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ABSTRACT

As stochastic multi-armed bandit model has many important
applications, understanding the impact of adversarial attacks
on this model is essential for the safe applications of this
model. In this paper, we propose a new class of attack named
action-manipulation attack, where an adversary can change
the action signal selected by the user. We investigate the at-
tack against a very popular and widely used bandit algorithm:
Upper Confidence Bound (UCB) algorithm. Without knowl-
edge of mean rewards of arms, our proposed attack scheme
can force the user to pull a target arm very frequently by
spending only logarithm cost.

Index Terms— Stochastic bandits, action-manipulation
attack, UCB.

1. INTRODUCTION

Multiple-armed bandits (MABs), a simple but very power-
ful framework of online learning that makes decisions over
time under uncertainty, has many applicants in a variety of
scenarios such as displaying advertisements [1], articles rec-
ommendation [2], and search engines [3], to name a few. In
order to develope trustworthy machine learning systems, un-
derstanding adversarial attacks on learning systems and build-
ing robust defense mechanisms has attracted significant re-
search interests [4, 5, 6, 7, 8, 9, 10, 11]. Of particular rel-
evance to our work is a line of interesting recent work on
online reward-manipulation attacks on MABs [12, 13, 14].
In the reward-manipulation attacks, there is an adversary that
can change the reward signal from the environment. In par-
ticular, [12] proposes an interesting attack strategy that can
manipulate a user, who runs either ε-Greedy and or Upper
Confidence Bound (UCB) algorithm, into selecting a target
arm while only spending effort that grows in logarithmic or-
der. [13] proposes an optimization based framework for of-
fline reward-manipulation attacks. Furthermore, it develops
an online attack strategy that is effective in attacking any ban-
dit algorithm that has a regret scaling in logarithm order. In
the defense part, using a multi-layer approach, [14] introduces
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a bandit algorithm that is robust to reward-manipulation at-
tacks under certain attack cost constraint.

This paper introduce a new class of attacks on MABs
named reward-manipulation attack. In the action-manipulation
attack, an attacker can change the action selected by the user
to another action. The user will then receive a reward from
the environment corresponding to the action chosen by the
attacker. Compared with the reward-manipulation attacks dis-
cussed above, the action-manipulation attack is more difficult
to carry out. In particular, as the action-manipulation attack
only changes the action, it can be viewed as manipulating the
rewards to be random rewards drawn from some unknown
distributions of the action chosen by the attacker. This is in
contrast to reward-manipulation attacks where an attacker
can change the rewards to any value. Despite this challenge,
we design an effective action-manipulation attack scheme
to attack UCB, a popular and widely used bandit algorithm
[15]. Our scheme aims to force the user to pull a target arm
frequently. We assume that the attacker does not know the
mean rewards of arms, as otherwise the attacker can perform
the attack trivially. Although without the knowledge of the
mean rewards of arms, the attacker can find a possible worst
arm according to the empirical mean reward of all arms and
attacks when the user pulls a non-target arm. Our analysis
shows that, if the target arm selected by the attacker is not
the worst arm, our action-manipulation attacks can success-
fully manipulate the user to select the target arm with an only
logarithmic cost. In particular, our attack scheme can force
the user to pull the target arm T − O(log(T )) times over T
rounds, with total attack cost being only O(log(T )). On the
other hand, we also show that, if the target arm is the worst
arm, no attack algorithm with logarithmic cost can force the
user to pull the worst arm more than T −O(Tα) times.

This paper is organized as follows. In Section 2, we in-
troduce the problem formulation. In Section 3, we present
the proposed attack scheme and analyze the attack cost. In
Section 4, we present numerical results to evaluate our attack
schemes. Finally, we offer concluding remarks in Section 5.

2. PROBLEM FORMULATION

In this section, we introduce the problem formulation. We
consider the standard multi-armed stochastic bandit problems



setting. The environment consists of K arms, with each arm
corresponds to a fixed but unknown reward distribution. The
bandit algorithm, which is also called “user” in this paper,
proceeds in discrete time t = 1, 2, . . . , T , in which T is the
total number of rounds. At each round t, the user pulls an arm
(or action) It ∈ {1, . . . ,K} and receives a random reward rt
drawn from the reward distribution of arm It. The user aims
to maximize the cumulative rewards over T rounds. Denote
by τi(t) := {s : s ≤ t, Is = i} the set of rounds up to t when
the user chooses arm i, Ni(t) := |τi(t)| the number of arm i
that the user pulls and

µ̂i(t) := Ni(t)
−1

∑
s∈τi(t)

rs (1)

as the empirical mean reward of arm i.
In this paper, we consider an adversary setting, in which

the attacker sits in-between the user and the environment. The
attacker can monitor the actions of the user and reward sig-
nals from the environment. Furthermore, the attacker can in-
troduce action-manipulation attacks on stochastic bandits. In
particular, at each round t, after the user chooses an arm It,
the attacker can manipulate the user’s action by changing It
to another arm I0

t ∈ {1, . . . ,K}. If the attacker decides not
to attack, I0

t = It. The environment generates a random re-
ward rt from the reward distribution of post-attack arm I0

t .
Then the user and the attacker receive rt from the environ-
ment. Note that the user does not know the attacker’s manip-
ulations and the presence of the attacker, and hence will still
view rt as the reward from action It and will still use (1) to
compute the empirical mean reward of arm i. The attacker,
on the other hand, knows that rt is the reward from action I0

t .
Without loss of generality and for notation convenience,

we assume arm K is the “attack target” arm. The attacker’s
goal is to manipulate the user into pulling the target arm very
frequently but by making attacks as rarely as possible. De-
fine the set of rounds when the attacker decides to attack
as C := {t : t ≤ T, I0

t 6= It}. The cumulative attack
cost is |C|, the number of rounds where the attacker decides
to attack. The action-manipulation attack is different from
reward-manipulation attacks introduced by interesting recent
work [12, 13], where the attacker can change the reward sig-
nal from the environment.

In this paper, we assume that the reward distributions of
arms follow σ2-sub-Gaussian distributions with mean µ1, . . . ,
µK respectively. Neither the user nor the attacker knows µ1,
. . . , µK , but σ2 is known to both the user and the attacker.
Denote by µi the mean of arm i and define µ∗ = mini∈[k] µi,
∆i = µi − µ∗ and i∗ ∈ arg mini∈[k] µi.

In this paper, we focus on attacking the UCB algo-
rithm [15]. In the UCB algorithm, the user initially pulls
each of the K arms once in the first K rounds. After that, the
user chooses arms according to

It = arg max
i

{
µ̂i(t− 1) + 3σ

√
log t/Ni(t− 1)

}
. (2)

Under the action-manipulation attack, as the user does not
know that rt is generated from arm I0

t instead of It, the em-
pirical mean µ̂i(t) computed using (1) is not a proper estimate
of the true mean reward of arm i anymore. On the other hand,
the attack is able to obtain a good estimate of µi by

µ̂0
i (t) := N0

i (t)−1
∑

s∈τ0
i (t)

rs, (3)

where τ0
i (t) := {s : s ≤ t, I0

s = i} is the set of rounds up
to t when the attacker changes an arm to arm i, and N0

i (t) =
|τ0
i (t)| is the number of pulls of post-attack arm i up to round

t. This information gap provides a chance for attack.

3. ATTACK STRATEGY AND COST ANALYSIS

In this section, we introduce the proposed action-manipulation
attack on the UCB bandit algorithm and analyze the cost.

3.1. Attack Strategy

In this section, we assume that the target arm is not the worst
arm, i.e., µK > µ∗. We will discuss the case where the target
arm is the worst arm in Section 3.3.

Algorithm 1 Action-manipulation attack on UCB
Input:

The user’s bandit algorithm, target arm K
1: for t = 1, 2, . . . do
2: The user chooses arm It to pull according to UCB al-

gorithm (2).
3: if t ≤ K or It = K then
4: The attacker does not attack, and I0

t = It.
5: else
6: The attacker attacks and changes arm It to I0

t chosen
according to (4).

7: end if
8: The environment generates reward rt according to arm

I0
t .

9: The attacker and the user receive rt.
10: end for

The proposed attack strategy works as follows. In the first
K rounds, the attacker does not attack. After that, at round t,
if the user chooses a non-target arm It, the attacker changes it
to arm I0

t that has the smallest lower confidence bound:

I0
t = arg min

i

{
µ̂0
i (t− 1)− CB

(
N0
i (t− 1)

)}
, (4)

where

CB(N) =

√
2σ2

N
log

π2KN2

3δ
. (5)

Here δ is a parameter that is related to the probability state-
ments in the analytical results presented in Section 3.2.



If at round t the user chooses the target arm, the attacker
does not attack. Thus the cumulative attack cost of our at-
tack scheme is equal to the total of times when the non-target
arms are selected by the user. The algorithm is summarized
in Algorithm 1.

Here, we highlight the main idea why our attack strategy
works. For i 6= K, we will show that this attack will ensure
that µ̂i computed using (1) by the user converges to µ∗. On
the other hand, as the attacker does not attack when the user
selects K, µ̂K computed by the user will still converge to the
true mean µK . Because the assumption that the target arm
is not the worst, which implies that µK > µ∗, µ̂i could be
smaller than µ̂K . Then the non-target arms would pull rarely
as µ̂i is smaller than µ̂K . Hence, the attack cost would also
be small. The rigorous analysis of the cost will be provided
in Section 3.2.

3.2. Cost Analysis

.
To analyze the cost of the proposed scheme, we need to

track µ̂0
i (t), the estimate obtained by the attacker using (3),

and µ̂i(t), the estimate obtained by the user using (1).
The analysis of µ̂0

i (t) is relatively simple, as the attacker
knows which arm is truly pulled and hence µ̂0

i (t) is the true
estimate of the mean of arm i. Define event

E1 := {∀i, ∀t > K : |µ̂0
i (t)− µi| < CB(N0

i (t))}. (6)

Roughly speaking, event E1 is the event that the empirical
mean computed by the attacker using (3) is close to the true
mean. We have the following lemma showing that the attacker
can accurately estimate the average reward to each arm.

Lemma 1. (Lemma 1 in [12]) For δ ∈ (0, 1),P(E1) > 1−δ.

The analysis of µ̂i(t) computed by the user is more com-
plex. When the user pulls arm i, because of the action-
manipulation attacks, the random reward may be drawn from
different reward distributions. Define τi,j(t) := {s : s ≤
t, Is = i and I0

s = j} as the set of rounds up to t when
the user chooses arm i and the attacker changes it to arm
j. Lemma 2 shows a high-probability confidence bounds of
µ̂i,j(t) := Ni,j(t)

−1
∑
s∈τi,j(t) rs, the empirical mean re-

wards of a part of arm i whose post-attack arm is j, where
Ni,j(t) := |τi,j(t)|. Define event

E2 := {∀i 6= K, ∀j, ∀t > K : |µ̂i,j(t)− µj | <√
2σ2

Ni,j(t)
log

π2K2(Ni,j(t))2

3δ

}
.

(7)

Lemma 2. For δ ∈ (0, 1), P(E2) > 1− K−1
K δ.

Events E1, E2 are important, as under these events, we
can build a connection between ûi(t) and µ∗.

Lemma 3. Under events E1 and E2 and Algorithm 1, we
have

µ̂i(t) ≤ u∗ +
1

Ni(t)

∑
j 6=i∗

8σ2

∆j
log

π2Kt2

3δ

+

√
2σ2K

Ni(t)
log

π2(Ni(t))2

3δ
, ∀i, t. (8)

Lemma 3 shows an upper bound of the empirical mean
reward of pre-attack arm i, for all arm i 6= K. Our main
results is the following upper bound on the attack cost |C|.

Theorem 1. With probability at least 1 − 2δ, when T ≥(
π2K
3δ

) 2
5

, the attacker can manipulate the user into pulling

the target arm in at least T −|C| rounds, using an attack cost

|C| ≤K − 1

4∆2
K

(
3σ
√

log T +

√
2σ2K log

π2T 2

3δ

+

(3σ
√

log T +

√
2σ2K log

π2T 2

3δ

)2

+4∆K

∑
j 6=i∗

8σ2

∆j
log

π2KT 2

3δ

 1
2


2

.

(9)

The cost bound in Theorem 1 is complicated. The follow-
ing corollary provides a simpler bound that is more explicit
and interpretable.

Corollary 1. Under the same assumptions in Theorem 1, the
total attack cost |C| is bounded

O

K σ2

∆2
K

K +
∑
j 6=i∗

∆K

∆j
+

√
K
∑
j 6=i∗

∆K

∆j

 log T

 ,

(10)

and the total number of target arm pulls is T − |C|.

From Corollary 1, we can see that the attack cost scales as
log T . Two important constants σ

∆K
and

∑
j 6=i∗

∆K

∆j
have im-

pact on the prelog factor. In Section 4, we provide numerical
examples to illustrate the effects of these two constants.

3.3. Attacks fail when the target arm is the worst arm

In our action-manipulation attack, the attacker can not force
users to pull the worst arm very frequently by spending an
only logarithmic cost. The main reason is that, when the
target arm is the worst, the average reward of each arm is
larger or equal to that of the target arm. As the result, our
attack scheme is not able to ensure that the target arm has a
higher expected reward than the user’s estimate of the rewards
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Fig. 1. Number of target arm pulls
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Fig. 2. Attack cost as σ
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varies

of other arms. In fact, the following theorem shows that all
action-manipulation attack can not manipulate the user into
pulling the worst arm T − O(log(T )) by spending an only
logarithmic cost.

Theorem 2. With probability at least 1− δ with δ < 1
2 , lim-

iting the attack cost by O(log(T )), there is no attack that can
force the user to pick the worst arm more than T − O(Tα)
times, in which α < 9

64K .

This theorem shows a contrast between the case where
armK, the target arm, is not the worst arm and the case where
arm K is the worst arm. If arm K is not the worst arm, our
scheme is able to force the user to pick the target arm T −
O(log(T )) times. On the other hand, if arm K is the worst,
Theorem 2 shows that there is no attack strategy that can force
the user to pick the worst arm more than T −O(Tα) times.

4. NUMERICAL EXAMPLE

We now provide numerical examples to illustrate the analyt-
ical results obtained. In our simulation, the bandit has 10
arms. The rewards distribution of each arm i is N (µi, σ).
The mean rewards of all arms are µ1, . . . , µK respectively.
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Fig. 3. Attack cost as
∑
j 6=i∗

∆K

∆j
varies

The attacker’s target arm is K. We let δ = 0.05. We then
run the experiment for multiple trials and in each trial we run
T = 107 rounds.

In Figure 1, we fix σ = 0.1 and ∆K = 0.1 and compare
the number of rounds when target arm pulled with and with-
out attack. In this experiment, the mean rewards of all arms
are 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.1, and 0.2 respec-
tively. Arm K is not the worst arm, but its average reward is
lower than most arms. The results are averaged over 20 trials.
The attacker successfully manipulates the user into pulling the
target arm very frequently.

In Figure 2, in order to study how σ
∆K

affects the attack
cost, we fix ∆K = 0.1 and set σ as 0.1, 0.3 and 0.5 respec-
tively. The mean rewards of all arms are same as above. From
the figure, we can see that as σ

∆K
increases, the attack cost in-

creases. In addition, as predicted in our analysis, the attack
cost increases over rounds in a logarithmic order.

Figure 3 illustrates how
∑
j 6=i∗

∆K

∆j
affects the attack cost.

In this experiment, we fix σ
∆K

= 1 and set ∆K as 0.2, 0.6 and
0.9 respectively. The mean rewards of all arms are the same as
above. The figure illustrates that, as

∑
j 6=i∗

∆K

∆j
increases, the

attack cost also increases. This is consistent with our analysis
in Corollary 1.

5. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a new class of attacks on
stochastic bandits: action-manipulation attacks. We have an-
alyzed the attack against on the UCB algorithm and proved
that the proposed attack scheme can force the user to almost
always pull a non-worst arm with only logarithm effort. Our
theoretical results and numerical examples show a significant
vulnerability of UCB algorithm under action-manipulation at-
tacks. In the future, we will investigate action-manipulation
attacks on other bandit algorithms such as ε-Greedy and con-
textual bandits etc. It is also of interest to investigate the de-
fense strategy to mitigate the effects of this attack.
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