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We analyze the ultimate quantum limit of resolving two identical sources in a noisy environment.
We prove that assuming a generic noise model such as thermal noise, quantum Fisher information
of arbitrary states for the separation of the objects, quantifying the resolution, always converges to
zero as the separation goes to zero. It contrasts with a noiseless case where it has been shown to be
non-zero for a small distance in various circumstances, revealing the superresolution. In addition,
we show that for an arbitrary measurement, dark count also makes the classical Fisher information
of the measurement converge to zero as the separation goes to zero. Finally, a practically relevant
situation, resolving two identical thermal sources, is quantitatively investigated by using quantum
Fisher information and classical Fisher information of finite spatial mode multiplexing, showing that
the amount of noise poses a limit on the resolution in a noisy system.

Rayleigh criterion poses a limit of resolution of two
incoherent objects in classical optics [1, 2]. Recently,
inspired by quantum optics and quantum metrology, it
has been demonstrated that superresolution overcoming
the Rayleigh limit is possible by replacing a conventional
direct imaging technique with structured measurement
techniques in a weak source regime [3]. Since the break-
through, the superresolution technique has been gener-
alized to apply to two incoherent thermal sources [4],
arbitrary quantum states [5], two-dimensional imaging
[6], three-dimensional imaging [7, 8], and an arbitrary
number of sources [9-11]. Also, many proof-of-principle
experiments have been conducted and demonstrated that
elaborately constructed measurements enable surpassing
the Rayleigh limit in practice [12-16]. The main idea of
revealing the superresolution is to show that quantum
Fisher information of the separation of two objects, the
inverse of which gives a lower bound of the estimation er-
ror of the separation, is still non-zero when the separation
gets smaller. This behavior contrasts with a conventional
direct imaging method whose classical Fisher information
vanishes as the separation drops to zero, which conse-
quently makes the estimation error of the separation to
diverge for a small separation.

More recently, the effects of noise on superresolution
techniques start to be analyzed, and it has been shown
that a signal-to-noise ratio in the system sets a funda-
mental resolution limit [17-19]. As a result, in the pres-
ence of noise, quantum or classical Fisher information
has been shown to converge to zero in several specific
circumstances such as in a weak source regime with a
particular measurement [17], in resolving two incoherent
thermal sources [18], and for measurement crosstalk [19].

In this Letter, we consider a more general situation
of resolving two identical sources in arbitrary quantum
states, assuming a generic noise model that is inevitable
in experiments such as thermal noise and dark count.
We show that such noises cause quantum and classical
Fisher information to vanish for a small separation. We

provide a quantitative analysis of noises in resolving two
identical incoherent thermal sources and present the ef-
fect of noises in terms of quantum and classical Fisher
information. Finally, we show that in the presence of
thermal noise, finite spatial mode demultiplexing (fin-
SPADE) measurement is nearly optimal when a signal-
to-noise ratio is large.

The model.— Consider two identical sources with a
separation s > 0 that emit light described by creation op-
erators 6172 which are orthogonal each other. The emitted
light reaches to the image plane with being attenuated
such that 6172 — ndb—ﬂﬁ{z with 114{12 describing
the environment and being distorted as

il = [ dovte— sl al= [ ariess/al,
1)

where ¢ (x) represents a point-spread function (PSF)
on the image plane, assumed to be real for simplicity.
Also, the mode operators for different positions satisfy
the canonical commutation relation (CCR) [dz,dl/] =
d(z — a’). In general, the two mode operators do not
obey the CCR since two PSFs ¢)(x+s/2) have a non-zero
overlap, i.e., [dl,dg] # 0. Thus, we define symmetric and
antisymmetric modes a4 to orthogonalize them [3-5, 7],

a —M S) = h x(x + s xr— S
O 6<>_/_Ood b+ s/20(x - 5/2),
(2)

which satisfy the CCR [a4,a—] = 0. Now, the overall
dynamics can be captured as
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where ny = (1 £ 0)n represent the effective attenuation
rate, and w4 represent auxillary modes. Furthermore,
the imaging process of estimating the separation s can
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be described by the following dynamics of the mode op-
erators (see Appendix A) [5],

dis
d—: = Z[H:tﬂv a:l:]v (4)

where the effective Hamiltonians are written as

o
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! ds
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where 04 are the mode operators of environment before
the transformation, 64 = arccos /1,
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Thus, mode operators by represent the derivative of the
spatial modes, a4 (s+ds) & a4 (s)+0sa4(s)ds. We have
also defined the following parameters:
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B(s) =

— 00

Here, v represents the variation of the overlap from the
changes of the separation s, Ak? accounts for the vari-
ance of the momentum operator —id,, and [ represents
interference between the derivatives of the PSFs. The
effective Hamiltonian shows that when the separation s
changes, the attenuation to the environment 4 varies as
well as the derivative modes by are excited through the
beam-splitter-like Hamiltonian, which is the last term in
Eq. (5).

Quantum Fisher information in a noisy system.— In
the perspective of quantum metrology, the resolution can
be quantified by quantum Fisher information of the sepa-
ration s [3]. Quantum Fisher information H(6) of a quan-
tum state p(6) for an unknown parameter 6 gives a lower
bound of the estimation error for 6, A%0 > 1/MH(9),
which is so-called quantum Cramér-Rao inequality [20-
22]. Here, M is the number of independent trials. Note
that the quantum Cramér-Rao inequality implies that
the estimation error diverges if the quantum Fisher in-
formation converges to zero. Now, we present our main
result by introducing the following proposition:

Proposition 1. If a quantum state p(t) satisfies 0y p(t) ~
ito with some time-independent Hermitian operator &,
the quantum Fisher information of ¢ converges to zero as
t — 0 if the rank of the quantum state does not change
around t = 0.

Proof. First, recall that quantum Fisher information is
written as H(t) = Tr[p(t)L(t)?], where L is the so-called
symmetric logarithmic derivative (SLD) operator satisfy-
ing the equation 9,p(t) = [p(t)L(t) + L(t)p(t)]/2 [20-22].
Writing the quantum state in a spectral decomposition

form p(t) = Y=, pilti) (], the SLD operator can be writ-
ten as [22]
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The assumption that the rank of the quantum state does
not change around ¢ = 0 implies that p; +p; > 0 does not
converge to 0 as t — 0; hence, H(t) = Tr[pL?] o t> = 0
ast — 0. O

On the other hand, when the rank of the quantum
state changes around ¢t = 0, there exists p; > 0 such
that p; — 0 as ¢ — 0. Therefore, the quantum Fisher
information may not vanish for small ¢.

Let us consider quantum Fisher information of the sep-
aration s in the imaging problem and apply the proposi-
tion to it. First of all, after some algebra, one can find
that dp/ds o isé with some Hermitian operator ¢ if the
quantum state of light satisfies Tr[p., . ¢_] =0 (see Ap-
pendix A). An important observation is that for identical
objects, this condition is satisfied because ¢_ is an anti-
symmetric operator between ¢; and ¢o. Thus, it confirms
that the imaging process for identical sources satisfies the
first condition of the proposition.

On the other hand, if the system suffers from a ther-
mal noise, a relevant mode transforms as a, i.e., a —
V1 —va+ +/vé, with é describing the mode of the en-
vironment in a thermal state with a non-zero photon
number and v a coupling rate to the environment. As
a result, a quantum state of light in mode a becomes
full-rank. Moreover, since thermal noise may occur any
modes in the system, it is natural to assume that the
quantum state in modes a+ and by are full-rank in prac-
tice, which together with the proposition consequently
shows that the quantum Fisher information of s generally
vanishes as s — 0 in a realistic situation. Note that at-
tenuation channel, where the environment é is described
by the vacuum, does not lead to the same conclusion
since it does not transform the state to be a full-rank
in general. Thus, in this case, quantum Fisher informa-
tion can be larger than 0 when s — 0 [5]. We empha-
size that the proposition does not rule out the possibility
of superresolution overcoming Rayleigh limit but implies
that when the objects are very close and the system is
noisy, quantum Fisher information of the separation can
be extremely small. We supply an important example to
analyze the effect of noise in the following section.

Two identical thermal sources.— Let us consider the
problem of two incoherent thermal sources with a separa-
tion s. When the modes a;, as are occupied by thermal
states with the mean photon number N, at the same
temperature, the symmetric and antisymmetric modes
a4+ and a_ can also be described by thermal states with
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FIG. 1. Quantum Fisher information with respect to s and N
with (a) N, = 0 (noiseless), (b) N, = 0.01. In the noiseless
case, the quantum Fisher information does not decrease as s
decreases. However, even with a small amount of noise pho-
tons, the quantum Fisher information drops for small s. The
dotted line in (b) shows local maxima of quantum Fisher infor-
mation for fixed nNs, N, > 0, and SNR > 1 as shown in (c).
(c) Normalized quantum Fisher information when SNR > 1
with respect to s with nNs; = 10%,10%,102,10, 1 from the left
to the right and, N, = 0.01. The horizontal line represents
H(s") and the vertical lines s* (see the main text). It captures
the non-monotonic behavior of quantum Fisher information.
(d) Normalized quantum Fisher information when SNR « 1
with 7N, = 107%,1072,1072,107! from the bottom.

mean photon number Ny (14 9d) and nN,(1—9), respec-
tively [4, 5]. Introducing a thermal noise characterized
by the mean photon number N,, onto the relevant modes,
the quantum state is written as a product of states of
symmetric and antisymmetric modes, p = p1®p_, where

ﬁﬂ:(s) :pAT(nNs(l 15(5))+Nn)®ﬁT(Nn) (10)

Here, each mode corresponds to a4, l;i, respectively, and
pr(N) represents a thermal state with a mean photon
number N,,. It is worth emphasizing that when N,, > 0,
the rank of the quantum state does not change as s — 0.
On the other hand, when N,, = 0, the rank of the state
on the antisymmetric mode a_ changes as s — 0 be-
cause § — 1. This observation with the proposition im-
plies that when N,, > 0, the quantum Fisher information
vanishes as s — 0 while it might not be the case when
N, =0.

More specifically, quantum Fisher information of Gaus-
sian states can be easily calculated [23-29], and we ob-
tained H(s) = Hy(s)+ H_(s) with (see Appendix B for

the derivation)

n?Nivy?
(N5 (1 £8) + Np + 1) (nNs (1 £6) + Ny,)
20 N2[(1£6)(6”(0) 7 6"(s)) + 7%

(2N, + 1)(2nNs(1 £0) + 2N, + 1) —1° (11)

Hi(s) =

Here, Hy(s) represent the quantum Fisher information
from symmetric and antisymmetric modes, respectively.
Also, the first and second term in quantum Fisher in-
formation accounts for the changes of the mean photon
number on mode a4 from the change of effective attenu-
ation factors n+ and the transformation of the shape of
spatial modes a4 (s) into a4 (s + ds) = a4 (s) + dsdsa,
respectively.

First of all, the quantum Fisher information recovers
previous results when N,, = 0 in Refs. [4, 5]. More
importantly, one can verify that the quantum Fisher in-
formation vanishes as s — 0 unless N,, = 0. Fig. 1 (a)
and (b) show the quantum Fisher information H(s) in
the ideal case and the noisy case with a Gaussian PSF,
Y(z) = e /49" /(2m62)1/4. A remarkable difference be-
tween the two cases is that as s — 0, the quantum Fisher
information in the noisy case rapidly drops as expected
while it does not change in the ideal case. For exam-
ple, when the separation s is 0.01c and the mean signal
photons nN; is 1, the quantum Fisher information H (s)
is 0.5/0% and 6 x 107*/0? for noiseless case and noisy
case with N,, = 0.01, respectively, which clearly shows
that even a small amount of noise can be critical to the
resolution.

Let us first consider the regime where the signal-to-
noise ratio (SNR) is large SNR = nN;/N,, > 1. In this
regime, Fig. 1 (¢) shows another interesting feature of
quantum Fisher information; it is not monotonic with
respect to s. For a small separation s < ¢ in the regime,
the quantum Fisher information in the case of Gaussian
PSF can be approximated by

4n?N2s?
N2N2st + 8nNgs202 + 64N, (N, + 1)o?’

H(s) ~ (12)

which has the local maximum

NN VN2 + N,

H(s*) =
(5" 202 (N, + /N2 + N,,) (/N2 + N,, + N,, + 1)
N,<1 NN 1 (13)
202 1+ 2v/N,,

at s* = 2v/2(N2 + N,)'/*0/\/nN;, which is shown in
Fig. 1 (c). Thus, s* is a characteristic length scale in this
regime, and if s < s*, the quantum Fisher information



can be further approximated as

H(s) ~ 72]\]2 ARt = TN S
Np(No + 1) " No(N, +1) 1607
2N2 g2
Nt nN 1204 if nNg > N, and s < s™.

(14)

One can observe that when SNR > 1, N, < 1 and
s < s*, quantum Fisher information per a signal photon
is proportional to the SNR H(s)/nNs o nNs/N,,, which
is consistent with the previous results [17, 18]. Also,
quantum Fisher information decreases as s quadratically
as s — 0.

On the other hand, when a SNR is small, i.e.,
nNs/N, < 1, and the separation is small, s < V6o,
the quantum Fisher information is approximated by

2N2
2N, (N, + 1)
NS 387
T N,(N,+1) 16

H(s) ~ [BAK* + 6@ (0)]s?

if NNy < N,, and s < V6o,
(15)

which is shown in Fig. 1 (d). Again, when N,, < 1,
quantum Fisher information per a signal photon is pro-
portional to the SNR, H(s)/nNs; < nNs/Ny,, and de-
creases as s quadratically as s — 0.

Finally, for a large separation s > o, the quan-
tum Fisher information can be approximated as H(s) ~
2n°N2AK?/[2N2 + nNg + 2N, (nNs + 1)], which shows
that the noise decreases the quantum Fisher information
for a large separation as well.

As a remark, we compare the quantum Fisher informa-
tion in Eq. (11) with the one obtained in Ref. [18] where
the same type of noise was considered in the imaging pro-
cess with two incoherent thermal sources. The discrep-
ancy of the expression is ascribed by the fact that the
noise model used in Ref. [18] assumes that noise occurs
only on the modes a1 whereas our noise model assumes
the same amount of noise on I;i modes. Nevertheless,
the previous result has also revealed that the quantum
Fisher information vanishes as s — 0 because the rank
of the quantum state does not change even if we assume
N, =0 for l;i modes.

Noisy detectors.— As pointed out in Ref. [18], the
above thermal noise model might not be appropriate
to consider the effect of dark count because quantum
Fisher information is a measurement-independent quan-
tity while dark count is a feature of the measurement
device. In order to analyze the effect of dark count, we
employ classical Fisher information, the inverse of which
gives a lower bound of estimation error for a given mea-
surement apparatus, A?0 > 1/MF(0) [31, 32]. By in-
troducing the following proposition, we show that dark
count makes the classical Fisher information converge to
zero in the same condition of the proposition 1.

Proposition 2. Consider a quantum state that satisfies
O0sp ~ ito for small ¢t with a time-independent Hermitian
operator ¢ and a positive-operator-valued-measurement
(POVM) {IIj}rex with 1T, > 0 and 32, [y = 1. If
the support of pr = Tr[ﬁ(t)ﬁk], {k € K|pr > 0}, does
not change as ¢ — 0, the classical Fisher information
converges to zero as t — 0.

Proof. Let us recall that the classical Fisher information
of probability distribution {py} is given by

=S (%).

The probability of obtaining outcome k by measuring a
quantum state p(t) with POVM {11 } e x and its deriva-
tive with respect to t are given by

pre = Tr[ILp(t)], (17)
and

0 . N

% ~~ it Tr[IIx5]. (18)

Therefore, the classical Fisher information of small ¢ is
written as

(19)

Similar to quantum Fisher information, classical Fisher
information converges to zero as t — 0 unless there exists
px such that pp — 0. O

In realistic situations, dark count rates are generally
non-zero in all relevant detectors; thus, it is natural
to expect that the classical Fisher information vanishes
F(t) — 0 as t — 0 in practice. Moreover, the proposi-
tion can be applied to measurement crosstalk [19] which
makes all measurement outcomes mixed so that eventu-
ally the probability of obtaining each outcome becomes
non-zero. Also, the proposition indicates the limitation
of direct imaging which always gives non-zero probabili-
ties on any pixels on image plane for generic PSFs even
in the noiseless case. As a final remark, proposition 2
does not imply the failure of superresolution; it suggests
that dark count rate can pose a limit on the resolution
as a thermal noise on quantum Fisher information in the
previous section.

Finite spatial mode demultiplexring.— Finally, we an-
alyze the achievable resolution using the method of fin-
SPADE. In the noiseless case, Fin-SPADE method em-
ploys a photon-counting for each Hermite-Gaussian mode
hg(z) on the image plane, which has been shown to
be optimal if an enough number of Hermite-Gaussian
modes are accessible in experiment [3, 5]. In general, the



analytical expression of the classical Fisher information
of fin-SPADE is difficult to obtain due to the statisti-
cal correlations between different modes of the measure-
ment. We thus obtain the lower bound of the classical
Fisher information using an inequality F(0) > i@*C~'fi,
where ji and C denote the mean and covariance matrix
of the outcome distribution, and i = 9s/i [34]. We con-
sider a finite number of Hermite-Gaussian modes hy with
0<qg<@-—1with @ = 15 in the presence of thermal
noise in the problem of resolving two incoherent ther-
mal sources. We numerically confirmed that increasing
Q@ larger than 15 does not change the classical Fisher
information for 1073 < s/o < 1. Fig. 2 shows the ra-
tio of the lower bound of the classical Fisher information
of Fin-SPADE to quantum Fisher information (see Ap-
pendix C for details). It clearly shows that for the large
number of signal photons 7Ny, the ratio converges to the
unity, which means that fin-SPADE is optimal in that
regime. Even when nNy is small, the lower bound of
classical Fisher information gives at least 65% of quan-
tum Fisher information. Hence, even in the presence
of noise, the performance of fin-SPADE method is not
degraded significantly when it is compared to quantum
Fisher information. A particular way to improve this fur-
ther is to directly measure the incoming photon numbers
onto the symmetric and antisymmetric modes and their
derivative modes {d,bs} (see Appendix B for details).
In general, the implementation of such a measurement
requires a prior information, which might be overcome
by using adaptive method [33].

Conclusions and discussion.— In this Letter, we have
investigated the effect of noise on the resolution of two
identical sources with an arbitrary state using quan-
tum and classical Fisher information and shown that the
Fisher information generically converges to zero if the
system has a non-zero thermal noise or dark count rate.
We have shown that in the problem of resolving two inco-

herent thermal sources with the number of signal photons
being larger than that of noise photons, a signal-to-noise

Fin-SPADE F(s)/H(s) N,=001
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FIG. 2. Relative classical Fisher information to quantum
Fisher informaiton of fin-SPADE with respect to different sep-
aration s and mean signal photon number nN.

ratio poses a fundamental limit. Finally, we have shown
that for a large signal-to-noise ratio, finite spatial demul-
tiplexing measurement is nearly optimal.

Throughout the Letter, we are assuming that the two
sources are identical. Thus, the same conclusion might
not hold if the sources are not identical [35-38]. It would
be interesting to analyze the problem of resolving non-
identical sources.
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APPENDIX A: DYNAMICS OF IMAGING PROCESS

In this section, we provide the details of the imaging process and show that the quantum state of imaging process can
be linearized by the separation s when s < 1. As introduced in the main text, two identical sources with separation
s > 0 emit light that excites modes characterized by 61,2, and the emitted light is attenuated and distorted when it

arrives at the image plane such that

il = Vel s+ V1=l 5.

Introducing the symmetric and antisymmetric mode operators,

dlﬂ:flg

and inverting Eq. (3) in the main text, we write

. . N iHiOy » —iH6
G+ = /MxCx + /1 —ni0qp = =" ECpe™ "EE,

(A1)

¢1 £ é
=5 (A2)
(A3)



with ny = n(1+4), Hy = z(élﬁi — ﬁléi), and 04 = arccos ,/Tx-. Thus, when the separation is s, the quantum state
on the image plane is written as

p(s) = Tru, |e [ (A4 04 +H_0_) (Pere. ®60,0.) ei(ﬁuewﬁ,e,)} , (A4)

where p., . represents the quantum state of light emitted by the sources, and &, ,_ represents the quantum state of
the environment.

From now on, we analyze the dynamics of the system and show that the derivative of the quantum state with
respect to the separation s is linearized in s for a small s limit. When s infinitesimally changes, the quantum state
can be written as

B(s + ds) = Tru, |e [ ~i(H B H-0-) (5 ®&v+v7)ei(ﬁ+é++ﬁ,§f)} (A5)

Here, 6 = 6(s + ds). Notice that the quantum state is written in (s 4 ds) modes. In order to write the quantum
state in terms of a4 (s) modes as Eq. (A4), we describe the dynamics of the mode operators a. Using the Heisenberg
equation of motion, we obtain

di doi day  .dOs - €r - [doy - ,
— = H — =7——[H - =  b.=i|—H
P T IR W L

(axbl —alby),ax } =i[HS" a.).
(A6)

€4+
2v/14+0
Defining 4 = e {F+0+H-0) (5. ©6,,, ) el Fe0+HH0-) @ |0)(0],, © [0)(0],_ and By = —es/(2v/1£0) and
using the equation of motion Eq. (A6) and Eq. (A4), Eq. (A5) can be equivalently written as,
ﬁ(s + ds) ~ Tru |: 7Z(Heff+Heff)dS Z(Heff+Heff)dS:|
~ efds[B+({z+l317aT b)+B_(a_bt —al )]Tr Lle —i(Hy 64 +H_0_) (ﬁc+c, ® 6y 0. ® |0><0|b+ ® |0><0|b7) ei(H+é++H,é,)]
% eds[B+(d+bT —alby)+B_(a_bl —al b))
~ {1 — ds[By (as b, —alby) + B_(a_bl — d*_zS_)]}
X Try, [(1 — ids(H 00, + H_0,0_))3(1 + ids(H
X [1+ds[B+(d+b —atb)+B_(a_bt —alb

|
~—
—

= p(s) — ds[By (a bt —alby)+ B_(a_bl —alb_), p(s)] — idsTr,, ([masm +H_0,0_, :y]) . (A7)
Thus, the derivative of the quantum state is written as

dp(s) _
ds

—[By(ay bl —al b))+ B_(a_bl —albo), p(s)] — iTr, ([quasm +H 0,0, ”’D . (A8)

Now, let us consider a regime where the separation s is small. For small s, we can approximate

1
B, ~ _Z\/(5(4)(0) —57(0)2)s + O(s?) o ay s + O(s?) (A9)
1 /50(0) 6@(0)2
B_~-— — O(s? _s+0(s? A10
\/125”(0) ( 5 307(0) )S+ (57 o a-s + O(s"), (A10)
where 6" (0) = 0"0(s)/ds™|s=0. Thus, the first commutator in Eq. (A8) is linearized in s for small s. Now, let us
focus on the second term. Let us assume that 6,,,_ = &, ® &,_ which is a natural choice as a quantum state for
environment. Note that the quantum state is written in G4 (s) modes. For small s, noting that
do 5 8"
o, 7' (s) o VIS o2y (A11)
ds 2/n(1+6(s))\/1—n(1+d(s)) 8(1 —2n)
do_ &’ Y 5(0
- nd'(s) o Vmd'(s) [ ()—I—(’)(s), (A12)

ds /T =0T -0 —0(s)  2y/1-0(s) 2



we have
Tr,, ([1?1+ase+,@]) o s+ O(s2). (A13)
On the other hand, we can expand the remaining term in s around s = 0 as

Tru, ([H-0,0-, e 00 (5 @6, 06, )/ Feitio)

:Ci?;;Tru+ (6_1H+0+ (Tru, :[ﬁﬂe—iffﬁf (ﬁc+c, ®&L) eiH,e,]} ®&v+) eiH+9+)

Qsdg;;Tru+ (e—iﬁ+0+ (Tru7 :[ﬁ,, (1- isﬁ,aso,)e—mﬁ,m (Pere. @6, ) emH,/2(1 i isﬁ,ase,)]} © &v+) eiH+9+)
z%rﬁ"* (6_1H+0+ (Tr B :[ﬁf, (1- isﬁ,aﬁ,) (p%m ® &c,) (1+ iSﬁfasﬁ,)]} 2 &u) eiH+9+)

Qs%‘ﬂu+ (e—iﬁ+0+ (Tru, :[ﬁﬂﬁm, ®&Cf]} ® %) eiH+0+) o) "

We have used the fact that 6 — 7/2 as s — 0 to expand the unitary operator e~ -0 Thus, the zeroth order of s
becomes zero if Tr,, ([fl_, Peyu_ @ 607]) = 0. The condition becomes

T ([ peu ©60) = iTra (lehom =l e peu ©6.])
=iTry (pe o 0)[E, 60 | +iTry (pe,o 00)[6] -] =0. (A15)

Thus, this condition is satisfied if Tr,_(pc,,_0—) = 0. Since we assume two identical objects, the quantum state
Pe,c_ satisfies
Gy — (1

V2

C1 — G2
V2

Thus, Tr,_[pe, v 0] = 0. Hence, we have shown that 9p/9s o s + O(s?).

Trc, [pAc+c, é—] = ’I‘rc, [pAc+c, ] = ’I‘l"07 [pACJrCf ] (A16)

APPENDIX B: QUANTUM FISHER INFORMATION FOR TWO INCOHERENT THERMAL SOURCES

In this section, we derive quantum Fisher information of the separation of two identical thermal sources and obtain
the optimal measurement corresponding to the quantum Fisher information. Quantum Fisher information of n-mode
Gaussian states is well-known, which is given by [23-29]

(B1)

where V(s) is the 2n x 2n covariance matrix of the Gaussian state p, Vi; = Tr[p{Q; — (Q:), Q; — (Q;)}]/2, Q =

(1,1, -, Zn,Pn) T and Q a skew symmetric matrix giving the canonical commutation relation,
0 1
=1, w, w—(_l 0), (B2)
and G is a 2n x 2n real symmetric matrix satisfying
oV
AV ($)GV (s) + QGQ + 2 a(S) = 0. (B3)
s

Here, 1,, denotes the n x n identity matrix.

When two incoherent sources of a distance s are in thermal states with a same temperature characterized by the
mean photon number Ny, the quantum state can be written as a product form of states in modes ¢4, pr(Ns)® pr(Ns).
When the light arrived at the image plane, the quantum state is described in symmetric and antisymmetric modes as,

P(s) = Try, o e UHOHI-0) [50(N,) @ pr(Ny) @ 0)(0] @ |0){0]]

= [pr(n4-Ns) @ pr(n-Ns)laya_ ©[0)(0]p, @ |0){0[s_
= [pr(nNs(1 4 6)) ® pr(nNs(1 = 6))]a;a_ @ |0)(0f, ©[0)(0]s_ (B4)

/050 ©10) (0], ©10) (O] |

CHC_V4L UV



Let us introduce a thermal noise assuming that the thermal photon number of the noise is the same on the relevant
modes. Thus, the thermal photon numbers on each mode increase as

p(s) = [pr(nNs(1 +6) + Np) @ pr(nNs(1 = 6) + Np)laja_ @ [p1(Nn) @ pr(Na)lpyb - (B5)

Let us first focus on the symmetric modes a, Z;Jr. For infinitesimal change of s, The quantum state in the symmetric
modes can be written as

p+(s) = pr(nNs(1 £6) + Nn) @ pr(Nn). (B6)

The quantum state with an infinitesimal change ds of s is given by

pils +ds)  Tr o [Tt [pr(N,) @10) (0], €0 3"
o e BB [5r(54 V) © [0) 0[], 5, €08, (B7)

where 7 = n[1 + §(s + ds)]. Again, introducing the thermal noise, the state becomes

~ 7t At : P P

pri(s+ds) m e Prdsabim b0 (50 (N1 4 6(s + ds)] + No) @ pr(N)],,,, 7008000, (B8)
Thus, the covariance matrix of the symmetric modes can be written as
2 2 / 2
pior + (1 —p)ve  —ppn/1—pi(va — v
V(s +ds) = SV, (s)ST = st (o) K + ) ® 1, (BY)
—pp /1= pi(va —v1)  pvs + (1 —pd o
I 1=

Vi(s) = diag(vy,v1,v2,v2), S = il "l o1, l4 = cos Byds. (B10)

—\/1=ui s

Here, the first (second) row and column of the first matrix represents the mode é (by), vy = (1 + 8(s + ds))nN, +
N, +1/2, and v = N,, + 1/2, and p4 transmittance of the beam splitter unitary operator. Noting that

" —8"(s (g 2
g~ 1 — %B+(s)2ds2 =1+ds® (5 (;()1 +55)( ) + 8(51 95)2) , (B11)

the derivative of the covariance matrix with respect to s is written as

IV (s)
s

- l_(w — ) Ppiy o2 + N (5)]0)(0]| ® 1, (B12)

982

where o, is the Pauli-x matrix. One can readily find the solution of Eq. (B3) for G which is given by

G= <9” 912> ®1 (B13)
921 922
with
—2nNg0'(s) —2(vg —v1) | PPuy

= s A7) = = — B14
g o2 —1 7 g12 =921 dvivg — 1 0s? (B14)
go2 =0 if vo > 1/2, goo is arbitrary if vo = 1/2. (B15)

Thus,

2n°N26'(s)?  4(vy —v1)? ?py

H =2 = — B16
+(s) 4o? — 1 + dvivg — 1 0s? (B16)

After some simplification of the expression, we obtain the quantum Fisher information from the symmetric mode,
which is given by

N2 (s)? _ 2 N2[(1 +0)(8"(0) — 0"(s)) + 0'(5)°]
(MNs(1+0) + N, + 1)(nNs(1 +6) + N,,) (2N, + 1)(2nNs(1 +6) + 2N, +1) — 1°

Hy(s) = (B17)



Similarly, one can easily find that

° N2 (s)? _ 2PNZ[(1 = 6)(67(0) +6”(s)) + 0" (s)?]

B ) = R =0 T Vet DO —8) T Na)  (@Ns + D(@IN.(1— 8) 2Ny + 1) — 1

(B18)

Let us find the optimal measurement that gives the classical Fisher information equal to quantum Fisher information.
The optimal measurement can be found by diagonalizing the matrix G [29]. Let us first consider the symmetric mode.
The matrix G4 can be diagonalized as

_ (911 912 _ T (91 O [ cos® sinf
T (921 922) ®1:=04 (0 g2> Oy @1z,  where Oy = <— sin 0 cos6‘) ' (B19)

Thus, G4 can be decoupled into two-mode by a beam splitter corresponding to the symplectic matrix O; ® 15. To
be more specific, the beam splitter angle 6 with the transmittance and reflectance being cosf and sinf is given by
6 =1/2tan"1(2g12/g11). Similarly, G_ for anti-symmetric modes can also be decoupled by a beam splitter represented
by O_ ® 15, which can be obtained in the same way.

Note that the symmetric logarithmic derivative operator for Gaussian states can be written as [29]

LxQTGQ (B20)

with Q = (&1, p1, 22, P2, &3, P3, L4, Pa). Here, each quadrature operator corresponds to the mode a., l;+, a_, and b.
In this case,

L x QTGQ = (0Q)" (diag(g1, g2, g3, 94) ® 12)(0Q) o g1ty + gaily + gaiy + gaily, (B21)
where Q' = 0Q, n; = (&2 4 p? —1)/2, and
0= (01212) @ (0- ® 12). (B22)

Thus, the photon-number resolving detection after the beam splitters for each two-mode is optimal.

APPENDIX C: LOWER BOUND OF CLASSICAL FISHER INFORMATION OF FIN-SPADE

We calculate the lower bound of classical Fisher information of fin-SPADE method with thermal noise, following
the procedure employed in Ref. [4]. Let us recall that the lower bound of classical Fisher information for an unknown

parameter 6 is given by F(0) > ﬁ'TC*lﬁ', where /i is the mean vector of the measurement outcome, and C' is the
covariance matrix of the outcome. Thus, in the section, we find the mean and the covariance matrix of the measurement
outcome from fin-SPADE.

We assume a Gaussian point spread function,

U(x) = m exp {—%} : (C1)

Let hy be a Hermite-Gaussian spatial mode,

o (ate) () ()

The quantum state of light in thermal states on the image plane can be written as

p= [ M Aapx (D]oac) (C3)

where

1\’ Ay + | Ag)?
o) = () e (2R (1)
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is the probability density of the source field amplitudes A = (A1, A2), and the conditional state |14 ) represents a
coherent state with an amplitude

Ya(x) = A1z — s/2) + Asth(z + s/2). (C5)
When thermal noise occurs, the quantum state conditioned on A is changed to
Vae(r) = Av(z —s/2) + Agtp(x + 5/2) + §(z), (C6)

where £(z) is a random variable satisfying (¢(z)) = 0, and (£*(z1)&(x2)) = Npd(x1 — x2) which describes a random
Gaussian displacement noise. Conditioned on A, the amplitude in the g-mode can be written as

Byjae = /700 dzhy(x)ac(x) = /700 dzhy(x)[Ar(x — 5/2) + Agp(x + 5/2) + &(x)] (C7)
= ryon(-Q2 Y0+ [ dan et (©8)
where
Oodh* 2) = (—-1)1 Oodh* 2 2Qq/2 C9
[ drhi@pita a2 = (<17 [ datleie = s/2) = (<1 exn(-Q/2) (C9)

with @ = s?/160% and R, = A1 4+ A when ¢ is even, R, = Ay — Ay otherwise. Thus, the photocounts Nyj4,¢ in each
mode are the independent Poisson random variable with the mean

dape = | Ral*fu+ T (Rq | atiwe @, [ dwhq<x>§<w>) [ dmdnnt @b )6,

— 00 — 00

(C10)
where f, = exp(—Q)Qq—!q, and the unconditional photocurrent on each mode is written as
tq = (|Byael’) ae = 20Ny fq + Ni. (C11)
Thus, the derivative of the mean photocurrent is given by
Oy IS (s~ ), (C12)
with f_1 = 0. For the second moments, for ¢ = ¢/, we obtain
E[NG] = (EINg 4l ae = (ugae + Hojae)ae (C13)

o0

= (IR f2 + 4IRS, / derdagh (a1)hy (302)5*(171)5(352)4'(/ dxldxzhz(m)hq(xz)a*(xl)&(xz)) ) ae + g

- (C14)

= 81 NZ f2 + 81Ns Ny fq + 2Ny + 20N fo + Ny (C15)
When ¢ # ¢’ and q — ¢’ is even, we get

E[NyN;] = (E[NgaeNgael)ae = (| Bgael’|Byael’)ace (C16)

— (B[ fuf} + Ryl / Ay ds by (21 )hy (22)€ (21)E(w2) + Ry 2o / dirydes R (1 Yog (2)€° (21)E()

(C17)

+/_ drydradrzdrshy(v1)he(x2)hy (23)he (24)" (21)E(22)E" (23)6(24)) A e (C18)

= 8I° N2 fyfy + 20N Nu(fy + for) + N (C19)



Finally, when ¢ # ¢’ and ¢ — ¢’ is odd, we obtain

E[NgN,] = (E[Ngja,e Ny jael) ae = (Hglaetiq|ae) Ae

:<|qu2qu/|2qu$+IRqIqu/ dxldx?h}(%)hqf(Iz)ﬁ*(ﬂh)é(irz)+IRq/Iqu'/ dzydzahy (21)hy (@2

+ /_OO d$1d$2d$3d$4h2((El)hq(ZCQ)h;;/ (23)hg (24)€" (21)E(22)E™ (23)€(2a)) A e

= 4772N52quq’ + 277N5Nn(fq + fq’) + N121

Thus, the covariance matrix is written as

11

(C20)

4772N52fq2 +4nNs Ny fq + 2nNs fy +N7% +No q=¢

Cog = 4772N52quq/

0

q# q and q — ¢ is even (C24)

q# q and ¢ — ¢ is odd

The covariance matrix and the derivative of the first moment give the lower bound of classical Fisher information

as stated in the main text.
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