Because the existing deep learning methods require large amount labeled data
to train satisfied models but the ABCD dataset does not contain the answers
for all the cases whose MRI data are available. This is not surprising, and at the
most circumstances in biomedical applications, unlabeled data are abundant and
labeled data are rare because in biomedical research providing labels is expensive
or difficult as it need human expert supervision.

To address the above challenging problems, in this paper, we focus on design-
ing new semi-supervised deep learning model that addresses the ordinal regres-
sion task, and at the same time, reduces the need for massive labeled training
data. Our new approach shows superior performance on predicting the possible
propensity of adolescents to marijuana using the diffusion MRI-derived mean
diffusivity (MD) from 148 Regions of Interest (ROIs) of ABCD data.

2 Related Work

Ordinal Regression refers to the supervised machine learning problems in which
the labels are categorical, and concurrently, the categories have meaningful order
between them. In the literature, there are several types of methods proposed for
ordinal regression problems.

In the first category, the methods try to address the problem from the re-
gression perspective. They learn some mapping function that maps the samples
to real numbers and suggest a way to find some decision boundaries to deter-
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mine the rank of a given sample based on the interval that its mapped value
lies in [15]. In the second category, the related methods try to reformulate the
ordinal regression problem so that it enables us to leverage the power of promi-
nent classification methods. They split the problem into a sequence of binary
classification sub-problems and determine the class of the input based on the
aggregation of the answers of the binary classifiers [9,3,10].

However, all of the mentioned methods are based on handcrafted features.
In recent years, deep learning has obtained the state of the art results on differ-
ent tasks in classification such as object recognition [7]. The main reason for its
success is its superior ability to learn how to extract useful features for classifi-
cation. As a result, modern approaches to the ordinal regression problem have
focused on designing their methods based on deep learning. Niu et al. [13] pro-
posed the first solution to ordinal regression using deep learning in the context
of age estimation. They converted the problem with R possible ranks to R - 1
binary classification problems such that the i-th problem determines whether
the rank of a sample is bigger than ¢ or not. They have used a Convolutional
Neural Network (CNN) as the feature extractor for their network. Liu et al. [11]
suggested the second deep learning based method for ordinal regression based on
the idea of the first category by mapping the samples to real numbers, but they
did not use these real numbers to determine the rank of the samples. Rather,
they proposed a loss function on these numbers to show the network the nat-
ural order between the ranks. Similar to [13], Liu et al. used CNN for feature
extraction, and they called their method as CNNPOR.

Semi-supervised learning aims to reduce the need for labeled data for train-
ing models, especially deep neural networks. The main importance of semi-
supervised techniques is in the areas that labeled data is scarce and there is
ample unlabeled data. Numerous methods have been proposed in this regard,
and the general idea of almost all of them is to add a term to the loss function
that is calculated using the unlabeled data set that ultimately benefits gener-
alization of the trained network [14,8,16,1,4,17]. Sajjadi et al. [14], Laine and
Aila [8], and Tarvainen and Valpola [16] addressed consistency regularization
for semi-supervised training. Berthelot et al. [1] applied sharpening to enforce
the predictions to have lower entropy and impose entropy regularization [4].
Verma et al. [17] and Berthelot et al. [1] used MixUp idea to make the network
more robust. The problem is that these methods both are originally intended for
image data or their performance is validated on image data. In addition, they
have been used to improve the classification task. Our method addresses the
semi-supervised training in the ordinal regression task.

3 Proposed Method

3.1 Motivations and Model Design

In this section, we propose our method for solving an ordinal regression problem
with the semi-supervised mechanism. Because our problem is semi-supervised
learning, we first explain how to use the labeled set, i.e. supervised learning,
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and then we will focus on incorporating the unlabeled data to enhance the per-
formance of our model.

Our method should use the labeled data of the training set to not only provide
the neural network model the corresponding rank of each input but also suggest
a trick to teach the natural order between the possible ranks to it. We address
the former by framing it as a classification task and do so for the latter by
introducing a mapping and imposing an order between mapped values of inputs
from different ranks.

To leverage the unlabeled part of the training set, we add new terms to
the loss function of the supervised training so that it encourages the network to
make more consistent predictions, predict more confident scores, and have convex
behavior with the inputs and their corresponding labels. We show a quantitative
description of our approach in the following subsections.

3.2 Problem Formulation

Let us consider an ordinal regression problem with rank R and a set of labeled
samples L = {(z;,y;)|x; € X,y; € Y} where Y = {1,2, ..., R} along with a set of
unlabeled ones U = {(z;)|z; € X}. We denote the subset of samples with rank
k as Xj. . We show the development of our loss function step by step, and then
we will provide our proposed architecture.

3.3 Loss Functions

Cross Entropy Loss. We convert the labels in the labeled part of the training
set into the one-hot format (a vector with the length R and its k-th element
being one and other elements being zero if the rank of a sample is k) and define
a part of the loss function as the cross-entropy between the targets and softmax
of the outputs of the network to minimize the K L divergence between the target
distribution and Py,odei(y|2; 8) where 6 is the vector of the model parameters.

1
Lop = T Z H (i, Prodel(y|zi;0)) . (1)
(zi,yi)EL

Ordinal Loss. To guide the network to learn the natural order between the
ranks, we map the samples to real numbers and define a loss over the mapped
values of the samples from different ranks. Considering the activations of the
penultimate layer of the deep neural network for an input z as f(z), we define a
linear mapping M(f(x)) from f to real numbers. Then, we enforce the network
to generate larger values for the samples of the class k& than the values for the
ones of the class k — 1. To do so, given a batch of samples X; C X} and X,
C Xj_1 we add the following term to the loss function:

R

Lorgina =y, >, ReLU(L = M(f(xr)) + M(f(zx-1))  (2)

k=2 xreXy
Tp—1€Xk—1
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Where ReLU (z) is Rectified Linear Unit [12] with output equal to  given x > 0
and zero otherwise. The advantage of this loss function is that it only needs to
consider pairwise comparison between adjacent ranks because if M(f(zp_1)) <
M(f(zy)) and M(f(z1)) < M(F(zisr), then M(f(ax_1)) < M(f(zps1))

(x; € X,), i.e, adjacent ranks comparison implies farther ranks comparison.

3.4 Semi-Supervised Learning

Consistency Regularization. Consistency regularization aims to make the
prediction of the network for a sample and its augmented versions, varieties of
the sample that have the same conceptual meaning in the problem context, as
close as possible. For example, in image classification, the classifier should output
the same distribution for an image that is a rotated version of the original one
because rotation does not change the class of a sample. To apply consistency
regularization, we produce a guessed label for each unlabeled sample in two
steps. At first, we generate several augmented samples from the unlabeled sample
by adding Gaussian noise with a small variance to it. After that, we enter the
original sample as well as augmented ones to the network and determine the
average of the output distributions of the network as the guessed label for the
original sample.

One of the techniques for training consistent classifier in a semi-supervised
training is to motivate the network to show convex behavior in its predictions,
i.e make a similar prediction for a linear combination of two unlabeled samples
to the same linear combination of its predictions for them. [17] To implement
this idea, we generate new samples by mixing samples in the dataset. Given two
samples (x1,p1), (x2,p2), we produce (z3,ps) as following:

B ~ Beta(a, )

B :=max(1—3,5)

z3 = Brx1+ (1= f)* 22
p3 = Bxpr+(1—0B)*ps

N N N TN
Ot
= D =

Entropy Minimization. Entropy minimization idea is originated in the infor-
mation theory context where the uncertainty of a distribution is measured with
its entropy. As a result, minimizing the entropy of the network output distribu-
tion is equivalent to enforcing the network to make more confident predictions,
and we use sharpening to do so. If we denote the network output distribution
prediction with vector p, the sharpened vector ¢ gets calculated as following;:

S

p
q; = —R T (7)
2 j=1 P

where R is the length of p (number of the possible ranks in the ordinal regression
problem), and T is the distribution temperature.
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Based on the above ideas and to leverage their advantages, we use the Algo-
rithm 1 to prepare inputs for our loss function for the semi-supervised training
that we will introduce in the next subsection.

Algorithm 1 Mixing Up Labeled and Unlabeled Set
Input: A set of labeled samples £ = {(z1,, y:) |, a set of unlabeled samples if = {(zv, ) |
for 1 <1i,j < N, a, T, Gaussian noise standard deviation o, number of augmentations
M, Deep Network net
for m =0 to M do
if m is 0 then
Ypred;.m = net(a:uj,m)

else
noise ~ Gaussian(0, o)
Tuj y = Tuy + NOISE
Ypred; = N€t(Tu; ,, )
end if
end for
for j =1to N do
ypredj - Average(yprcdj)g7 ey ypredjyju)
Yguess; = Sharpen(Yprea;, T)
end for

U = {(Tu;, Yguess;) | 1 <j < N}

C = Shuf fle(Concatenation(L, Ui))
L = {(MizUp(L, C[1: N])}

U = {(MizUp(Uy, C[N +1: 2N])}
Return ﬁ,Z)

Semi-Supervised Training. Now we introduce the loss functions that we use
to perform the semi-supervised training.

Ll = ? Z H(yi: Pmodel (ylz,, 9)) (8)
| | (wi,y:)EL
1
,Cu = —F Z Hyj - Pmodel(y‘xj; 9)”3 (9)
RIU| »
(z;.y;)€U

In these equations, £; has the notion of consistency regularization, and £, aims
to push the network to show convex behavior.

3.5 Proposed Loss Function and Model Architecture

We train our model based on the following loss function:

L=Lcr+c1*Lordinal +C2 % L1+ 3% Ly (10)
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a) Proposed Structure

Labeled Set
L = {(x3, ¥:)}

Unlabeled Set Algorithm 1
U = {x;} Mixing Procedure

b) Algorithm 1
Mixing Procedure

Labeled Set
L= {(x7:)}
Xu,j,0 .

N Fuj1 + Uy = {(%u)s Yguessy)}
LN

Sharpening

Xu,jM

©) Network Legend Dropout i Identity

I1 Relu
I1 Softmax

Fig. 1. The architecture proposed for ORSS problem. a) The path for calculation of
each part of the loss function is specified with a separate color. b) Block diagram of
the Algorithm 1. ¢) The network used for prediction.

Where c1, ¢z, and c3 are hyperparameters. This loss function combines all of
the motivations for ordinal regression and semi-supervised learning mentioned
in the above sections. As we discussed, our experiments were on non-image
data. Therefore, we used Multi-Layer Perceptron as the DNN feature extractor.
Because our method solves the ordinal regression problem in a semi-supervised
setting, we name it ORSS. Figure 1 shows the proposed procedure for training
the network. We have shown the calculation path for each loss function with
distinct colors. For example, the path used to compute the cross-entropy loss is
the yellow one in Fig.1.a.

4 Experiments

We evaluated our method on 10731 subjects (mean age=118.96 &+ 7.5 months)
from the ABCD cohort. We extracted mean diffusivity (MD) from 148 Regions
of Interest (ROIs) for each subject. Then, we put these measurements in a vector
with length 148 and concatenated with three extra measures to the vector: the
mean MD for left hemisphere, the mean MD for right hemisphere, and the mean



8 A. Ganjdanesh et al.

MD for the whole brain. In aggregate, we obtained a MD vector with the length
of 151 (=148+3) for each person, from the dMRI images.

ABCD dataset contains questionnaires containing questions that ask the
opinion of people regarding statements about drugs on the Likert Scale. For
example, one of the questions is ‘Marijuana helps a person relax and feel bet-
ter.” If one of the adolescents answers completely agree to this question, it may
suggest that they may have an inclination to drugs in the future.

In our experiments, our goal was to predict the answers to the question
mentioned above using brain MRI features. As the answers are on the Likert
scale, our task is Ordinal Regression, and because we did not have answers for
some people whom we had dMRI features of them, we tried semi-supervised
training to enhance the performance of our model. In summary, we had dMRI
features for 10731 people (a vector of length 151 for each person). Among them,
we had answers of 3663 ones to the question (labeled), and 7068 were unlabeled.
We randomly split the labeled part into train, validation, and test subsets with
the ratio 0.7, 0.15, and 0.15 respectively.

We compared our model with multi-class logistic regression, K-nearest neigh-
bor, thresholded ridge regression, thresholded lasso regression, and multi-layer
perceptron (MLP) with softmax logistic regression loss as classification baselines;
Label propagation [2] and MixMatch as the semi-supervised training baselines;
and we replaced the CNNPOR structure of the Liu et al. approach [11], specified
as MLPPOR, as the ordinal regression baseline. We used to metrics to compare
the methods. The first one is accuracy which is standard metric for classification
networks, and also, we used Mean Absolute Error (MAE) which enables us to
compare the performance of the methods in terms of the distance that their
prediction has to the correct class label which is important in ordinal regression
tasks because as we mentioned earlier, if the correct label is 5, predicting 4 is
better than predicting 1 when the classes have natural order between them.

Table 1 summarizes the results from different methods. As can be seen, our
method outperforms all other methods when comparing by both accuracy and
MAE. Having lower MAE compared to MLPPOR which is the state of the art
ordinal regression method shows that our method can effectively learn the order
between classes. In addition, our method has better accuracy performance which
shows that it can properly employ the unlabeled data to build a better classifier.
For deep models, we used 5 different random seeds for initialization and reported
the average of the results as the performance of the model.

We observed that using Dropout [5] (p = 0.5) in the input layer improves
the performance of the network, but applying Dropout for other layers had
negative impacts on the performance. In addition, hyperparameter setting (K =
5, alpha = 0.5, T = 0.5, ¢; = 2, co = 1, and ¢3 = 1) yielded the best result when
our metric was accuracy, and (K = 5, alpha = 0.5, T = 0.5, ¢; = 2, ¢ = 1,
and c3 = 1) was the best one when the metric was MAE. We employed Adam
optimizer [6] with parameters learning rate = 0.0001, 8; = 0.9, > = 0.99, and
weight decay equal to 0.0001.
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Table 1. Results on the ABCD dataset.

Methods Accuracy MAE

Multi-Class Logistic Regression 34.7% 1.2309
K-nearest neighbour 33.3% 1.2818
Thresholded Ridge Regression 31.9% 1.1655
Thresholded Lasso Regression 31.6% 1.1582

Label Propagation (semi-supervised baseline) 33.4% 1.3255
MLP with softmax Logistic Regression Loss 35.7% 1.2432
MLPPOR [11] 36.5% 1.1380

MixMatch [1] 36.4% 1.1571
ORSS (Ours) 38.6% 1.0810

4.1 Ablation Study

In order to further analyze the importance of each term in the loss function,
we removed each of them one at a time and examined the performance of the
method. We did not perform all hyperparameter search again and used the best
setting that we obtained for the '"MAE’ metric above. At each time, we change
one of the ’¢;’s (i = 1,2,3) to zero while keeping all other hyperparameters
unchanged. Again, we reported the results by averaging the performance of 5
different initializations. The results are shown in Table 2.

Table 2. Results on the ABCD dataset.

Ablation Accuracy MAE
c1 =0 36.5% 1.1869
c2=0 36.2% 1.1570
c3 =0 37.1% 1.1680

5 Conclusion

In this paper, we proposed a new framework for semi-supervised training of
an ordinal regression problem. We developed the idea behind each part of the
proposed network and loss function extensively and showed that our method
outperforms modern methods of ordinal regression and semi-supervised learn-
ing on the ABCD dataset. In future, we will investigate more advanced brain
MRI features and conduct extensively experiments on more adolescent behavior
correlations as well as evaluate the gender effect on this problem.
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