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Abstract. Gene expressions profiling empowers many biological studies in vari-
ous fields by comprehensive characterization of cellular status under different ex-
perimental conditions. Despite the recent advances in high-throughput technolo-
gies, profiling the whole-genome set is still challenging and expensive. Based on
the fact that there is high correlation among the expression patterns of different
genes, the above issue can be addressed by a cost-effective approach that collects
only a small subset of genes, called landmark genes, as the representative of the
entire genome set and estimates the remaining ones, called target genes, via the
computational model. Several shallow and deep regression models have been pre-
sented in the literature for inferring the expressions of target genes. However, the
shallow models suffer from underfitting due to their insufficient capacity in cap-
turing the complex nature of gene expression data, and the existing deep models
are prone to overfitting due to the lack of using the interrelations of target genes
in the learning framework. To address these challenges, we formulate the gene
expression inference as a multi-task learning problem and propose a novel deep
multi-task learning algorithm with automatically learning the biological interrela-
tions among target genes and utilizing such information to enhance the prediction.
In particular, we employ a multi-layer sub-network with low dimensional latent
variables for learning the interrelations among target genes (i.e. distinct predic-
tive tasks), and impose a seamless and easy to implement regularization on deep
models. Unlike the conventional complicated multi-task learning methods, which
can only deal with tens or hundreds of tasks, our proposed algorithm can effec-
tively learn the interrelations from the large-scale (~10,000) tasks on the gene
expression inference problem, and does not suffer from cost-prohibitive opera-
tions. Experimental results indicate the superiority of our method compared to
the existing gene expression inference models and alternative multi-task learning
algorithms on two large-scale datasets.

1 Introduction

Characterizing the cellular status under various states such as disease conditions, ge-
netic perturbations and drug treatments is a fundamental problem in biological studies.
Gene expression profiling provides a powerful tool for comprehensive analysis of the
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cellular status by capturing the gene expression patterns. The recent advances in high-
throughput technologies make it possible to collect extensive gene expression profiles in
versatile cellular conditions, providing invaluable large-scale databases of gene expres-
sions for various biomedical studies [10, 6]. For instance, Van et. al. recognized the ef-
fective genes on breast cancer by studying gene expression patterns of different patients
[44]. Stephens et. al. analyzed the relations between and within different cancer types
by investigating the correlations of gene expression data among distinct types of tumors
[42]. Richiardi et. al. examined the gene expression data in a post meortem brain tissue,
and showed correlation between resting-state functional brain networks and activity
of genes [35]. Radical change in expression levels of several immune-related genes is
identified in mice susceptible to influenza A virus infection using a microarray analysis
[46]. The gene expression patterns in response to drug effects are also investigated on
different tasks such as drug-target network construction [49] and drug discovery [34].
Moreover, the connection of single-gene mutations on some chromosomes and early
onset of Alzheimer disease are examined in [3].

Despite recent developments on gene expression profiling, constructing large-scale
gene expression archives under different experimental conditions is still challenging and
expensive [31]. But previous studies have shown high correlations between gene expres-
sions, indicating that the genes have similar functions in response to various conditions
[32, 15, 38]. The clustering analysis of single cell RNA-Seq also shows similar expres-
sion pattern between intra-cluster genes across different cellular states [32]. Based on
this fact, a small group of informative genes can be considered as the representative
set of whole-genome data. The researchers in the Library of Integrated Network-based
Cell-Signature (LINCS) program! used this assumption and employed principle com-
ponent analysis (PCA) to choose ~1000 genes, which contain ~80% of the information
in the entire set of genes. Note that profiling these ~1000 genes, called landmark genes,
instead of the whole-genomes drastically reduces the collection costs (~$5 per profile)
[33]. Hence, a cost-effective strategy in profiling of large-scale gene expressions data is
to collect the landmark genes and predict the remaining genes (i.e. target genes) using
a computational model.

The linear regression models with different regularizations are the first candidate
models for predicting target genes. Later there were some attempts to use non-linear
model to better capture the complex patterns of the gene expression profiles [14]. Deep
models generally have shown remarkable flexibility in capturing the non-linear nature
of biomedical data and high scalability in dealing with the large-scale datasets. Follow-
ing the successful application of deep models on multiple biological problems [27, 1,
39,41, 50], a few deep regression models have been also introduced for the gene expres-
sion inference problem [8, 12]. However, these deep regression models do not utilize the
interrelations among the target genes. These models usually consist of multiple shared
layers among the genes, followed by a specific layer for each gene at the top. Therefore,
these models ignore the biological information related to the gene interactions in their
training process which leads to their sub-optimal predictions.

To address the above challenges and utilize the interrelations between target genes
to enhance the prediction task, we formulate the expression inference of target genes

! http://www.lincsproject.org/
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from the landmark ones as a multi-task learning problem. Multi-task learning algo-
rithms generally aim to improve the generalization of multiple task predictors using the
knowledge transferred across the related tasks through a joint learning framework [7].
We consider each gene expression prediction as a learning task and employ the multi-
task learning model to automatically learn the interrelations of all tasks (i.e. all target
genes) and utilize such information to enhance the prediction. Although there are mul-
tiple studies in literature on designing multi-task learning algorithms for deep models
[36], they are designed and applied to tens or hundreds of tasks, and are not effective and
scalable to deal with large number of tasks like the gene expression inference problem
with about 10,000 tasks.

In this paper, we propose a novel multi-task learning algorithm for training a deep
regression network with automatically learning the task interrelations of the gene ex-
pression data. Our deep large-scale multi-task learning method, denoted as Deep-LSMTL,
can effectively learn the task interrelations from a large number of tasks, and is also
efficient without suffering from the cost-prohibitive computational operations. In par-
ticular, our Deep-LSMTL model learns tasks interrelations using subspace clustering
of task-specific parameters. Considering this clustering as the reconstruction of each
task parameters by linear and sparse combination of other task-specific parameters,
Deep-LSMTL provides a seamless regularization on deep models by approximating
the reconstruction loss in the stochastic learning paradigms (e.g. stochastic gradient
descent). Deep-LSMTL employs a two-layer sub-network with low-dimension bottle-
neck to learn non-linear low-rank representations of task interrelations. Meanwhile, as
a multi-task learning model, Deep-LSMTL can transfer asymmetric knowledge across
the tasks to avoid the negative transfer issue, and enforce the task interrelations through
the latent variables instead of the model parameters. All these advantages help Deep-
LSMTL predict the target genes better than conventional approaches. We evaluate Deep-
LSMTL with several deep and shallow regression models on two large-scale gene ex-
pression datasets. Experimental results indicate that our proposed algorithm has sig-
nificantly better results compared to the state-of-the-art MTL methods and deep gene
expression inference networks disregarding the neural network size and architecture.
Furthermore, we gain insights into genes relations by visualizing the relevance of land-
mark and target genes in our inference model. The main contributions of this paper can
be summarized as follows:

e Proposing a novel multi-task learning algorithm for training deep regression mod-
els, which is scalable to the large-scale tasks and efficient for the non-image data in
the gene expression inference problem.

e Introducing a seamless regularization for deep multi-task models by employing a
multi-layer sub-network with low-rank latent variables for learning the task inter-
relations.

e Outperforming existing gene expression inference models and alternative MTL al-
gorithms by significant margins on two datasets regardless of network architectures.

The following sections are organized as follows. In Section 2, we briefly review the
related works on gene expression inference and recent multi-task learning algorithms.
In Section 3, we start with the general clustering-based multi-task learning method,
and then propose our multi-task learning algorithm for deep regression models. Then,
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we show the experimental results in Section 4, and evaluate the effectiveness of our
algorithm in comparison with alternative models on multiple experimental conditions.
We also plot some visualization figures to confirm the validity of our model. Finally,
we conclude the paper in Section 5.

2 Related Work

2.1 Gene Expression Inference

Since archiving whole-genome expression profiles under various perturbations and bio-
logical conditions is still difficult and expensive [31], finding a way to reduce the costs
while preserving the information is an important problem. The previous studies have
shown that gene expressions are highly correlated, and even a small set of genes can
contain rich information. For instance, Shah et. al. indicated that a random set of 20
genes contains ~50% of the information of the whole-genome [38]. Moreover, the re-
cent studies in RNA-seq confirm the assumption that a small set of genes is sufficient
to indicate the comprehensive information throughout the transcriptome [32, 15].

In order to determine the set of most informative genes, researchers of the LINCS
program collected GEO dataset? based on Affymetrix HGU133A microarrays, and an-
alyzed the correlation of gene expression profiles. Given the total number of 12,063
genes, they calculated the maximum percentage of information that can be recovered
by a subset of genes based on the comparable rank in the Kolmogorov-Smirnov statistic.
According to the results of LINCS analysis, a subset of only 978 genes is able to re-
cover 82% of the observed connections in the entire transcriptome [21]. These genes are
landmark genes and can be utilized to infer the expression of remaining genes referred
to target genes.

Considering the gene expression inference as a multi-task regression problem, the
shallow models such as linear regression with /;-norm and /5-norm regularizations
and K-nearest neighbors (KNN) are used to infer the target genes expression from
the landmark ones [8, 12]. There are also a few attempts to use deep models on de-
tecting and inferring gene expressions [8, 12,23, 45]. Using the representation power
of deep learning models, Chen et al. introduced a fully connected multi-layer percep-
tron network as a multi-task regression model for the gene expression inference [8].
They justified the effectiveness of their deep model by achieving better experimental
results compared to shallow and linear regression models. Recently, Dizaji ef al. in-
troduced a semi-supervised model, called SemiGAN, based on generative adversarial
networks (GAN) for the gene expression inference problem [12]. Assuming a set of
landmark genes as the unlabeled data and a set of landmark and their corresponding
target genes as the labeled data, SemiGAN learns the joint and marginal distributions
of landmark and target genes, and then enhanced the training of a regression model us-
ing the estimated target genes for the unlabeled data as pseudo-labels. Although these
deep inference models addressed the issue of insufficient capacity in shallow and lin-
ear regression models, they did not explore the task interrelations, which indicate the
biological knowledge of genes, in their training process. Thus, we formulate the gene

https://cbcl.ics.uci.edu/public_data/D-GEX/
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expression inference problem as a multi-task learning and propose a new MTL method
to explicitly learn the interrelations among the target genes in the learning framework
and utilize these information to enhance the prediction results and also improve the
generalization of our multi-task inference network.

2.2 Multi-Task Learning Algorithms

The main goal of multi-task learning is to enhance the generalization of multiple task
predictors using the knowledge transferred across the related tasks in a joint training
process [7]. The main assumption in MTL methods is that the parameters of multiple
tasks lie in a low-dimensional subspace due to their correlation. Using this assumption,
Argyriou et. al. aimed to have common features across tasks by imposing £(5 1)-norm
regularization on the feature matrix, and solved the convex equivalent of its objective
function with this regularization [2]. Kang et. al. introduced a method to share the fea-
tures only within group of related tasks rather than all tasks [20]. Because the strict
grouping of tasks is infeasible in real-world problems, some studies suggested the over-
lapping groups of related tasks for sharing the parameters [24, 29]. Asymmetric multi-
task learning (AMTL) provides a regularization loss by constructing the parameters
of each task using the sparse and linear combination of other tasks’ parameters, and
penalizes the unreliable task predictors with higher loss to have less chance for knowl-
edge transfer compared to the reliable task predictors with lower loss [25]. Furthermore,
some works investigated the general idea of regularizing parameters using the task in-
terrelations obtained via clustering-based approaches [43,5, 11, 18].

The common form of adopting multi-task learning methods on deep neural networks
is to share multiple layers among all tasks, and stack a specific layer for each task at the
top. There are also some studies on designing the shared structure in deep multi-task
models [48,47,37]. Lee et. al. extended AMTL to deep models (Deep-AMTFL) by
allowing asymmetric knowledge transfer across tasks through latent features rather than
parameters. [26]. Our MTL method for deep models differs from the previous studies,
since it employs a multi-layer sub-network with low-dimension latent representations
for learning task interrelations, providing an effective and scalable multi-task learning
algorithm for the gene expression problem with a large number of tasks.

3 Deep Large-Scale Multi-Task Learning Network

In the problem of gene expression inference, we consider D = {x;,y,;} ¥ as the train-
ing set with N samples, where x; € R” and y, € RT denoting the landmark and target
gene expression profiles for the i-th sample respectively. 7" shows the number of tar-
get genes (i.e. output dimension) and D indicates the number of landmark genes (i.e.
input dimension). Considering that y, € R”, we have T regression tasks and our goal
is to learn a multi-task regression model to estimate the target gene expressions from
their corresponding landmark genes. Unless specified otherwise, we use the following
notations throughout the paper. The lower and upper case letters denote the scalars (e.g.
1, T), bold lowercase letters indicate vectors (e.g. X, W), the upper case letters represent
matrices (e.g. X, W), and calligraphic letters indicate functions, sets and losses.
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Fig. 1. Deep-LSMTL architecture. a) This figure illustrates the architecture of our DenseNet (F),
where each layer receives the features of all preceding layers as the input. The ¢;-norm loss (L) is
applied on the output of this network. b) This network indicates the shallow and linear G function
used on Eq. (4). The crosses on some wights represents the zero diagonal elements constraint. ¢)
This network shows the two-layer model G on Eq. (5), where 8 and (1 — ) filters are represented
by the cross signs. The regularization loss (R) is applied on the output of this layer.

3.1 Clustered Multi-Task Learning

Multi-task learning algorithms generally share the relevant knowledge among tasks by
proposing a joint learning framework for the tasks. This joint learning framework usu-
ally contains a regularization term to improve generalization of the model as the fol-
lowing objective:

rr%%ln ZZE(Wt;Xiayit) +R(W) (D

i=1 t=1

where the first term (£) is the loss function applied separately on each task, and the
second term (R) is the regularization employed to enforce sharing the parameters ac-
cording to the tasks relations. Note that w; shows task-specified parameters as a column
of W € RP*T if we assume a shallow regression network as our model. Although, the
mean squared error (MSE) is the first choice for the loss in regression tasks, we em-
pirically find out that the ¢;-norm loss function L(W;x;,y,) = |ly, — F(x;)][1 is a
better candidate in our objective, where F(x;) = WXx; is a regression model. There are
also several studies in literature advocating ¢;-norm loss rather than MSE in different
applications due to its robust performance in dealing with outliers and noisy data.

It has been shown that the shallow MTL models can be extended to deeper models
by sharing a set latent features across all tasks as W = LS, where L € RP*X shows the
shared parameters and S € RX*7 denotes the task-specific weights [2,24]. The same
idea can be adopted in deep models to use multiple layers of shared features followed
by a task-specific layer. The multi-layer perceptron (i.e. fully connected) network is the
simplest form of a deep MTL model as F(x) = o(...o(c(xW )W), W) where
the first L — 1 layers are shared across all tasks and the last one is a task-specific layer.
However, we employ a more efficient architecture for the shared layers by adopting the
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densely connected convolutional network [16] in our inference model. Assuming the
input for each layer as x(*) where [ € {0, ..., L — 1}, the output of our DenseNet is com-
puted by x(+1) = o ([x@, x1) . xO)WUIHD) where [x(;,x(D ... x?)] represents
the concatenation of features from all the previous layers. Figure l(a) shows each layer
of DenseNet receiving the features of all preceding layers as the input. The DenseNet
has several advantages compared to multi-layer perceptron (MLP) such as reusing the
features of previous layers, alleviating the vanishing-gradient issue in deep models, and
reducing the number of parameters. The objective function in Eq. (1) can be written for
our deep MTL network as follows:

wor leyl Fx)| +ROWD, W), @

To regularize the task-specific parameters, we can impose clustering-based con-
straints according to the task relations [43,5, 11, 18,25]. While the clustering con-
straints enforce the related tasks to share information and have similar parameters or
features, they do not force all of the tasks to use shared features, and avoid the nega-
tive transfer issue where unrelated tasks adversely affect the features of correlated tasks
[36]. Grouping the task-specific parameters using subspace clustering is an effective
example of the clustering constraints. In the following equation, we replace the regular-
ization term in Eq. (2) by the subspace clustering constraint:

min Znn F(xi)lls + AW — WEIV[Z 4 4]V 3)

where V € RT*T is the self-representation coefficient matrix with zero diagonal el-
ements (i.e. v;; = 0), showing the correlation among the 7' tasks. This regularization
encourages the parameters of each task to be reconstructed by the linear and sparse com-
bination of other tasks, and avoids the negative transfer issue by learning asymmetric
similarity between the tasks.

In order to implement Eq. (3) in deep models seamlessly, we multiply the features
of latest hidden layer into the second term loss. Since our last layer has linear activation
function, we can reformulate the objective in Eq. (3) as:

ZII& F)ll+ AFx) = GFEE)IE+VIE @

wl) w(L)

where F(X;) = [x@,xM, . xE=D]WT) is the prediction of our DenseNet model
for the i-th sample, and G(F(x;)) = F(X;)V can be considered as a layer stacked at
the top of our DenseNet. The architecture of this layer is illustrated on Figure 1(b).

3.2 Deep Large-Scale Multi-Task Learning

The introduced model in the previous section has multiple drawbacks. First, it is not
scalable to a large number of tasks. Specially, this is a critical issue in the gene ex-
pression inference problem as the number of target genes (i.e. output size) is very large
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(~10,000) and consequently the number of parameters in V. Moreover, the shallow and
linear layer G(.) might not capture the complex correlations among the tasks. In addi-
tion, while we know that the target genes expressions are highly correlated, there is no
explicit constraint to learn a low-dimension manifold for the tasks relations.

In order to address the aforementioned issues, we introduce a new function for G(.)
to better capture the tasks correlations in our MTL algorithm. To increase the capacity
of G function, we replace the linear model with a two-layer network as G(F(x;)) =
V@ o (VY F(x,)), where VI and V) are the first and second layer parameters re-
spectively. Moreover, we are able to decrease the number of parameters in G by setting
the number of units in its hidden layer smaller than the number of tasks. Specifically,
while the shallow linear G function has 7' parameters (~ 10 x 10* = 10%), the pro-
posed G contains 2T K free parameters, where K < T (~ 2 x 10* x 100 = 2 x 10°).
In addition to addressing the scalability issue, a low-dimension bottleneck in G helps
learning a low-rank representation for the tasks relations as shown in the hidden layer
of Figure 1(c). The following equation shows the objective for the proposed method:

. 2

i a1 =yl + Al =B o [FE) - G0 FE)]IF, &)

where [ is a binary mask, and ® indicates the element-wise multiplication. The second

term of this objective forces each task to be reconstructed by the other tasks, learning
the relations among the tasks.

Note that reconstructing the output of each task using the other ones in the multi-
layer G function is not as straight-forward as zeroing the diagonal elements of V' in the
subspace clustering constraint. To solve this problem, we use the random 5 mask to
approximate the reconstruction process in stochastic learning approaches (e.g. SGD).
In particular, we randomly mask one or a few tasks outputs in each training iteration
(e.g. B = [1,0,0,...,0]), then compute the output of regularization sub-network by
G(B ® F(x))), and finally apply the reconstruction loss only to the masked tasks via
(1 — pB) filter. Utilizing this approach, we seamlessly adopt the subspace clustering
regularization in our deep low-rank MTL network.

4 Experiments

In this section, we evaluate our model compared to the alternative deep and shallow
regression methods on multiple datasets. To do so, we first describe the experimental
setups, compare Deep-LSMTL with the state-of-the-art models, and investigate the ef-
fectiveness of our MTL algorithm on neural networks with different architectures. Fur-
thermore, we visualize the relevance of the landmark and target genes in the inference
problem, providing insights into the learned knowledge in our model.

4.1 Experimental Setup

Datasets : In our experiments, we include the microarray-based GEO dataset, the RNA-
Seq-based GTEx dataset and the 1000 Genomes (/000G) RNA-Seq expression data®.

Shttps://cbcl.ics.uci.edu/public_data/D-GEX/
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The original GEO dataset consists of 129,158 gene expression profiles corresponding
to 22,268 probes (978 landmark genes and 21,290 target genes) that are collected from
the Affymetrix microarray platform. The original GTEx dataset is composed of 2,921
profiles from the Illumina RNA-Seq platform in the format of Reads Per Kilobase per
Million (RPKM). The original /000G dataset includes 2,921 profiles from the Illumina
RNA-Seq platform in the format of RPKM.

Following the data pre-processing in [8], we remove duplicate samples, normalize
joint quantile and match cross-platform data. In particular, we first remove duplicated
samples. We then map the expression values in the GTEx and /000G datasets according
to the quantile computed in the GEO data, after which the expression value has been
quantile normalized from 4.11 to 14.97. Finally, we normalize the expression values of
each gene to zero mean and unit variance. After pre-processing, 943 landmark genes
and 9520 target genes remain in each profile. Our datasets contain 111,009 profiles in
GEO dataset, 2,921 profiles in GTEx dataset and 462 profiles in the /000G dataset.

Following the experimental protocol in [8], we evaluate the methods under two
different circumstances. First, we consider 80% of the GEO data for training, 10% of
the GEO data for validation, and the other 10% of the GEO data for testing. Second,
we use the same 80% of the GEO data for training, the /000G data for validation, and
the GTEx data for testing. The second scenario is useful for validating the regression
models on cross-platform prediction, since the training, validation and testing belong to
the different distributions.

Alternative Methods : The most well-known linear inference model is the least square
regression, which has the following objective function:

n
min > [[x:W — vl + AIWI[2. ©
i=1

where W is the model parameters, and A represents the regularization hyper-parameter.
When A = 0, we call the model as least square regression (LSR). But when A # 0,
we have two other linear models, LSR-L2 with ¢5-norm regularization (i.e. p = 2) and
LSR-L1 with ¢;-norm regularization (i.e. p = 1). The regularization terms in LSR-L2
and LSR-L1 help the regression model to alleviate the overfitting issue. Our proposed
algorithm employs the mean absolute error instead of the mean squared error for the
regression loss, and also benefits from the /;-norm regularization but only in the G
network parameters.

We also include the k-nearest neighbors (KNN) method as a baseline method, where
the prediction of a given profile is calculated as the average of its k nearest profiles. In
addition, we compare with two deep learning methods, D-GEX [8] and SemiGAN [12],
for gene expression inference. Generally, D-GEX model uses a multi-layer perceptron
neural network as the inference model, while SemiGAN is designed based on generative
adversarial networks. However, our model utilizes a DenseNet architecture for its base
network (i.e. F).

We also adopt a few multi-task learning algorithms for training deep inference mod-
els in our problem. We review them in the following part very briefly, but refer the
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readers to the original papers for more details. The CNMTL method aims to cluster the
task-specific (i.e. last layer) parameters using regularizations based on the wights mean,
and between-cluster and within-cluster variances as follows [18]:

N T K
n > LWexiy) + A WIE + A > I[We — Wi 7
i=1 t=1 k=1
L
+AWZ Z WS — Wi 3

k= ljej

where the second term is the weights mean regularization with ), as the hyper-parameter
and W = 1/T Ele WIEL) as the average of last layer weights across tasks, the third
term is the between-cluster variance regularization with Ap as the hyper-parameter and
W, as the average of last layer weights of the k-cluster, and the last term is the within-
cluster variance regularization with Ay as the hyper-parameter and 7 (k) representing
a set of tasks belonging to the k-th cluster. Setting L(W;x;,y,) = |ly; — F(x:)||1, we
have similar regression loss for the CNMTL model (and also all the following alterna-
tive models) for a fair comparison, but Deep-LSMTL uses different regularization (i.e.
the second term in Eq. 5) than CNMTL.

The GO-MTL algorithm imposes ¢;-norm regularization on the task-specific pa-
rameters and Frobenius-norm regularization on the shared wights [24]:

N T L—-1
. L
min > Y Llwxi,vi) +plwe A WO ®)

i=1 t=1 =1

where, 14 and )\ are the regularization hyper-parameters. We also use ¢;-norm loss reg-
ularization in the G network parameters of Deep-LSMTL.

The AMTL method enforces each set of task-specific weights to be reconstructed
by the linear combination of other tasks parameters using the following objective [26]:

N T
wv ZZ arL(we,xi,y;) + AWE — w3 ®

where, ) is the regularization hyper-parameter, and «; is the coefficient representing
the easiness level of the ¢-th task that makes the outgoing transfer from hard tasks less
than the easy tasks. AMTL has similar objective to our model in regularizing the task-
specific parameters, but Deep-LSMTL has more flexible two-layer sub-network G with
a computationally less expensive and easy to apply regularization for deep models.

The AMTFL algorithm extends AMTL to regularize the features rather than the
parameters [25]:

N T L-1

min Zzatﬁ wi x5, ¥,) + Wi L+ 4112 — o ZWEV) 3+ A3 WO
i=1 t=1 =1
(10)
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Table 1. Comparison of different inference models on GEO and GTEx datasets based on the
MAE and CC evaluation metrics. The results of the shallow regression models in the first part
and the previous deep inference networks in the second part are reported from the original papers
or running their released codes. The MTL methods in the third part and our proposed models in
the fourth part use densely connected architecture with different numbers of hidden units. Better
results correspond to lower MAE values or higher CC values.

Methods GEO Dataset GTEx Dataset
MAE CC MAE CC

= LSR 0.3763+£0.0844 0.8227+0.0956 | 0.470440.1235 0.718440.2072

o LSR-L1 0.375640.0841 0.822140.0960 | 0.4669+0.1274 0.7163+0.2188
E LSR-L2 0.375840.0842 0.822340.0959 | 0.4682+0.1233 0.7181+0.2076
« KNN 0.3708+£0.0958 0.8218+0.1001 | 0.622540.1469 0.57484+0.2052
& D-GEX 0.320440.0879  0.851440.0908 | 0.4393+0.1239 0.7304+0.2072
5 SemiGAN 0.2997+£0.0869 0.8702+0.0927 | 0.42234+0.1266 0.744340.2087
Deep-GO-MTL | 0.29314+0.0934 0.871740.1075 | 0.42014+0.1391 0.743440.2153

ﬁ Deep-CNMTL | 0.294640.0928 0.870440.1080 | 0.4199+0.1393 0.7401+£0.2163
S | Deep-AMTL | 0.2942+0.0936 0.871940.1072 | 0.4238+0.1388 0.7368+0.2164
Deep-AMTFL | 0.2947+0.0930 0.8703+0.1081 | 0.42054+0.1390 0.7428+0.2154

g DenseNet 0.292440.0945 0.872740.1070 | 0.4227+0.1388 0.7416+0.2156

S | Deep-LSMTL | 0.2887+0.0949 0.8753+0.1062 | 0.4162+0.1390 0.7510+0.2166

where, 1, A and y are the regularization hyper-parameters, v is the task easiness coef-
ficient, and Z is the output of the last hidden layer. AMTFL aims to regularize its model
using a reconstruction loss on the shared features (only the last hidden layer). Although,
our regularization term can also be seen as a reconstruction loss, Deep-LSMTL applies
the regularization on the predictions (not the last hidden layer features) and benefits
from non-linear and easy to implement reconstruction sub-network.

Evaluation Metrics : We use mean absolute error (MAE) and concordance correlation
(CC) as the evaluation metrics. Given the testing data {(x;,y;)}},, for a certain model,
we denote the predicted expressions as {y;} ;. The MAE is then computed using
M
MAE; = Vi Z it — Yit »

=1

an

where M AF; indicates the mean absolute error for the ¢-th task, y;; shows the ground
truth expression value for the ¢-th target gene in the i-th testing profile, and ¢;; repre-
sents the corresponding predicted value. The definition of CC is

2p0'yt Iy,

= : (12)
oy, + o5 + (1y, — p3,)?

cCy

where C'C, shows the concordance correlation for the ¢-th target gene. p is the Pear-
son correlation, and gy, , Ky, and oy, oy, are the mean and standard deviation of
y, and ¥, respectively. Note that in addition to the mean values of the absolute er-

ror and concordance correlation via M AE,,cqn = 1/T Zthl MAEFE; and CCean =
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1/T ZtT:I CC4, we report the standard deviation across the tasks for each inference
model.

Implementation Details : In our model, we use a DenseNet structure with three hidden
layers and 9, 000 hidden units on each layer. Leaky rectified linear unit [28] with leaki-
ness ratio 0.2 is used as our activation function, and Adam algorithm [22] is employed
as our optimization method. Moreover, we decrease our learning rates from 1 x 1073 to
1 x 1075 linearly from the first epoch to the maximum epoch 500. The batch size is set
to 100. We also utilize batch normalization [17] as the layer normalization to speed up
the convergence of the training process. The parameters of all layers are initialized by
Xavier approach [13]. We also select the dropout probability, A, and number of hidden
units in subspace layer from dropout®¢* = {0.05,0.1,0.25}, A*¢* = {0.1,1, 10}, and
units®t = {500, 1000, 2000} respectively based on the validation results. We use Py-
torch toolbox for writing our code, and run the algorithm in a machine with one Titan
X pascal GPU.

4.2 Performance Comparison

We compare the performance of Deep-LSMTL with other models on GEO and GTEx
datasets. As shown in Table 1, the alternative models are grouped as the shallow re-
gression models in the first part, the previous deep regression networks in the second
part, the MTL algorithms applied on deep regression models in the third part, and our
DenseNet baseline and Deep-LSMTL network in the fourth part of the table. Regarding
the MTL methods and our Deep-LSMTL network, we try to run the largest possible
network with three hidden-layers on one GPU. The number of hidden-units for Deep-
Go-MTL, Deep-CNMTL, Deep-AMTFL, Deep-AMTL and Deep-LSMTL are 8000,
4000, 5000, 7000 and 9000 respectively.

The MAE and CC results show that Deep-LSMTL significantly and consistently
outperforms all of the alternative models on both GEO and GTEx datasets. As expected,
Deep-LSMTL has large improvements against the shallow models, indicating the im-
portance of deeper networks in capturing the complex nature of gene expression data.
Deep-LSMTL also achieves better results than the existing deep inference models in
the literature, proving the advantages of using the task interrelations in our MTL algo-
rithm. Moreover, Deep-LSMTL not only shows better results compared to other MTL
methods, but it also indicates the need for far less GPU memory than the other MTL
methods.

Since the expressions of target genes are normalized, the direct comparisons of the
errors may not be conclusive. In order to check if the improvement of Deep-LSMTL
over the alternative models is statistically significant, we use the 5 x 2 cross validation
method in [9]. In particular, we repeat 2-fold cross-validation of Deep-LSMTL and the
best alternative model on GEO dataset (i.e. DenseNet) 5 times, and use a paired stu-
dent’s t-test on the MAE results. Based on the obtained p-values that is much less than
5%, we reject the null hypothesis that the results of the two models have the same distri-
bution. Thus we can claim that Deep-LSMTL has statistically significant improvements
compared to the other alternative models.
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Table 2. Comparison of MTL algorithms for the gene expression inference problems on GEO
and GTEx datasets. All of the models use a two-hidden layers DenseNet as their structure, but
have different numbers of hidden units in each part of the table. Better results correspond to lower
MAE value or higher CC value.

GEO Dataset GTEx Dataset
MAE CC MAE CC
Deep-GO-MTL | 0.3087+£0.0912  0.860240.1120 | 0.426440.1384  0.7347+0.2179 | 8.08x 107
Deep-CNMTL | 0.3070£0.0912  0.8625+0.1104 | 0.426340.1390  0.7322-+0.2188 | 8.08x 107

Deep-AMTL 0.307340.0912  0.86214+0.1105 | 0.4265+0.1385  0.732240.0000 | 1.71x10% 3000
Deep-AMTEL | 0.308840.0912  0.859940.1121 | 0.426340.1383  0.73464-0.2180 | 1.47x10%
Deep-LSMTL 0.3034+0.0914  0.8626+0.1153 | 0.4258+0.1383  0.7377+0.2188 | 9.98x 107

Deep-GO-MTL | 0.301440.0922  0.8665+0.1099 | 0.426740.1388  0.736640.2178 1.7x10
Deep-CNMTL | 0.2992+0.0923  0.8696£0.1079 | 0.4260+0.1388  0.7345+0.2179 1.7x108 6000
Deep-AMTL 0.2999£0.0924  0.868840.1085 | 0.4262+0.1388  0.7351£0.2175 | 2.61x10%
Deep-AMTFL | 0.301640.0922  0.866440.1100 | 0.426540.1387  0.737140.2172 | 2.94x108
Deep-LSMTL | 0.295140.0927  0.8692+0.1089 | 0.4234+0.1391  0.7397+0.2174 | 1.89x10°

Deep-GO-MTL | 0.298340.0929  0.869340.1089 | 0.4268+0.1386  0.737640.2167 | 2.78x 108
Deep-AMTL 0.297240.0932  0.8713%0.1077 | 0.4268+0.1386  0.736740.2170 | 3.69x10% 9000
Deep-LSMTL | 0.291940.0934  0.8717+0.1080 | 0.42014+0.1391  0.7439+0.2170 | 2.97x10®

Methods # params | # units

Table 3. MAE comparison of D-GEX and Deep-LSMTL on GEO and GTEx datasets, when the
number of hidden layers varies from 1 to 3, and the number of hidden units are 3000, 6000 or
9000. The structure of both models are based on the MLP network.

GEO Dataset GTEx Dataset
# hidden units # hidden units
Methods 3000 6000 9000 3000 6000 9000

0.34214:0.0858 0.3337£0.0869 0.330040.0874 | 0.450740.1231 0.4428-+0.1246 0.439440.1253
D-GEX 0.337740.0854 0.3280+£0.0869 0.32244-0.0879|0.45864-0.1194 0.4446+0.1226 0.43934+0.1239
0.336240.0850 0.3252£0.0868 0.32044-0.0879|0.516040.1157 0.4595+0.1186 0.449240.1211
0.317940.0901 0.309740.0903 0.3054+£0.0903 [ 0.4363£0.1368 0.434940.1369 0.4295+0.1380
Deep-LSMTL | 0.308640.0908 0.298540.0915 0.2944£0.0916 | 0.4338+£0.1374 0.432140.1371 0.4289+0.1379
0.30674+0.0913 0.296540.0922 0.2927+0.0923 | 0.4301+£0.1379 0.428640.1373 0.4253+0.1383

sIake] uappIy #

(N S I S

4.3 Ablation Study

While the previous experiments confirm the effectiveness of Deep-LSMTL in dealing
with large-scale tasks by fitting a larger network on one GPU compared to other MTL
methods, we design another experiment to compare the MTL methods with the same
structure. To do so, we consider the two-hidden-layer DenseNet architecture for all the
MTL methods in three different settings with 3000, 6000, and 9000 hidden units. Table
2 shows the results of Deep-GO-MTL, Deep-CNMTL, Deep-AMTL, Deep AMTFL,
and Deep-LSMTL on both GEO and GTEx Datasets. Note that there are still out-of-
memory issues for Deep-CNMTL and Deep-AMTFL with 9000 hidden units. The re-
sults in Table 2 indicate better performance for Deep-LSMTL compared to the other
MTL models on different architectures. Thus, Deep-LSMTL not only provides a better
scalable model in our inference problem, it also shows better performance even when
the base network structure is similar.

In addition to investigating the effectiveness of Deep-LSMTL on the different base
network than DenseNet, we compare Deep-LSMTL and D-GEX with MLP structure
in Table 3. We report the results for both models, where MLP network has one, two or
three hidden layers and the hidden layers have 3000, 6000 or 9000 hidden units. Deep-
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Fig. 2. Visualization of the relevance score calculated for each landmark gene on GEO dataset.
a) Relevance score of landmark genes w.r.t. cluster of profiles. We grouped the gene expression
profiles into 20 clusters using K-means, and plot the contribution of each landmark gene to
different clusters of profiles. b) Cleaned version of landmark gene score. For each profile cluster,
only the top 20 landmark genes in (a) are kept for clear visualization. ¢) Relevance score of
landmark genes w.r.t. cluster of target genes. We divide the 9520 target genes into 20 clusters via
K-means, and demonstrate the contributions of cleaned landmark genes. d) Relevance score of
landmark gene clusters w.rt. cluster of target genes. The landmark genes are clustered into 10
clusters, and their contributions in predicting different clusters of target genes is plotted.

LSMTL again outperforms D-GEX in all architectures consistently, and confirms its
capability regardless of the base network structure.

4.4 Visualization

We perform a qualitative study on Deep-LSMTL to show the role of different landmark
genes in the gene expression inference problem. In order to plot visualization figures,
we adopt the Layer-wise Relevance Propagation (LRP) [4] method to calculate the im-
portance of landmark genes that is learned in our model. Figure 2 shows the results of
Deep-LSMTL with DenseNet structure (in Table 1) on GEO dataset. First, we divide
the gene expression profiles into 20 clusters and then use LRP to calculate the rele-
vance score of landmark genes w.r.t. each profile cluster in Figure 2(a) and 2(b). These
figures show that the landmark gene expression patterns are different for various pro-
file groups, replicating the findings in previous cancer sub-type discovery and cancer
landscape study that different groups of samples usually exhibit different expression
patterns [40, 19].

Next, we analyze the relationship between landmark genes and target genes. We
cluster the target genes into 20 groups and calculate the overall relevance score of land-
mark genes in the prediction of each target gene cluster in Figure 2(c). For the sake of
better visualization, we also group the landmark genes into 10 clusters and display the
association between landmark gene clusters and target gene clusters in Figure 2(d). We
notice an apparent difference in the relevance patterns for different target gene clusters,
yet some similarity among certain clusters. This finding has also been validated by the
previous gene cluster analysis [30], where genes cluster information is related to the
structure of biosynthetic pathways and metabolites.

We also visualize the predictions of our model on GTEx dataset in Fig. 3 similar
to GEO dataset. The figures show similar patterns as the previous outcomes. However,
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Fig. 3. Visualization of the relevance score calculated for each landmark gene on GTX dataset.
a) Relevance score of landmark genes w.r.t. cluster of profiles. We grouped the gene expression
profiles into 20 clusters using K-means, and plot the contribution of each landmark gene to
different clusters of profiles. b) Cleaned version of landmark gene score. For each profile cluster,
only the top 20 landmark genes in (a) are kept for clear visualization. ¢) Relevance score of
landmark genes w.r.t. cluster of target genes. We divide the 9520 target genes into 20 clusters via
K-means, and demonstrate the contributions of cleaned landmark genes. d) Relevance score of
landmark gene clusters w.rt. cluster of target genes. The landmark genes are clustered into 10
clusters, and their contributions in predicting different clusters of target genes is plotted.

they are more notable because of training on GEO data and predicting on GTEx data,
qualitatively confirming the capability of our proposed model in capturing the relations
among genes even for cross-platform prediction.

5 Conclusion

In this paper, we proposed a novel multi-task learning algorithm for training deep re-
gression models on the gene expression inference problem. Our proposed method effi-
ciently exploits the task interrelations to improve the generalizations of the predictors.
We introduced a regularization on our learning framework that is easy to implement on
deep models and scalable to a large number of tasks. We validated our model on two
gene expression datasets, and found consistent and significant improvements over all
counterparts regardless of the base network architecture. Furthermore, we interpreted
the role of landmark genes in the inference of target genes expression using visualiza-
tion figures, providing insights into the information captured by our model.
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