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Abstract

The randomized query complexity R(f) of a boolean function f : {0, 1}n → {0, 1} is famously char-
acterized (via Yao’s minimax) by the least number of queries needed to distinguish a distribution D0

over 0-inputs from a distribution D1 over 1-inputs, maximized over all pairs (D0,D1). We ask: Does
this task become easier if we allow query access to infinitely many samples from either D0 or D1?
We show the answer is no: There exists a hard pair (D0,D1) such that distinguishing D∞

0 from D∞
1

requires Θ(R(f)) many queries. As an application, we show that for any composed function f ◦ g we
have R(f ◦ g) ≥ Ω(fbs(f)R(g)) where fbs denotes fractional block sensitivity.
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9:2 The Power of Many Samples in Query Complexity

1 Introduction

Randomized query complexity (see [8] for a classic survey) is often studied using Yao’s minimax
principle [20]. The principle states that for every boolean function f : {0, 1}n → {0, 1}

Yao’s minimax: Rε(f) = maxD Dε(f,D).

Here Rε(f) is the randomized ε-error query complexity of f . More precisely, Rε(f) equals
the least number of queries a randomized algorithm (decision tree) must make to the
input bits xi ∈ {0, 1} of an unknown input x ∈ {0, 1}n in order to output f(x) with
probability at least 1− ε (where the probability is over the coin tosses of the algorithm).
We often set ε = 1/3 and omit ε from notation, as it is well known that this choice only
affects constant factors in query complexity.

D is a distribution over the inputs {0, 1}n. We may assume wlog that D is balanced:
D = 1

2D0 + 1
2D1 where Db is a distribution over f−1(b).

Dε(f,D) is the distributional ε-error query complexity of f relative to D. More precisely,
Dε(f,D) equals the least number of queries a deterministic algorithm must make to an
input x ∼ D in order to output f(x) with probability at least 1− ε (where the probability
is over x ∼ D).

1.1 Correlated samples problem
One way to think about the distributional complexity of f relative to D = 1

2D0 + 1
2D1 is as

the following task: A deterministic algorithm is given query access to a sample from either
D0 or D1 and it needs to decide which is the case. In this work, we ask: Does this task
become easier if we allow query access to an unlimited number of independent samples from
either D0 or D1? In short,

Is it easier to distinguish D∞0 from D∞1 than it is to distinguish D0 from D1?

More formally, we define the correlated samples problem for f relative to D = 1
2D0 + 1

2D1 by

Corrε(f,D) := min
k≥1

Dε(fk, 1
2D

k
0 + 1

2D
k
1 ).

Here fk : ({0, 1}n)k → {0, 1}k is the function that evaluates k copies of f on disjoint inputs.
We also use the notation Dk := D × · · · × D (k times) for the k-fold product distribution. In
particular, under 1

2D
k
0 + 1

2D
k
1 , the function fk outputs either 0k or 1k; the correlated samples

problem is to decide which is the case. We note that the expression to be minimized on the
right side is a non-increasing function of k (access to more samples is only going to help).
We may also assume wlog that k ≤ n (when an algorithm queries a sample for the first time,
we may assume it is the first unqueried sample so far).

Shaltiel examples. It is not hard to give examples of input distributions where access to
multiple correlated samples does help. Such examples were already discussed by Shaltiel [18]
in the context of direct product theorems. For instance, consider the n-bit Xorn function.
It is well known that Rε(Xorn) = n for all ε > 0. Define a balanced input distribution (here
U is a uniform random bit in {0, 1})

D :=
{

0Un−1 with probability 99%,
1U 0n−2 with probability 1%.
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This distribution is hard 99% of the time: if the first bit is 0, an algorithm has to compute
Xorn−1 relative to Un−1, which requires n−1 queries. For the remaining 1%, the distribution
is easy: if the first bit is 1, the output can be deduced from the second bit. Here multiple
correlated samples help a lot (for ε = 1/3):

D(Xorn,D) = Ω(n),
Corr(Xorn,D) = O(1).

Indeed, given a single sample from D, an algorithm is likely to have to solve the hard case of
the distribution. By contrast, given multiple correlated samples, we can query the first bit
for a large constant number of samples. This will give us a high chance to encounter at least
one easy sample.

Error reduction. An important fact (which fails in the single-sample setting!) is that we
can amplify the success probability of any algorithm for correlated samples. This is achieved
by a variant of the usual trick: repeatedly run the algorithm on fresh samples to gain more
confidence about the output.1

I Fact 1.1. Corrε(f,D) ≤ O(log(1/ε)/δ2) · Corr1/2−δ(f,D) for every (f,D).

The aforementioned Shaltiel example (Xorn,D) can alternatively be computed as follows:
By querying the first two bits of a single sample x ∼ D one can predict Xorn(x) to within
error 49.5%. Now apply Fact 1.1 to reduce the error below 1/3 at the cost of a constant-factor
blowup in query cost.

1.2 Main result
We study whether Shaltiel examples can be avoided if we restrict our attention to the hardest
possible input distribution. Namely, we define a distribution-free complexity measure by

Corrε(f) := max
D

Corrε(f,D).

Our main result is that multiple correlated samples do not help for the hardest distribution.

I Theorem 1.2. Corr(f) = Θ(R(f)) for any (partial) boolean function f .

The main challenge in proving Theorem 1.2 is precisely the existence of Shaltiel examples:
How to construct hard distributions that do not contain any hidden easy parts? We resolve it
by building decision trees that can exploit the easy parts not only in its own input distribution,
but in various other distributions as well.

1.3 Application 1: Selection problem
Next we describe a consequence of our main result to a natural query task that we dub the
selection problem. A similar problem, called choose, was studied by [4] in communication
complexity.

1 In more detail: An algorithm T with error 1/2 − δ has |p0 − p1| ≥ 2δ where pi := Pr[T (xi) = 1] for
xi ∼ Dk

i . Reducing error below ε > 0 boils down to distinguishing two random coins with heads-
probabilities p0 and p1. Given multiple samples from one of the coins, Chernoff bounds state that
O(log(1/ε)/δ2) samples are enough to tell which coin the samples came from.

ICALP 2020



9:4 The Power of Many Samples in Query Complexity

Fix an n-bit function f together with an input distribution D. In the k-selection problem for
(f,D) the input is a random kn-bit string x = (x1, . . . , xk) ∼ Dk, and the goal is to output
(i, f(xi)) for some i ∈ [k]. That is, the algorithm gets access to k independent samples from
D and it selects one of them to solve. We define

k-Selε(f,D) := ε-error query complexity of k-selection for (f,D),
Selε(f,D) := mink≥1 k-Selε(f,D),

Selε(f) := maxD Selε(f,D).

The selection problem is interesting because it, too, is subject to Shaltiel examples: for
(Xorn,D) as described in Subsection 1.1, we have Sel(Xorn,D) = O(1) using the same idea
of searching for an easy sample.

The following relates selection to correlated samples; see Section 5 for the proof.

I Theorem 1.3. The correlated samples problem is easier than selection:

1. Corr(f,D) ≤ O(Sel(f,D)) for every (f,D).
2. There exists an n-bit (f,D) such that Sel(f,D) = Ω(n) but Corr(f,D) = O(1).
3. Selection does not admit efficient error reduction (as in Fact 1.1).

Combining the first item of Theorem 1.3 with our main result (Theorem 1.2) we conclude
that multiple samples do not help in the selection problem for the hardest distribution.

I Corollary 1.4. Sel(f) = Θ(R(f)) for any (partial) boolean function f .

1.4 Application 2: Randomized composition

We give another application of our main result to the randomized composition conjecture
studied in [7, 3, 9, 6]. In fact, this application is what originally motivated our research
project!

For an n-bit function f and an m-bit function g we define their composition

f ◦ g : ({0, 1}m)n → {0, 1} such that (f ◦ g)(x1, . . . , xn) := f(g(x1), . . . , g(xn)).

A composition theorem aims to understand the query complexity of f ◦ g in terms of f and g.
Such theorems are known for deterministic query complexity, D(f ◦g) = D(f)D(g) [17, 19, 14],
and quantum query complexity, Q(f ◦ g) = Θ(Q(f)Q(g)) [12, 16]. The conjecture in the
randomized case is:

I Conjecture 1.5. R(f ◦ g) ≥ Ω(R(f)R(g)) for all boolean functions f and g.

Gavinsky et al. [9] have shown that the conjecture fails if f is allowed to be a relation. They
also show R(f ◦ g) ≥ Ω(R(f)R(g)1/2) for any relation f and partial function g. In a very
recent work (concurrent to ours) Ben-David and Blais [5, 6] have found a counterexample to
the randomized conjecture for partial f and g, albeit with a tiny query complexity compared
to input length; see also Subsection 1.5. The conjecture is still open for total functions.
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Fractional block sensitivity. We show a new composition theorem in terms of fractional
block sensitivity fbs(f), introduced by [19, 10]; see also [13, 2]. This measure is at most
randomized query complexity, fbs(f) ≤ O(R(f)), and it is equivalent to randomized certificate
complexity [1].

Let us define fbs(f) for an n-bit f . We say that a block B ⊆ [n] is sensitive on input x
iff f(x) 6= f(xB) where xB is x but with bits in B flipped. Fix an input x and introduce a
real weight wB ∈ [0, 1] for each sensitive block B of x. Define fbs(f, x) as the optimum value
of the following linear program

max
∑

B
wB

subject to
∑

B3i
wB ≤ 1, ∀i ∈ [n],

wB ≥ 0, ∀B.

Finally, define fbs(f) := maxx fbs(f, x). For comparison, the more usual block sensitivity
bs(f) [15] is defined the same way except with the integral constraint wB ∈ {0, 1}. In
particular bs(f) ≤ fbs(f), and moreover a polynomial gap (power 1.5) between the two is
known for a total function [10].

We make progress towards the composition conjecture; see Section 6 for the proof.

I Theorem 1.6. R(f ◦ g) ≥ Ω(fbs(f)R(g)) for any (partial) boolean functions f and g.

The previous best comparable composition theorem was R(f ◦ g) ≥ Ω(bs(f)R(g)), a proof
of which is virtually the same as for the result that R(Andn ◦ g) ≥ Ω(nR(g)); see [11, §5.1].
In fact, we were originally motivated to consider the correlated samples problem when trying
to strengthen this composition result from block sensitivity to fractional block sensitivity.

1.5 Independent work by Ben-David and Blais
In an independent and concurrent work, Ben-David and Blais [5, 6] have also studied the
randomized composition conjecture and ways of circumventing Shaltiel examples via improved
minimax theorems. They develop a powerful framework for constructing hard Shaltiel-free
distributions, which is general enough to apply not only to query complexity but also, for
instance, to communication complexity. In particular, their framework is able to give an
alternative proof of our main result (Theorem 1.2) as well as our fbs-based composition
theorem (Theorem 1.6). Their proof techniques involve information theory and analysis; by
contrast, our techniques are more elementary and directly tailored to the correlated samples
problem (which does not explicitly appear in their work).

1.6 Roadmap
We will prove our main theorem (Theorem 1.2) in Section 3 and Section 4. Before that, we
introduce our basic notions regarding decision trees in Section 2. In Section 3, we characterize
decision trees as likelihood boosters, emphasizing that a good query algorithm must make
significant progress in terms of boosting the likelihood of one of the outputs (0 or 1) to
much higher than the other, and vice versa. This characterization frees us from considering
inputs from both D0 and D1 simultaneously: if an algorithm is certain about the output
on D1, then it must also make few errors on D0. We thus reduce the proof of Theorem 1.2
to bootstrapping decision trees that can make overall progress across multiple samples to
a decision tree that makes uniform progress. In Section 4, we build such a bootstrapping
algorithm and show that it makes satisfactory progress with a careful analysis. Proofs for
our two applications are in Section 5 and Section 6.

ICALP 2020



9:6 The Power of Many Samples in Query Complexity

2 Preliminaries

Let f : Σn → {0, 1, ∗} be a partial function for some alphabet Σ (typically Σ = {0, 1}). Let
D0, D1 be distributions supported on f−1(0), f−1(1) respectively. For each x ∈ Σn, let D0(x)
(resp. D1(x)) denote the probability mass on x in distribution D0 (resp. D1). For a subset
S ⊆ Σn, we define Db(S) =

∑
x∈S Db(x) for b = 0, 1. If Db(S) > 0, we define the conditional

distribution Db|S by Db|S(x) = Db(x)
Db(S) when x ∈ S, and Db|S(x) = 0 when x /∈ S. We define

the likelihood-ratio of S as

LR(S) := D1(S)
D0(S) .

Let T be a deterministic decision tree that takes as input a sample x ∈ Σn drawn from
either D0 or D1. For every vertex v in T , we use Input(v) ⊆ Σn to denote the set of strings
that can reach v, or equivalently, the set of strings that agree with all the queries made so
far. Typically, every non-leaf vertex in T corresponds to a query to a certain position in the
sample, but we will allow non-leaf vertices v in T that do not make any query, each of them
having only a single child v′ with Input(v′) = Input(v). We abuse notation slightly and use v
as a shorthand for Input(v), so we have D0(v) =

∑
x∈v D0(x), D1(v) =

∑
x∈v D1(x) and

LR(v) = D1(v)
D0(v) .

Note that the likelihood-ratio LR(v) is non-negative, but could be zero or infinite. We can
eliminate the undefined case (D0(v) = D1(v) = 0) by trimming the unreachable parts of the
decision tree.

Now if the decision tree T takes as input k samples from Σn, it is not hard to see that
Input(v) can be written as a Cartesian product Input(v) = Input1(v)× · · · × Inputk(v), where
Inputj(v) ⊆ Σn is the set of strings that agree with all the queries made to the j-th sample
so far. Again, we abuse notation slightly and use vj as a shorthand for Inputj(v), so we will
often write v = v1 × · · · × vk. We define the overall likelihood ratio of v as the product

OLR(v) := LR(v1) · · · LR(vk) = D1(v1)
D0(v1) · · ·

D1(vk)
D0(vk) .

It is often more convenient to consider the logarithm of likelihood ratios. We will use
natural logarithm throughout the paper, i.e. log(·) = ln(·).

3 Query Algorithms as Likelihood Boosters

Our overarching goal (Theorem 1.2) is to construct an efficient deterministic query algorithm
that distinguishes D0 from D1, assuming the existence of one that distinguishes Dk0 from Dk1 .
As the starting point, we introduce the notion of likelihood boosters as a way of measuring the
progress made by a query algorithm T in distinguishing D0 from D1. The key idea is that, as
more queries are being made, the algorithm narrows down the possibilities of the unknown
input, driving the likelihood of one of the output (0 or 1) much higher than the other. In
fact, we show that T can distinguish D0 from D1 well if and only if a sample drawn from D1
has a high probability of arriving at a leaf of T where most of the remaining possibilities
produce output 1. (Lemma 3.4 and Lemma 3.5).

In the multiple-sample setting, we use the notions of overall likelihood boosters and uniform
likelihood boosters, which have different levels of guarantees, to measure the progress of a
query algorithm on simultaneously classifying each of the samples in the input. We show that
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an efficient query algorithm that distinguishes Dk0 from Dk1 is an efficient overall likelihood
booster (Corollary 3.6). Moreover, we show that an efficient uniform likelihood booster on
multiple samples induces an efficient likelihood booster on a single sample (Lemma 3.7),
which in turn implies an efficient query algorithm that distinguishes D0 from D1 (Lemma 3.4).
These results will enable us to reduce proving Theorem 1.2 to relating overall likelihood
boosters to uniform likelihood boosters, which is the focus of Section 4 (see Theorem 4.1).

We now formally define the three types of likelihood boosters mentioned above:

I Definition 3.1. We say a deterministic decision tree T is a (δ,M)-likelihood booster for
D0,D1 if, with probability at least 1− δ, an input sample drawn from D1 reaches a leaf ` of
T with likelihood ratio LR(`) ≥M .

I Definition 3.2. We say a deterministic decision tree T is a (δ,M)-overall likelihood booster
for Dk0 ,Dk1 if, with probability at least 1− δ, an input drawn from Dk1 consisting of k samples
reaches a leaf ` of T with overall likelihood ratio OLR(`) ≥M .

I Definition 3.3. We say a deterministic decision tree T is a (δ, ε,M)-uniform likelihood
booster for Dk0 and Dk1 if, with probability at least 1− δ, an input x drawn from Dk1 consisting
of k samples reaches a leaf ` = `1 × · · · × `k of T with the property that at least (1 − ε)k
different samples j ∈ {1, · · · , k} satisfy LR(`j) ≥M .

Note that the above definitions do not depend on the actual output of the decision tree
T . We now show in the following two lemmas that likelihood boosters are in some sense
equivalent to query algorithms that distinguish D0 from D1.

I Lemma 3.4. Suppose T is a (δ,M)-likelihood booster for D0,D1. Consider the deterministic
decision tree T ′ that makes exactly the same queries as T and accepts if and only if a leaf `
with LR(`) ≥M is reached. Then T ′ distinguishes D0 from D1 with the following guarantees:
1. (Completeness) T ′ accepts x ∼ D1 with probability at least 1− δ.
2. (Soundness) T ′ accepts x ∼ D0 with probability at most 1/M .

Proof. Completeness follows directly from the definition of likelihood booster. To prove
soundness, consider the set U of leaves ` with LR(`) ≥M . For all ` ∈ U , we have D0(`) ≤
1
MD1(`). Therefore,

∑
`∈U D0(`) ≤ 1

M

∑
`∈U D1(`) ≤ 1

M . This means that a sample from D0
reaches leaves in U with probability at most 1

M , which is exactly the desired soundness. J

I Lemma 3.5. Suppose a deterministic decision tree T can distinguish D0 from D1 with the
following guarantees: T accepts x ∼ D0 with probability at most δ0, and accepts x ∼ D1 with
probability at least 1− δ1. Then T is a (Mδ0 + δ1,M)-likelihood booster for any M > 0.

Proof. Let U denote the set of leaves ` with LR(`) < M . We can partition U as U = U0∪U1,
where U1 corresponds to the leaves at which T accepts. Since T accepts with probability at
most δ0 on D0, we have

∑
`∈U1

D0(`) ≤ δ0. Similarly, we have
∑
`∈U0

D1(`) ≤ δ1. Therefore,∑
`∈U

D1(`) =
∑
`∈U0

D1(`) +
∑
`∈U1

D1(`) ≤
∑
`∈U0

D1(`) +M
∑
`∈U1

D0(`) = δ1 +Mδ0.

In other words, a sample from D1 has probability at most Mδ0 + δ1 of reaching a leaf in U ,
which means that T is a (Mδ0 + δ1,M)-likelihood booster. J

In the multiple-sample setting, if we view the pair Dk0 and Dk1 as D′0 and D′1 in the
single-sample setting with input length multiplied by k, the definition of overall likelihood
ratio coincides with the definition of likelihood ratio in the single-sample setting. Therefore,
we have the following corollary of Lemma 3.5, which essentially shows that an efficient query
algorithm for the correlated samples problem is an efficient overall likelihood booster:

ICALP 2020



9:8 The Power of Many Samples in Query Complexity

I Corollary 3.6. Suppose a deterministic decision tree T can distinguish Dk0 from Dk1 in that
T accepts x ∼ Dk0 with probability at most δ0, and T accepts x ∼ Dk1 with probability at least
1− δ1. Then T is a (Mδ0 + δ1,M)-overall likelihood booster for any M > 0.

To conclude this section, we show that an efficient uniform likelihood booster in the
multiple-sample setting implies an efficient likelihood booster in the single-sample setting.

I Lemma 3.7. For any (δ, ε,M)-uniform likelihood booster T for Dk0 and Dk1 and any C > 0,
there is a (δ + ε+ 1

C ,M)-likelihood booster T ′ for D0 and D1 with depth(T ′) ≤ C · depth(T )
k .

Proof. Define Q = C · depth(T )
k . We first build a randomized query algorithm A′ for D0

and D1, and later derandomize it as T ′. On input xA′ , A′ generates k random samples
(x1, . . . , xk) ∼ Dk1 , selects a uniformly random index j, replaces xj with A′’s own input xA′ ,
and finally simulates T on the modified k samples (x1, . . . , xA′ , . . . , xk). If T attempts to
make the (bQc+ 1)-th query to the j-th (modified) sample, A′ halts.

It is easy to see that the maximum number of queries made by A′ is at most Q. Moreover,
by Markov’s inequality, if the input xA′ to A′ is drawn from D1, the probability that A′
halts early because of T making more than Q queries to the j-th sample is at most 1

C , since
the average number of queries T makes to the j-th sample for a uniformly random j is at
most depth(T )

k .
We now show that with probability at least 1−(δ+ε+ 1

C ), A′ reaches a leaf ` = `1×· · ·×`k
of T with LR(`j) ≥M when its own input xA′ is drawn from D1. By a union bound, we only
need to show that this holds with probability at least 1− (δ + ε) for the extended version of
A′ that doesn’t halt early. If we switch the order of randomness so that j is chosen after
a leaf of T is reached, this follows easily from the definition of uniform likelihood boosters
(Definition 3.3).

Finally, we derandomize A′. Note that the randomness in A′ only comes from the
randomness in j and in all the generated samples xi except the j-th sample. We can simply
fix them so that the probability of reaching a leaf ` of T with LR(`j) ≥ M is maximized,
assuming that the j-th sample is from D1. Since j and all generated samples other than
the j-th sample have been fixed, the decision tree T now “shrinks” to a decision tree T ′
with only the first bQc queries to the j-th sample remaining, and every leaf ` of T that is
reachable when we run A′ now becomes a leaf `′ of T ′. Shrinking the tree doesn’t affect the
computation history regarding the j-th sample, so we have `′ = Input(`′) = Inputj(`) = `j
and LR(`′) = LR(`j). This proves that T ′ is a (δ + ε+ 1

C ,M)-likelihood booster. J

4 Bootstrapping Overall Booster to Uniform Booster

The results from the previous section (Section 3) reduce proving our main result (Theorem 1.2)
to proving relations between overall likelihood boosters and uniform likelihood boosters. In
this section, we complete this step with the following result:

I Theorem 4.1. Assume that there is a depth-L (0.1, 25)-overall likelihood booster for every
distribution pair Dk0 ,Dk1 . Then there is a depth-O(KL) (0.1, 0.1, 100)-uniform likelihood
booster for every distribution pair DK0 ,DK1 whenever K ≥ 1000k(|Σ|+ 1)n.

We first show how to derive Theorem 1.2 from Theorem 4.1:

Proof of Theorem 1.2. We prove the inequality R(f) ≤ O(Corr(f)) (the converse inequality
is trivial). Suppose we have a depth-L deterministic decision tree that solves the correlated
samples problem on 1

2D
k
0 + 1

2D
k
1 with success probability at least 0.999 (recall that the success
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probability can be amplified by Fact 1.1). That is, the decision tree accepts inputs drawn
from Dk1 with probability at least 0.998 and accepts inputs drawn from Dk0 with probability
at most 0.002. By Corollary 3.6, it is a (0.1, 25)-overall likelihood booster for Dk0 and Dk1 .

By Theorem 4.1, for any pair of distributions DK0 ,DK1 , there is a (0.1, 0.1, 100)-uniform
likelihood booster with depth O(KL). Then by Lemma 3.7, there is a (1/3, 100)-likelihood
booster with depth O(L) for D0 and D1, which by Lemma 3.4 implies a query algorithm for
D0 and D1 with success probability at least 1/3. By the arbitrariness of D0 and D1, we have
R1/3(f) = O(L) via Yao’s minimax, as desired. J

The rest of this section is dedicated to proving Theorem 4.1. We construct the desired
uniform likelihood booster Tbootstrap, described in Subsection 4.1, by applying different
overall likelihood boosters to appropriate sets of samples at different phases of computation.
To quantify the progress made by Tbootstrap, we design a measure based on a “truncated”
log likelihood ratio which handles samples that Tbootstrap is confident about with special
care. As the technical core of the proof, we show that under our carefully constructed
measure, Tbootstrap in expectation makes positive and constant progress during each phase
of computation (Lemmas 4.2 and 4.3). Therefore, Tbootstrap is able to achieve the desired
guarantees after sufficiently many phases.

4.1 Bootstrapping algorithm
We describe our depth-O(KL) (0.1, 0.1, 100)-uniform likelihood booster Tbootstrap taking
K ≥ 1000k(|Σ| + 1)n samples. Recall that each vertex v of Tbootstrap can be written as a
Cartesian product v = v1 × · · · × vK , where vj ⊆ Σn is the set of strings that are consistent
with the queries made to the j-th sample so far. We say that the j-th sample is settled at v if

LR(vj) = D1(vj)
D0(vj)

/∈ [e−100, e100].

Note that it is possible for a sample to be settled in the wrong direction (e.g. LR(vj) < e−100

on input drawn from DK1 ), but we will show that this is not a serious issue.
The query algorithm Tbootstrap proceeds in at most C ·K phases (for some large constant

C > 0). Each phase consists of at most L queries and is described as follows:

Phase s = 1, · · · , C · K:
1. If fewer than k(|Σ|+ 1)n out of the K samples are unsettled, halt.
2. Else, since each vj is determined by a string v∗ in (Σ ∪ {∗})n recording the queries made

so far to the j-th sample, by the Pigeonhole Principle there exist k unsettled samples
j1, · · · , jk with vj1 = · · · = vjk

= v∗.
3. Run the depth-L (0.1, 25)-overall likelihood booster A(v∗), assumed in Theorem 4.1 to

exist, relative to the input-distribution pair

(D0|v∗)k , (D1|v∗)k

on the samples

(xj1 , . . . , xjk ) .

If any query causes one of these samples to become settled (i.e. LR(vji
) /∈ [e−100, e100] for

some i ∈ {1, · · · , k}), halt A(v∗) and go to the next Phase. Otherwise we proceed to the
next Phase after A(v∗) terminates. If fewer than L queries are made in the current phase,
insert dummy vertices that do not make any query (see Section 2) to Tbootstrap so that
each phase corresponds to a path in Tbootstrap with length exactly L.
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4.2 Sub-martingale property of progress measure
It’s not hard to see that the overall likelihood ratio (OLR) is not an effective measure of
progress for Tbootstrap: OLR can rocket to infinity even when there is only one settled sample.
In this subsection, we introduce a better progress measure: overall truncated log likelihood
ratio (OTLLR), and show that it is a sub-martingale along the computation path of any
decision tree (Lemma 4.2). In other words, Tbootstrap always makes non-negative progress in
expectation. We will show that each phase of Tbootstrap makes positive expected progress in
the next subsection (Subsection 4.3).

Let T be a deterministic decision tree that takes as input K samples. For every vertex
v = v1 × · · · × vK of T , we define the truncated log likelihood ratio of vj as

TLLR(vj) :=
{

log(LR(vj)), if | log(LR(vj))| ≤ 100,
500, otherwise.

Note that if log(LR(vj)) slightly exceeds the upper threshold 100, we set TLLR to a much
higher value 500. Also, when log(LR(vj)) drops below the lower threshold -100, we also set
TLLR to 500. Thus, the j-th sample is settled at v if and only if TLLR(vj) = 500.

We define the overall truncated log-likelihood-ratio of v as the sum

OTLLR(v) :=
K∑
j=1

TLLR(vj).

The input x to T determines a computation path from the root of T to a leaf: v0 →
v1 → · · · → vq. The randomness in x transfers to the randomness in the path, so the path is
a stochastic process. We now show that OTLLR(vt) along the path is a sub-martingale when
x is drawn from DK1 :

I Lemma 4.2. Assume that T never queries a settled sample. Assume that the input x to T
is drawn from DK1 , v is a non-leaf vertex with distance t from the root, and v is reachable
(i.e. Pr[vt = v] > 0 on DK1 ). Define ∆t := OTLLR(vt+1)− OTLLR(vt). Then we have

E[∆t|vt = v] ≥ 0.001 · E[(∆t)2|vt = v] ≥ 0.

Proof. Let us condition on vt = v in the whole proof. If v is a dummy vertex that does not
make any query, then ∆t = 0 deterministically and the lemma holds trivially. We assume
that v is not a dummy vertex henceforth.

Suppose sample j is queried at vertex v. We have OTLLR(vt+1) − OTLLR(vt) =
TLLR(vt+1

j ) − TLLR(vtj). Since T never queries a settled sample, we know TLLR(vtj) =

log D1(vt
j)

D0(vt
j
) ∈ [−100, 100].

Let σ ∈ Σ denote the random outcome of the query, and let p0(σ), p1(σ) denote the
probability that the outcome to the query is σ under D0|vt

j
,D1|vt

j
, respectively. Let H ⊆ Σ

denote the set of σ ∈ Σ with |TLLR(vtj)+ log p1(σ)
p0(σ) | > 100. Note that D0(vt+1

j ) = D0(vtj)p0(σ)
and D1(vt+1

j ) = D1(vtj)p1(σ), so

TLLR(vt+1
j ) =

{
TLLR(vtj) + log p1(σ)

p0(σ) , σ /∈ H,
500, σ ∈ H.

Thus, H is precisely the set of outcomes σ ∈ Σ that make sample j settled at vt+1. Let
W = W (σ) denote the difference TLLR(vt+1

j ) − TLLR(vtj). Our goal is to prove E[W ] ≥
0.001 · E[W 2].
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Note that W (σ) ∈ [400, 600] when σ ∈ H and W (σ) = log p1(σ)
p0(σ) ∈ [−200, 200] when

σ /∈ H. We have

E[W ] ≥400
∑
σ∈H

p1(σ) +
∑
σ/∈H

p1(σ) log p1(σ)
p0(σ)

=400
∑
σ∈H

p1(σ) +
∑
σ/∈H

p0(σ) · p1(σ)
p0(σ) log p1(σ)

p0(σ) . (1)

By a helper lemma (Lemma 4.4) proved in Subsection 4.4, we know that

p1(σ)
p0(σ) log p1(σ)

p0(σ) ≥
(
p1(σ)
p0(σ) − 1

)
+ 1

400 ·
p1(σ)
p0(σ)

(
log p1(σ)

p0(σ)

)2
.

Plugging this into (1), we have

E[W ] ≥400
∑
σ∈H

p1(σ) +
∑
σ/∈H

p1(σ)−
∑
σ/∈H

p0(σ) + 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

≥400
∑
σ∈H

p1(σ) +
(∑
σ/∈H

p1(σ)− 1
)

+ 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

=400
∑
σ∈H

p1(σ)−
∑
σ∈H

p1(σ) + 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

=399
∑
σ∈H

p1(σ) + 1
400

∑
σ/∈H

p1(σ)
(

log p1(σ)
p0(σ)

)2

=399
∑
σ∈H

p1(σ) + 1
400

∑
σ/∈H

p1(σ)(W (σ))2

≥ 1
1000

∑
σ∈H

p1(σ)(W (σ))2 + 1
400

∑
σ/∈H

p1(σ)(W (σ))2

≥ 1
1000E[W 2]. J

4.3 Bounding the conditional expectation of progress
In the previous subsection, we showed that OTLLR, as a progress measure, is a sub-martingale.
Now we refine our progress measure to also include the natural measure number of settled
samples, and show that each phase of Tbootstrap makes positive progress in expectation.

Recall that we inserted dummy vertices in Tbootstrap to ensure that each phase corresponds
to a computation path of length exactly L. Therefore, an entire computation path of Tbootstrap
must have length divisible by L: v0 → · · · → vqL. The sub-path vtL → · · · → v(t+1)L is the
computation path of the (t+ 1)-th phase.

Define S(v) as the number of settled samples at vertex v. Our new measure of progress is

P(vt) := S(vt) + OTLLR(vt).

I Lemma 4.3. Assume that the input x to Tbootstrap is drawn from DK1 , v is a non-leaf
vertex with distance tL from the root, and v is reachable (i.e. Pr[vtL = v] > 0 on DK1 ). Then
we have

E[P(v(t+1)L)− P(vtL)|vtL = v] ≥ 0.001.

Before proving the lemma, we first show how it implies Theorem 4.1.
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Proof of Theorem 4.1. We consider an extended version of Tbootstrap that always halts after
exactly C ·K phases: whenever it would halt at line 1, it instead enters dummy phases and
increases its total progress P by 0.001 per phase (so that now P = S + OTLLR + 0.001 ·
number of dummy phases). By Lemma 4.3, the extended algorithm finishes with expected
total progress E[P] ≥ 0.001C ·K on input drawn from DK1 . However, P can never grow too
large: before any dummy phase, P is at most 501K, and there are at most C ·K dummy
phases, so P ≤ 501K + 0.001C ·K. By Markov’s inequality on the non-negative random
variable (501K + 0.001C ·K)− P, we have Pr[P ≤ 501K] ≤ 501K

0.001C·K = 501
0.001C . If we choose

a large enough C, we know that with probability at least 0.99, the total progress exceeds
501K, which means that the extended algorithm enters dummy phases before halting, and
the original algorithm halts at line 1 with all but 0.001 fraction of the samples settled.

It now suffices to show that the fraction of samples settled in the wrong direction (i.e.,
the likelihood ratio drops below e−100) is at most 0.01 with probability at least 0.99. We
first fix j and show that the probability that the j-th sample is settled in the wrong direction
is at most e−100, and then use the linearity of expectation and Markov’s inequality to bound
the overall wrong settlement.

Conditioning on all but the j-th sample, Tbootstrap becomes a deterministic decision tree
T ′ on a single sample. Let U denote the set of leaves ` of T ′ with LR(`) ≤ e−100. We have∑
`∈U D1(`) ≤ e−100∑

`∈U D0(`) ≤ e−100. This means that the probability that a sample
from D1 reaches leaves in U is at most e−100. Thus the probability of wrong settlement for
sample j in Tbootstrap is at most e−100.

By the linearity of expectation, the expected fraction of samples settled in the wrong
direction is at most e−100. Then by Markov’s inequality, with probability at least 0.99, the
fraction of wrong settlement is at most 0.01. J

Proof of Lemma 4.3. S(v(t+1)L)− S(vtL) is either 0 or 1, depending on whether or not a
sample becomes settled in phase t+ 1.

In the case where Pr[S(v(t+1)L)− S(vtL) = 1|vtL = v] ≥ 0.001, we have E[S(v(t+1)L)−
S(vtL)|vtL = v] ≥ 0.001, and by Lemma 4.2 we have E[OTLLR(v(t+1)L)−OTLLR(vtL)|vtL =
v] ≥ 0. Summing these two inequalities up proves the lemma.

From now on, we consider the harder case where Pr[S(v(t+1)L)− S(vtL) = 1|vtL = v] <
0.001. We first prove that

Pr[OTLLR(v(t+1)L)− OTLLR(vtL) ≥ 3|vtL = v] ≥ 0.8. (2)

Recall that in this phase Tbootstrap runs the (0.1, 25)-overall likelihood booster A(v∗) for
(D0|v∗)k and (D1|v∗)k on the samples j1, . . . , jk. If S(v(t+1)L)− S(vtL) = 0, i.e. no sample
becomes settled in this phase, then

OTLLR(v(t+1)L)− OTLLR(vtL) =
k∑
s=1

(
log
D1(v(t+1)L

js
)

D0(v(t+1)L
js

)
− log

D1(vtLjs
)

D0(vtLjs
)

)
.

Conditioning on vtL = v, we have vtLjs
= v∗, since vj1 = · · · = vjk

= v∗. From
Db(v(t+1)L

js
)

Db(v∗) =
Db|v∗(v

(t+1)L
js

), we see that

OTLLR(v(t+1)L)− OTLLR(vtL) = log
k∏
s=1

D1|v∗(v
(t+1)L
js

)

D0|v∗(v
(t+1)L
js

)
.
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Recall that A(v∗) halts early only when a new sample becomes settled, which happens with
probability < 0.001. Therefore, in order to prove (2) by a union bound, we only need to
prove that the extended version of phase t+ 1 where A(v∗) gets to run without early halting
achieves

∏k
s=1

D1|v∗ (v(t+1)L
js

)

D0|v∗ (v(t+1)L
js

)
≥ e3 with probability at least 0.9. This is indeed true because

A(v∗) is a (0.1, 25)-overall likelihood booster for (D0|v∗)k and (D1|v∗)k.
We now prove E[OTLLR(v(t+1)L) − OTLLR(vtL)|vtL = v] ≥ 0.001. We prove it by

contradiction. Suppose E[OTLLR(v(t+1)L) − OTLLR(vtL)|vtL = v] < 0.001. For tL ≤ s <

(t+ 1)L, define ∆(vs) as the conditional expectation E[OTLLR(vs+1)− OTLLR(vs)|vs] and
∆2(vs) as the conditional variance E[(OTLLR(vs+1)− OTLLR(vs)−∆(vs))2|vs]. Note that

∆2(vs) = E[((OTLLR(vs+1)− OTLLR(vs))2|vs]− (∆(vs))2

≤ E[((OTLLR(vs+1)− OTLLR(vs))2|vs].

Thus by Lemma 4.2, we know that ∆(vs) ≥ 0.001 ·∆2(vs) ≥ 0. Now we have

0.001 >E[OTLLR(v(t+1)L)− OTLLR(vtL)|vtL = v]

=
∑

tL≤s<(t+1)L

E[∆(vs)|vtL = v].

By Markov’s inequality, we have Pr
[∑

tL≤s<(t+1)L ∆(vs) ≥ 1|vtL = v
]
≤ 0.001. Now by

a union bound with (2), we have

E


 ∑
tL≤s<(t+1)L

(OTLLR(vs+1)− OTLLR(vs)−∆(vs))

2
∣∣∣∣∣∣∣ vtL = v


=E


(OTLLR(v(t+1)L)− OTLLR(vtL))−

∑
tL≤s<(t+1)L

∆(vs)

2
∣∣∣∣∣∣∣ vtL = v


≥(0.8− 0.001)× (3− 1)2

>3. (3)

Since E
[
OTLLR(vs+1)− OTLLR(vs)−∆(vs)|vs

]
= 0, we have

E
[
(OTLLR(vs1+1)− OTLLR(vs1)−∆(vs1))·
(OTLLR(vs2+1)− OTLLR(vs2)−∆(vs2))|vtL = v

]
= 0

whenever s1 < s2 by further conditioning on vs2 . Thus expanding (3) we have∑
tL≤s<(t+1)L

E[∆2(vs)|vtL = v]

=E

 ∑
tL≤s<(t+1)L

(OTLLR(vs+1)− OTLLR(vs)−∆(vs))2

∣∣∣∣∣∣ vtL = v

 ≥ 3.

Since ∆(vs) ≥ 0.001 ·∆2(vs), we have

0.001 >
∑

tL≤s<(t+1)L

E[∆(vs)|vtL = v] ≥ 0.001 ·
∑

tL≤s<(t+1)L

E[∆2(vs)|vtL = v] ≥ 0.001× 3,

a contradiction.
Now we have shown E[OTLLR(v(t+1)L)−OTLLR(vtL)|vtL = v] ≥ 0.001. Adding it to the

trivial inequality E[S(v(t+1)L)− S(vtL)|vtL = v] ≥ 0 proves the lemma. J
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4.4 A helper inequality
I Lemma 4.4. For all M ≥ 0, t ∈ (0, eM ], we have

t ln t− (t− 1) ≥ 1
M + 2 · t ln2 t.

Proof. Define function h(t) = t ln t− (t− 1)− 1
M+2 · t ln2 t on the interval t ∈ (0, eM ]. Our

goal is to show h(t) ≥ 0. Note that h(1) = 0, so we only need to show h′(t) ≥ 0 for t ≥ 1
and h′(t) ≤ 0 for t ≤ 1. We prove this by calculating h′(t):

h′(t) = ln t− 1
M + 2 · ln

2 t− 2
M + 2 · ln t =

(
1− (ln t) + 2

M + 2

)
ln t.

Note that 1− (ln t)+2
M+2 ≥ 0 because ln t ≤M . Therefore h′(t) ≥ 0 when t ≥ 1 and h′(t) ≤ 0

when t ≤ 1, as desired. J

5 Application 1: Selection Problem

5.1 Bi-correlated samples
To establish a relationship between correlated samples and selection, we first define an
intermediate problem. The bi-correlated samples problem is defined by (here Dab := Da×Db):

biCorrε(f,D) := mink≥1 Dε(f2k, 1
2D

k
01 + 1

2D
k
10),

biCorrε(f) := maxD biCorrε(f,D).

That is, the task is to decide whether f2k outputs (01)k or (10)k as k →∞. We show this is
as hard as correlated samples:

I Lemma 5.1. Corr(f,D) = Θ(biCorr(f,D)).

Proof. It is obvious that biCorr(f,D) ≤ Corr(f,D), so we focus on the converse, Corr(f,D) ≤
O(biCorr(f,D)). The proof is via a hybrid argument. Let T : ({0, 1}n)2k → {0, 1} be an
optimal algorithm for biCorr1/3(f,D) that uses k sample pairs. Letting d(−,−) denote the
statistical distance between two distributions, the fact that T achieves error ε := 1/3 can be
written as

d(T (Dk01), T (Dk10)) ≥ 1− 2ε.

By the triangle inequality,

d(T (Dk01), T (Dk00)) + d(T (Dk00), T (Dk10)) ≥ 1− 2ε.

Either the first or the second term is ≥ (1− 2ε)/2. Say the first (second case is similar):

d(T (Dk01), T (Dk00)) ≥ (1− 2ε)/2 = 1− 2ε′ where ε′ := 1/4 + ε/2 = 5/12.

This means we can turn T into an 5/12-error algorithm for the correlated k-samples problem:
the odd numbered input samples of T the algorithm can generate from D0 on its own; the
even numbered input samples of T are taken from the input to the correlated k-samples
problem. Finally, the error can be reduced to 1/3 via Fact 1.1. J
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5.2 Proof of Theorem 1.3
First item. The following claim together with Lemma 5.1 implies the first item.

B Claim 5.2. biCorrε(f,D) ≤ Selε(f,D).

Proof. Let TSel be an optimal algorithm for Selε(f,D) using k samples. We describe an
algorithm TbiCorr for bi-correlated k-samples with the same error and query cost. Let
x = (xij) for (i, j) ∈ [k]× [2] be the random input to TbiCorr, that is, either (i) x ∼ Dk01 or
(ii) x ∼ Dk10. The algorithm TbiCorr chooses a random string z ∈ [2]k and runs TSel on input
y := (xizi)i∈[k]. Note that y is distributed as Dk in both cases (i) and (ii). Suppose TSel
outputs some (i, f(xizi

)). Assuming this output is correct for selection, and remembering our
choice of zi, we can deduce which case, (i) or (ii), the input x came from, and let TbiCorr guess
accordingly. Hence algorithm TbiCorr is correct every time TSel is, and so the error parameter
is unaffected. C

Second and third item. For separating correlated samples from selection, we again consider
the n-bit Xorn function. Define x ∼ D by the following process:
1. Sample z uniformly from {0, 1}n−2 and let a := Xorn−2(z).
2. Sample b uniformly from {0, 1}.
3. With probability ε := 1%, output x := aaz; with probability 1− ε = 99%, output x := bbz.

Note that the first two bits of x ∼ D are identical and hence Xorn(x) = Xorn−2(z).
Moreover, the first bit is ε-correlated with the function value Xorn(x). This makes (Xorn,D)
easy for the correlated samples problem: The 1-query algorithm that guesses the function
value based on the first bit of the first sample has error ≤ 1/2− ε/2, and this error can be
reduced to 1/3 via Fact 1.1. This shows that Corr(Xorn,D) = O(1).

Next we prove the lower bound Sel(Xorn,D) = Ω(n), which also proves the third item.
Suppose for contradiction that T is a height-(n− 3) deterministic decision tree for k-selection
for (Xorn,D). Consider any leaf ` that claims the i-th sample evaluates to b ∈ {0, 1}. If we
condition Dk by the ≤ n− 3 queries made by `, we note that the function value is still only
slightly biased away from 1/2, that is, Ex∼Dk|`[Xorn(xi)] ∈ 1/2± ε. Hence no leaf of T can
compute selection to within error ≤ 1/3. This concludes the proof of Theorem 1.3.

6 Application 2: Randomized Composition

Goal. In this section we prove Theorem 1.6, namely R(f ◦ g) ≥ Ω(fbs(f)R(g)). By The-
orem 1.2 and Lemma 5.1 (from Subsection 5.1) it suffices to show

biCorr(g) ≤ O(R(f ◦ g)/fbs(f)).

Let T be an optimal 1/10-error algorithm for f ◦ g making q := O(R(f ◦ g)) queries. Our
goal is, given any balanced input distribution D := 1

2D0 + 1
2D1 to the inner function g, to

build a bounded-error algorithm T ′ solving the bi-correlated samples problem for (g,D).

Rarely queried block. By the definition of fbs(f), there is an input y ∈ {0, 1}n to f (say,
f(y) = 0) with sensitive blocks B1, · · · , BN ⊆ [n] and weights w1, · · · , wN ∈ [0, 1] such that∑

j∈[N ] wj = fbs(f), (4)∑
j:Bj3i wj ≤ 1, ∀i ∈ [n]. (5)
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For any z ∈ {0, 1}n, define Dz as the distribution over (x1, · · · , xn) ∈ ({0, 1}m)n where each
xi is drawn independently from Dzi

. Hence we have gn(x) = z for x ∼ Dz. We define

qj := expected # of queries T makes to block Bj on input Dy.

That is, if we denote by it ∈ [n] the block that T queries at time t, then qj is the expected
number of time steps t with it ∈ Bj . By linearity of expectation and (5), we have

∑
j∈[N ] wjqj = E

[∑
j∈[N ] wj

∑
t:it∈Bj

1
]

= E
[∑

t∈[q]
∑
j:Bj3it wj

]
≤ E

[∑
t∈[q] 1

]
≤ q.

Combining this with (4), we know there exists j ∈ [N ], say j = 1 for simplicity, such that

q1 ≤
q

fbs(f) .

Truncated T . Next we modify T so that it makes at most 5q1 queries to block B1 for every
input (not just on average over Dy). Namely, if T makes more than 5q1 queries to block
B1, we simply let T halt and output 1; otherwise its behavior is unchanged. We denote this
“truncated” algorithm by T tr. We claim that T tr still computes f ◦g correctly on average over
both Dy and DyB1 (recall that yB1 is y but with the block B1 flipped; note that f(yB1) = 1
and hence (f ◦ g)(x) = 1 for each x ∼ DyB1 )

Correct for x ∼ DyB1 : Pr[T tr(x) = 1] ≥ Pr[T (x) = 1]
≥ 4/5. (6)

Correct for x ∼ Dy: Pr[T tr(x) = 0] ≥ Pr[T (x) = 0]
− Pr[T (x) makes > 5q1 queries to B1] (7)
≥ 4/5− 1/5 (8)
= 3/5, (9)

where (7) uses the Union Bound and (8) uses the Markov Bound.

Algorithm T ′. We are ready to define the algorithm T ′ for the bi-correlated samples problem
for (g,D). The random input to this problem is z = (zij), (i, j) ∈ [n] × {0, 1}, sampled
either from (i) Dn01 or (ii) Dn10. On input z the algorithm T ′ simply runs T tr on the input
(x1, . . . , xn) ∈ ({0, 1}m)n defined by

xi :=
{
ziyi for i ∈ B1,

∼ Dyi
for i /∈ B1.

That is, for i ∈ B1 the algorithm T ′ simply copies its input bits in z to the bits of x. For
i /∈ B1 the algorithm T ′ uses its own randomness to generate an independent sample from
either D0 or D1. The key observation is that in case (i) we have x ∼ Dy, and in case (ii)
we have x ∼ DyB1 . But T tr can distinguish these two cases to within bounded error by (6)
and (9). Hence T ′ is a bounded-error algorithm for bi-correlated samples with query cost
5q1 ≤ O(q/fbs(f)). This completes the proof of Theorem 1.6.
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