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Abstract—Variable selection is a challenging problem in high-
dimensional linear regression problems with a large number of
predictors. Thus, sparsity-inducing and clustering-inducing reg-
ularization methods are widely used to identify highly correlated
covariates. Ordered Weight L1 (OWL) family of regularizers
for linear regression perform well to identify precise clusters
of correlated covariates and interpret the effect of each variable.
Solution path algorithms are helpful to select hyperparameters to
tune the OWL model. Due to over-complex representation of the
penalty, so far the OWL model has no solution path algorithms
for hyperparameter selection. To address this challenge, in
this paper, we propose an efficient approximate solution path
algorithm (OWLAGPath) to solve the OWL model with accuracy
guarantee. For a given accuracy bound ε, OWLAGPath can find
the corresponding solutions for the OWL model with numerous
hyperparameters while keeping the sparsity and precise features
grouping properties. Theoretically, we prove that all the solutions
produced by OWLAGPath can strictly satisfy the given accuracy
bound ε. The experimental results on three benchmark datasets
not only confirm the effectiveness and efficiency of our OWLAG-
Path algorithm, but also show the advantages of OWLAGPath
for model selection than the existing algorithms.

Index Terms—Sparse regression, variable selection, hyperpa-
rameter selection, solution path algorithm.

I. INTRODUCTION

With the rapid development of data mining and data col-
lection technologies, high-dimensional data widely exists in
the real world. High-dimensional data processing and mining
are becoming more and more essential in many application
scenarios, such as bioinformatics [15], computer vision [5] and
financial portfolio [7]. In order to process high-dimensional
data with correlated and superfluous features more efficiently
and effectively, sparse learning methods which select corre-
lated features [11] are becoming very important.

Recently, a variety of sparsity-inducing feature selection
methods [8], [12], [16] are introduced to analyze high-
dimensional data. These sparse-inducing regularizers put co-
efficients of non-relevant features to be zero and thus select
the remaining features. However, these methods tend to ar-
bitrarily select only one of the highly correlated features in
high-dimensional data. Therefore, the model learned can be
unstable and difficult to interpret. To solve the deficiency
above, several clustering-inducing methods [13], [17], [18],
[21] were proposed. However, the prior information of feature
cluster structures is required by the group Lasso model [18]
and its variants. The elastic net [21] cannot find the specific

clusters. The fused Lasso [13] only can be applicable when
features are ordered naturally. Wu et al. [17] only encourages
the coefficients of the features with maximum absolute value
to be equal. The clustered Lasso is computationally intensive
and thus not scalable for large dimension d.

To simultaneously promote sparsity and clustering, a new
family of regularizers, termed Ordered Weight L1-Norms,
were proposed in [6], [19], which can acquire the clustering
structure of highly correlated features and deselect irrelevant
features. Specifically, the coefficients of the features and the
corresponding weights (i.e., hyperparameters) in the OWL
model are sorted in a non-increasing order. Unlike group
Lasso and its variants, the OWL model can find the clustering
structures automatically without any prior information of the
feature clusters. However, the OWL model involves a large
number of hyperparameters and tuning these hyperparameters
plays a pivotal role to the performance of the model.

To solve the hyperparameter selection problems, many
solution path algorithms [9], [10], [14] were proposed to
generate an path of the exact or approximate solutions with
the possible values of hyperparameters in the search space.
Specifically, [10] proposed a piecewise linear path algorithm
for Lasso. [9] proposed a path algorithm for generally l1-norm
regularized linear models. [14] proposed a path algorithm for
the generalized Lasso models. However, for the OWL model,
the data with dimension d projects a subspace of Rd for hyper-
parameter selection. Due to the complexity of the OWL model,
so far there is still no path algorithm of the OWL model for
model selection. Generally, grid search methods can produce
a coarse solution path. However, hyperparameters selection
with multi-dimensional grid search could be extremely time-
consuming for high-dimensional data with large d and cannot
provide any accuracy guarantee for model selection.

To address this challenge, in this paper, we propose an
efficient approximate solution path algorithm for the OWL
model (OWLAGPath) with accuracy guarantee, which is sig-
nificantly helpful for the model selection of the family of the
OWL model. For a given accuracy bound ε, OWLAGPath
can find the solutions for the OWL model with numerous hy-
perparameters while keeping the sparsity and precise features
clustering properties during the learning process. Specifically,
OWLAGPath can find a series of solutions of the OWL model
with the corresponding hyperparameters first and then find
a piecewise solution path based on the previous solutions



with accuracy guarantee. Theoretically, we rigorously prove
that all the solutions in the path can strictly satisfy the
given accuracy bound ε. The experiments on three benchmark
datasets not only confirm the effectiveness and efficiency of
our OWLAGPath algorithm, but also show the advantages of
OWLAGPath for model selection than the existing algorithms.

II. OWL REGULARIZED REGRESSION

In this section, we will first introduce the OWL norm and
then derive the formulation of linear regression problems with
the OWL norm considered in this paper.

A. The OWL Norm

The OWL norm is defined as

Ωλ(β) =
d∑
i=1

λi|β|[i] = λT |β|↓, (1)

where λ is a non-negative vector of d non-increasing weights,
β[i] denotes the i-th largest element of vector |β| and β↓ is the
vector that sorts the components of β in non-increasing order.
The hyperparameter space of the OWL model is a monotone
non-negative cone [4] that can be defined as:

Km+ = {λ ∈ Rd : λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0} ⊂ Rd+. (2)

The OWL regularizer penalizes the regression coefficients
according to their magnitude: the larger the magnitude, the
larger the penalty. The OWL norm can automatically group
highly correlated covariates to make the coefficients associated
with these correlated covariates equal. As an extension of l1-
norm, it can also enforce the sparsity of the model.

B. Linear Regression with the OWL Norm

This paper studies classical linear regression problems with
the OWL norm under the squared error loss. We consider a
training set S = {(xi, yi)}li=1 where xi ∈ Rd and yi ∈ R.
The unconstrained formulation of the linear regression with
the OWL norm is as follows:

F (β,λ) =
1

2

l∑
i=1

(yi − xTi β)2 +
d∑
j=1

λj |β|[j], (3)

where λj is the j-largest non-negative parameter. Each feature
has a corresponding hyperparameter.

The formulation (3) is a general formulation of many learn-
ing problems. For example, Lasso [12] is a special case of (3)
if λ1 = λ2 = · · · = λd, where λj > 0, j = 1, 2, · · · , d. Linear
regression with L∞-norm is a special case of the OWL norm
if λ1 > 0 and λ2 = · · · = λd = 0. OSCAR [3] is a special
case of (3) if λj = α1 +α2(d− j), j = 1, 2, · · · , d, where α1

and α2 are non-negative parameters. Each set of parameters
correspond to a specific model. Thus, hyperparameter selection
plays an key role for OWL regularized regression.

III. AN APPROXIMATE SOLUTION PATH ALGORITHM FOR
THE OWL MODEL

In this section, we propose an efficient approximate and
accuracy-guaranteed solution path algorithm (OWLAGPath)
for the OWL regularized regression (3). Supposing the training
data xi ∈ Rd has d features, the hyperparameters λ ∈ Km+

of the OWL model have d non-negative parameters with
a d dimensional search space. Let d ∈ Rd denote the
search direction of λ in the hyperparameter space, we have
∆λ = d∆η, where ∆η is the adjustment of hyperparameters.
Our OWLAGPath algorithm is presented in Algorithm 1.

Algorithm 1 OWLAGPath
Input: Search direction d, accuracy bound ε, an search interval
[λ, λ̄]

1: procedure
2: Compute the solution θ for η = λ based on SLOPE.
3: while d1η ≤ λ̄ and G ≤ ε do
4: Compute the search direction of ∆θ.
5: Compute the maximum adjustment ∆ηmax.
6: Update η,θ,λ and θg .
7: Compute the duality gap based on Algorithm 2.
8: if G > ε then
9: Backtrack to the last piece of solutions that

satisfies the error ε.
10: for i = 1 : m do
11: Compute the solution path based on (17).

Output: Solution path for the OWL model in [λ, λ̄]

Specifically, to produce the solution path, we compute the
initial solution for an initial hyperparameter λ by SLOPE
[2] which is a fast batch algorithm for solving the OWL
model. Then, we compute the entire solution path based on
the initial solution. To update the hyperparameters, the search
direction of the d hyperparameters needs to be computed.
To guarantee the accuracy bound of the solutions, the entire
solution path is required to satisfy the optimality conditions
and thus we compute the maximum adjustment ∆ηmax of the
hyperparameters based on the accuracy bound ε. Next, the
solution and cluster structures can be updated for the new
model. We can produce the a series of solutions by repeating
the above procedures. If the last piece of solution path cannot
satisfy the error ε, we should backtrack the last piece to make
sure that the end solution satisfies the error ε. By applying (17),
we can get the solution path for the whole hyperparameter
space with accuracy guarantee.

A. Optimality Conditions of the OWL Model

The ordered term
∑d
j=1 λj |β|[j] makes it difficult to derive

the optimality conditions of the OWL model directly. Based
on the sparsity and clustering properties of the OWL model,
we give Definition III.1 and derive the equivalent formulation
of (3) and the equivalent optimality conditions of the OWL
model.



Definition III.1. Supposing β denotes an optimal solution
of the OWL model and o(j) ∈ {1, ..., d} denotes the order
of |βj | among {|β1|, |β2|, ..., |βd|}, we have |βj1 | ≤ |βj2 | if
o(j1) < o(j2). Based on the order o(j), the feature cluster
is defined as the set Gg ⊆ {1, ..., d} with the same absolute
value of the coefficient βj where ∀j1, j2 ∈ Gg , we have |βj1 | =
|βj2 |

def
= θg .

According to Definition III.1, we have a series of Gg with
the ordered weights, g = 1, · · · , G, such that G1 ∪ G2 ∪ · · · ∪
GG = {1, ..., d}and θ1 > θ2 > · · · > θG ≥ 0. Thus, (3) can
be rewritten as (4) in a clustering way:

min
θ

1

2

l∑
i=1

(yi − x̃Ti θ)2 +
G∑
g=1

ωgθg

s.t. θ1 > θ2 > · · · ≥ θG ≥ 0,

(4)

where x̃i = [x̃i1 x̃i2 · · · x̃iG] and x̃ig =
∑
j∈Gg sign(βj)xij ,

ωg =
∑
j∈Gg λj .

According to the sparsity, the coefficients for some features
could be 0. For convenience, we can suppose that we have k
non-zero clusters. The number of the clusters and the features
in each cluster could change as the parameters change. For
θg > 0 in each cluster Gg , the optimality conditions of (4) can
be presented as follows:

l∑
i=1

−x̃ig(yi − x̃Ti θ) + ωg = 0, ∀θg > 0 (5)

θ1 > θ2 > · · · > θk > θk+1 = 0 (6)

θk+1 = θk+2 = · · · = θG = 0 (7)

B. Compute the Search Direction of ∆θ

To update the parameters, the search direction of d pa-
rameters needs to be computed while keeping the optimality
conditions of the OWL model. For θg = 0 in cluster Gg ,
according to (5), the value θg is fixed to 0 during the whole
process. Only for θg > 0 in each cluster Gg , they have the
possibility to be adjusted when hyperparameter λ is changed.
Let ∆θg denote the changes of the solutions θ in cluster Gg ,
we can get the following equations:

l∑
i=1

x̃igx̃
T
i ∆θ + ω̃g∆η = 0, ∀θg > 0, (8)

where ω̃g =
∑
j∈Gg dj . Let ξg denote ∆θg

∆η as the direction of
∆θg w.r.t. ∆η, we can get search directions ξ by solving (8).

C. Compute the Maximum Adjustment of ∆θ

After obtaining the search direction, we want to search as
far as possible within the accuracy bound and thus compute the
maximum adjustment ∆ηmax. For each cluster with parameter
θg > 0, we compute the maximum adjustment ∆ηg when the
coefficient θg reaches 0 by the constraint θg + ξg∆η > 0
according to (6). Thus, ∆ηmax1 is the smallest one of a set of
values that can be solved as follows:

θg + ξg∆η
max
g = 0, ∀g = 1, 2, · · · , k (9)

Similarly, we compute the maximum adjustment ∆ηg when
the coefficient θg reaches θg+1 by the constraint θg + ξg∆η >
θg+1 + ξg+1∆η. Iteratively, ∆ηmax2 can be solved as follows:

θg + ξg∆η
max
g = θg+1 + ξg+1∆ηmaxg , ∀g = 1, 2, · · · , k

(10)
Considering the termination condition, d1η with the new η
should be smaller than λ̄. ∆ηmax3 can be solved as follows:

∆ηmax = λ̄− d1η (11)

Finally, we compute the smallest one of values ∆ηmaxi , i =
1, 2, 3, and get the maximum adjustment ∆ηmax.

D. Check the Duality Gap

The problem (3) is a convex optimization problem. Let
β∗ be the optimal solution of F (β∗,λ) and β be an ε-
approximation solution with F (β,λ) − F (β∗,λ) ≤ ε. The
duality gap G(β,λ) is defined as follows:

G(β,λ) = F (β,λ)− F̃ (α,λ) (12)

where α is the dual variable, and F̃ (α,λ) is the dual of
F (β∗,λ). We have:

F (β,λ)− F (β∗,λ) ≤F (β,λ)− F̃ (α,λ) = G(β,λ) (13)

Therefore, we can guarantee that the solution β produced by
our OWLAGPath is a ε-approximation solution by G(β,λ) ≤
ε.

Inspired by [1], we can extend the algorithm in [20] to
compute the duality gap of the OWL model. First, F (β,λ)
can be computed by (3). According to [1], the dual function
in our problem can be computed as follows:

F (β∗,λ) = max
α
−1

2
αTα−αTy

s.t. max∑d
j=1 λj |βj |≤1

αTXβ ≤ 1,
(14)

From [20], we know α can be computed as follows:

α = min{1, 1

r∗(XT∇f(Xβ))
}∇f(Xβ), (15)

where ∇f(Xβ) = 2(Xβ− y). Assuming γ are sorted in an
decreasing way as |γ1| ≥ |γ2| ≥ · · · ≥ |γd|, r∗(γ) can be
computed as:

r∗(γ) = max
j∈{1,2,··· ,d}

∑j
i=1 |γi|∑j
i=1 λi

. (16)

Here, we complete the process of solving the duality gap. The
procedures are summarized in Algorithm 2.

IV. ε-APPROXIMATION PROOF OF OWLAGPATH
ALGORITHM

In this part, we will prove that any solution generated by
OWLAGPath can meet the ε accuracy bound. First, I will give
the piecewise solution path of OWLAGPath in (17). Supposing
θ(η) denotes a solution of the regression task with the OWL
model, ∃λ = η0 ≤ η1 ≤ η2 ≤ · · · ≤ ηm = λ

d1
, there



Algorithm 2 Duality Gap
Input: β,λ

1: procedure
2: Compute γ = XT∇f(Xβ) and sort γi in descending

order.
3: Compute r∗(γ) based on (16).
4: Compute the optimal α of F̃ (α,λ) based on (15).
5: Compute G(β,λ) based on (3), (14) and (12).

Output: The duality gap G(β,λ).

are corresponding solutions θ(η0),θ(η1),θ(η2), · · · ,θ(ηm)
produced by our OWLAGPath algorithm. We can compute
the solution path between ηk and ηk+1 as follows:

θ(η) = θ(ηk) + ξk(η − ηk), ∀η ∈ [ηk, ηk+1] (17)

where k = 0, 1, · · · ,m− 1.
The solutions θ(η) produced by our OWLAGPath is piece-

wise linear because the solution in each interval [ηk, ηk+1] is
linear respectively. Checked in Algorithm 1, we know that the
duality gap G(β(ηk),dηk) and G(β(ηk+1),dηk+1) of the end
points θ(ηk) and θ(ηk+1) satisfy the accuracy bound. We give
Theorem IV.1 as follows:

Theorem IV.1. For ∀η ∈ [ηk, ηk+1] in the search interval
produced by OWLAGPath, we have that the solution β(η)
strictly satisfy G(β(η),dη) ≤ ε.

According to Theorem IV.1, we can further conclude that
all the solutions produced by our OWLAGPath strictly satisfy
G(β(η),dη) ≤ ε easily. Here we give the proof of Theorem
IV.1.

Proof. We will prove Theorem IV.1 in two cases. First, if
r∗(XT∇f(β)) < 1, α(η) = ∇f(Xβ(η)). We have:

F (θ(η),dη) =
1

2
‖X̃θ(η)− y||2 +

G∑
g=1

ωgθg(η)

=
1

2
‖X̃(θ(ηk) + ξk∆η)− y||2

+
G∑
g=1

ω̃g(ηk + ∆η)(θg(ηk) + ξkg∆η)

= a1(∆η)2 + b1(∆η) + c1 (18)

Meanwhile we have:

−F̃ (α(η),dη) =
1

2
α(β(η))Tα(β(η)) +α(η)Ty

= 2(X(β(ηk) + ξ̃
k
∆η)− y)T (X(β(ηk) + ξ̃

k
∆η)− y)

+2(X(β(ηk) + ξ̃
k
∆η)− y)Ty

= a2(∆η)2 + b2(∆η) + c2 (19)

where β can be converted from θ and ξ̃
k

is the direction of
∆β which can be converted from ξk. Based on (18) and (19),
we can denote G(β(η),dη) as

G(β(η),dη) = a(∆η)2 + b(∆η) + c (20)

We can easily get a > 0 or a = 0 because the duality gap
G(β(η),dη) ≥ 0 for all η ≥ 0. Otherwise, we can get
G(β(η),dη) < 0 for some η > ηk. Thus, the maximum
of G(β(η),dη) for η ∈ [ηk, ηk+1] is either G(β(ηk),dηk)
or G(β(ηk+1),dηk+1). We know the duality gap of the
end points strictly satisfy the accuracy bound. Therefore, we
complete the proof in the case of α(η) = ∇f(Xβ(η)).

Similarly, we can proof G(β(η),dη) ≤ ε in the case that
r∗(XT∇f(β)) ≥ 1 and α = ∇f(Xβ)

r∗(XT∇f(Xβ))
.

Thus, we complete the proof for Theorem IV.1 and prove
that all the solutions produced by our OWLAGPath strictly
satisfy G(β,dη) ≤ ε.

Table I: The real-world datasets used in the experiments.

Dataset Sample size Attributes
YearPredictionMSD (YP) 51630 90

SensIT Vehicle Combined (SV) 78823 100
Protein 17766 357

V. EXPERIMENTAL RESULTS

In this section, we first give the experimental setup and then
present our experimental results with discussions.

A. Experimental Setup

1) Design of Experiments: We conduct experiments to
verify the effectiveness, efficiency and advantages on the gen-
eralization of our OWLAGPath algorithm for model selection.

To validate the effectiveness of OWLAGPath, we count the
number of solutions produced by our OWLAGPath algorithm
to show finite convergence of OWLAGPath. To the best of
our knowledge, SLOPE is a fast batch algorithm for solving
the OWL model. Grid search methods with SLOPE (denoted
as GridSearchSLOPE) can help produce a coarse solution
path with different parameters. To verify the efficiency of
our OWLAGPath algorithm, we compare the running time
of OWLAGPath on different search directions with Grid-
SearchSLOPE. To show the advantage of OWLAGPath on
generalization, we compare the cross validation error and
testing error of our OWLAGPath and GridSearchSLOPE with
5-fold cross validation.

2) Implementation Details: Our experiments were per-
formed on an 4-core Intel i7-6820 machine. We implement
our OWLAGPath algorithm in MATLAB. We compare the
running time of OWLAGPath and GridSearchSLOPE at the
same platform. The duality gap condition in our experiments
is set as G(β,λ) ≤ ε = α ∗ F (β,λ) where α = 0.1.

GridSearchSLOPE can be done by a multi-dimensional grid
search strategy. Empirically, we can choose 0.001 as the lower
bound so that the penalty has little influence and choose
1000 as the upper bound so that the penalty can enforce
all the coefficients close to 0. We compare our OWLAGPath
algorithm with GridSearchSLOPE in the search space bounded
as above. To make GridSearchSLOPE more efficient, we can
do a coarse search at first and do a fine search for the final
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Figure 1: Number of solutions produced by our OWLAGPath algorithm w.r.t. the size of training set for different search
directions.
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Figure 2: Running time of our OWLAGPath algorithm on different search directions and GridSearchSLOPE algorithms w.r.t.
the size of training set.

hyperparameters. The coarse search for the parameters can be
done on a 6 uniform coarse grid linearly spaced by 1 in the
region {log10 λi| − 3 ≤ log10 λi ≤ 3} where i = 1, 2, . . . , k
and then the fine search can be done on a 10 uniform fine
grid linearly space by 0.1 in the log10λi search space. We
do the experiments with different search direction d. The
representative search direction can be formulated as follows:

di = q ∗ (k − i) + 1; i = 1, 2, · · · , k, (21)

where q is a parameter to control the search direction, we set
q = 1, 2 and 3 in our experiments. The directions are denoted
as d1, d2 and d3. Please note we can choose any direction
that satisfies the setting of the OWL model as search direction
for our OWLAGPath algorithm.

To compare the performance of the generalization of
OWLAGPath and GridSearchSLOPE, we randomly divide the
dataset into training set and testing set in proportion to 4 : 1 to
test the testing error and divide the training set in proportion
to 4 : 1 to test the cross validation error similarly.

3) Datasets: Table 1 summarizes three benchmark datasets
used in our experiments. YearPredictionMSD, SensIT Vehicle
Combined and Protein datasets are from the LIBSVM repos-
itory which is available at https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/.

B. Experimental Results and Discussions

1) Effectiveness of OWLAGPath on the Model Selection:
Figures 1(a)-(c) present the results of the number of solutions

produced by our OWLAGPath over 5 trails. The results show
the algorithm can converge with fewer iterations with larger
q. This is because larger q can make larger hyperparameter
like λ1 search in the hyperparameter space with a larger step.
The results empirically show that OWLAGPath can produce
the solution path of the OWL model in finite iterations. The
results support the conclusion that OWLAGPath is an effective
algorithm to produce the approximate solution path of the
OWL model.

2) Efficiency of OWLAGPath on the Model Selection:
Figures 2(a)-(c) provide the results of the running time of
our OWLAGPath algorithm with three different directions and
GridSearchSLOPE over 5 trails on the datasets with different
sizes of training set. The results confirm that our OWLAGPath
is always much faster than GridSearchSLOPE for model
selection. The reasons are as follows. First, our OWLAGPath
only need to solve the OWL model by calling SLOPE once
in each interval while the GridSearchSLOPE need to solve
the OWL model by SLOPE for each set of parameters.
Second, our OWLAGPath explores maximum adjustment of
the hyperparameters of the OWL model and thus it only need
make a small number of adjustments for the whole process.

3) Better Generalization of OWLAGPath on the Model Se-
lection: Figures 3(a)-(b) provide the results of cross validation
error and testing error of OWLAGPath and GridSearchSLOPE
for 5-fold cross validation over 10 trails. According to the
experimental results, our OWLAGPath performs better than or
equally to GridSearchSLOPE both on the cross validation error
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Figure 3: Cross validation error and testing error of our
OWLAGPath algorithm and GridSearchSLOPE.

and testing error. The reason is that grid search methods only
do a spaced search and thus cannot provide any accuracy guar-
antee for model selection. Contrary to that, all the solutions
produced by our OWLAGPath can strictly satisfy the given
accuracy bound ε. To sum up, our proposed OWLAGPath
algorithm performs much better than the existing algorithm
for model selection with better generalization and much less
computational time.

VI. CONCLUSION

Ordered weight L1 family of regularizers for linear re-
gression perform well in feature selection to generate sparse
solutions and identify precise clusters of correlated covariates.
It involves a large number of hyperparameters and tuning these
hyperparameters plays a pivotal role to the performance of
the OWL model. In this paper, we propose an efficient ap-
proximate solution path algorithm (OWLAGPath) to solve the
OWL model with accuracy guarantee, which can be extremely
helpful for tuning the OWL model. For a given accuracy bound
ε, OWLAGPath can find the solution path for the OWL model
with numerous hyperparameters while keeping the precise
features grouping and sparsity properties. More importantly,
we prove that all the solutions in the solution path produced by

OWLAGPath can strictly satisfy the given accuracy bound ε by
rigorous theoretical analysis. The experimental results on three
benchmark datasets not only confirm the effectiveness and
efficiency of our OWLAGPath algorithm on model selection,
but also show our OWLAGPath has better generalization than
the existing algorithms.
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