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Abstract

In many predictive decision-making scenarios,
such as credit scoring and academic testing, a
decision-maker must construct a model that ac-
counts for agents’ incentives to “game” by chang-
ing their features to receive better decisions.
Whereas the strategic classification literature has
previously assumed that agents’ outcomes are not
causally dependent on their features (and thus
strategic behavior is a form of lying), we join
concurrent work in modeling agents’ outcomes
as a function of their changeable attributes. Our
work introduces the realizable linear regression
setting, and is the first to incorporate a crucial
phenomenon: when agents act to change observ-
able features, they may as a side effect perturb
hidden features that causally affect their true out-
comes. As our main contribution, we provide the
efficient algorithms for optimizing three distinct
decision-making objectives: accurately predicting
agents’ post-gaming outcomes (prediction risk
minimization), incentivizing agents to improve
these outcomes (agent outcome maximization),
and estimating the coefficients of the true under-
lying model (parameter estimation). Our algo-
rithms circumvent the hardness result of Miller
et al. (2020) by allowing the decision maker to test
a sequence of decision rules and observe agents’
responses, in effect performing causal interven-
tions by varying the chosen rule.

1. Introduction

As individuals, we want algorithmic transparency in deci-
sions that affect us. Transparency lets us audit models for
fairness and correctness, and allows us to understand what
changes we can make to receive a different decision. Why,
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then, are some models kept hidden from the view of those
subject to their decisions?

Beyond setting-specific concerns like intellectual property
theft or training-data extraction, the canonical answer is
that transparency would allow strategic individual agents to
“game” the model. These individual agents will act to change
their features to receive a better decision. An accuracy-
minded decision-maker, meanwhile, chooses a decision rule
based on its predictiveness of individuals’ true future out-
comes. Strategic agents, the conventional wisdom goes,
make superficial changes to their features that will not affect
their true outcomes, reducing the decision rule’s accuracy
and harming the decision-maker. The field of strategic clas-
sification (Hardt et al., 2016) has until recently sought to
design algorithms that are robust to such superficial changes.
At their core, these algorithms treat transparency as a reluc-
tant concession and propose ways for decision-makers to
get by nonetheless.

But what if decision-makers could benefit from trans-
parency? What if in some settings, gaming could help
accomplish the decision-makers’ goals, by causing agents
to truly change their outcomes without loss of predictive
accuracy?

Consider the case of car insurance companies, who wish to
choose a pricing decision rule that charges a customer in line
with that customer’s expected cost of accidents. Insurers
will often charge lower prices to drivers who have completed
a “driver’s ed” course which teaches comprehensive driving
skills. In response, drivers often complete such courses to
reduce their insurance costs. One view may be that only
ex ante responsible drivers seek out such courses, and that
were an unsafe driver to complete such a course it would
not affect their expected cost of car accidents.

But another interpretation is that drivers in these courses
learn safer driving practices, and truly become safer drivers
because they took this course. In this case, a car insurer’s de-
cision rule remains predictive of accident probability when
agents strategize, while also incentivizing the population of
drivers to act in a way that truly makes them safer, allowing
the insurer to reimburse fewer accidents.

This same dynamic appears in many decision settings where
the decision-maker has a meaningful stake in the true future
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Figure 1. A causal graph illustrating that by intervening on the
decision rule w, a decision-maker can incentivize a change in x,
enabling them to learn about how the agent outcome y is caused.
We omit details of our setting for simplicity.

outcomes of its subject population, including credit scor-
ing, academic testing, hiring, and online recommendation
systems. In such scenarios, given the right decision rule,
decision-makers can gain from transparency.

But how can we find such a decision rule that maximizes
agents’ outcomes if we do not know the effects of agents’
actions? In recent work, Miller et al. (2020) argue that
finding such “agent outcome”-maximizing decision rules
requires solving a non-trivial causal inference problem. As
we illustrate in Figure 1, the decision rule affects the agents’
features, which causally affect agents’ outcomes, and recov-
ering these relationships from observational data is hard. We
will refer to this setting as “causal strategic learning”, after
the causal relationship of decision rule on agent outcome.

The core insight of our work is that while we may not know
how agents will respond to a decision rule, they will natu-
rally respond to any rule we pick. Thus, as we test different
decision rules and observe strategic agents’ responses and
true outcomes, we can improve our model over time. In the
language of causality, by choosing a decision rule we are
effectively launching an intervention that allows us to infer
properties of the causal graph, circumventing the hardness
result of (Miller et al., 2020).

In this work, we introduce the causal strategic linear regres-
sion setting in the realizable case and with norm-squared
agent action costs. We propose algorithms for efficiently op-
timizing three possible objectives that decision-makers may
maximize by leveraging strategic agents’ gaming. Agent
outcome maximization requires choosing a decision rule that
will result in the highest expected outcome of agents who
game that rule. Prediction risk minimization requires choos-
ing a decision rule that accurately predicts agents’ outcomes,
even under agents’ gaming in response to that decision rule.
Parameter estimation involves accurately estimating the pa-
rameters of the true causal outcome-generating linear model.
We show that these may be mutually non-satisfiable, and
our algorithms maximize each objective independently (and
jointly when possible).

We show that omitting unobserved outcome-affecting fea-
tures from the decision rule has major consequences for
causal strategic learning. Omitted variable bias in classic

linear regression causes correlated-but-not-causal visible
features, which are correlated with hidden causal features,
to be rewarded in the learned predictor. In the strategic
case, this backfires, as an agent’s action may change a vis-
ible feature without changing the hidden feature in a way
that breaks this correlation, undermining the naively-trained
predictor. All of our methods are designed to succeed even
when actions break the relationships between visible proxies
and hidden causal features.

As much of the prior literature has focused on the case of
binary classification, it’s worth meditating on why we focus
on regression. Many decisions, such as loan terms or insur-
ance premiums, are not binary “accept/reject”’s but rather
lie somewhere on a continuum based on a prediction of a
real-valued outcome. Furthermore, many ranking decisions,
like which 10 items to recommend in response to a search
query, can instead be viewed as real-valued predictions that
are post-processed into an ordering.

1.1. Summary of Results

In Section 2, we introduce a setting for studying the per-
formance of linear models that make continuous decisions
about strategic agents. Our methodology incorporates the
realities that agents’ actions causally affect their eventual
outcomes, that a decision-maker can only observe a subset
of agents’ features, and that agents’ actions are constrained
to a subspace of the feature space. We assume no prior
knowledge of the agent feature distribution, or of the actions
available to strategic agents, and require no knowledge of
the true outcome function beyond that it is itself a noisy
linear function of the features.

In Section 3, we propose an algorithm for efficiently learn-
ing a decision rule that maximizes agents’ expected future
outcomes. This method applies even when the decision-
maker never observes the agents’ available actions, so long
as the decision-maker is willing to deploy a series of sub-
optimal decision rules.

In Section 4, we observe that under certain checkable condi-
tions the prediction risk objective can be minimized using a
convex optimization. We also provide a useful decomposi-
tion of prediction risk, and suggest how prediction risk and
agent outcomes may be jointly optimized.

In Section 5, we show that in the case where all causally-
outcome-affecting features are visible to the decision-maker,
one can substantially improve the estimate of the true model
parameters governing the outcome. At a high-level, this
is because by incentivizing agents to change their features
in certain directions, we are able to increase the variance
along dimensions of the feature space that had little variance
before gaming. For example, if two features were perfectly
correlated in the initial agent feature distribution, incentiviz-
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ing agents to increase only one of these features will allow
us to disambiguate between the causal effect of each on the
outcome.

1.2. Related Work

This paper is closely related to several recent and concur-
rent papers that study different aspects of causal strategic
learning. Most of these works focus on one of our three
objectives:

Agent outcomes. Our setting is partially inspired by
Kleinberg & Raghavan (2019). In their setting, as in ours,
an agent chooses an action vector in order to maximize the
score they receive from a decision-maker. The action vector
is mapped to a feature vector by an effort conversion matrix,
and the decision-maker publishes a mechanism that maps
the feature vector to a score. However, their decision-maker
does not face a learning problem: the effort conversion ma-
trix is given as input, agents do not have differing initial
feature vectors, and there is no outcome variable. Moreover,
there are no hidden features. In a variation on the agent
outcomes objective, their decision-maker’s goal is to incen-
tivize agents to take a particular action vector. Their main
result is that whenever a monotone mechanism can incen-
tivize a given action vector, a linear mechanism suffices.
Alon et al. (2020) analyze a multi-agent extension of this
model.

In another closely related work, Miller et al. (2020) bring a
causal perspective (Pearl, 2000; Peters et al., 2017) to the
strategic classification literature. Whereas prior strategic
classification works mostly assumed agents’ actions have
no effect on the outcome variable and are thus pure gaming,
this paper points out that in many real-life strategic clas-
sification situations, the outcome variable is a descendant
of some features in the causal graph, and thus actions may
lead to genuine improvement in agent outcomes. Their main
result is a reduction from the problem of orienting the edges
of a causal graph to the problem of finding a decision rule
that incentivizes net improvement. Since orienting a causal
graph is a notoriously difficult causal inference problem
given only observational data, they argue that this provides
evidence that incentivizing improvement is hard. In this pa-
per we we point out that improving agent outcomes may not
be so difficult after all because the decision-maker does not
need to rely only on observational data—they can perform
causal interventions through the decision rule.

Haghtalab et al. (2020) study the agent outcomes objective
in a linear setting that is similar to ours. A significant
difference is that, while agents do have hidden features,
they are never incentivized to change their hidden features
because there is no effort conversion matrix. This, combined
with the use of a Euclidean norm action cost (we, in contrast,

use a Euclidean squared norm cost function), makes finding
the optimal linear regression parameters trivial. Hence, they
mainly focus on approximation algorithms for finding an
optimal linear classifier.

Tabibian et al. (2020) consider a variant of the agent out-
comes objective in a classification setting: the outcome is
only “realized” if the agent receives a positive classifica-
tion, and the decision-maker pays a cost for each positive
classification it metes out. The decision-maker knows the
dependence of the outcome variable on agent features a
priori, so there is no learning.

Prediction risk. Perdomo et al. (2020) define performa-
tive prediction as any supervised learning scenario in which
the model’s predictions cause a change in the distribution of
the target variable. This includes causal strategic learning
as a special case. They analyze the dynamics of repeated
retraining—repeatedly gathering data and performing em-
pirical risk minimization—on the prediction risk. They
prove that under certain smoothness and strong convexity
assumptions, repeated retraining (or repeated gradient de-
scent) converges at a linear rate to a near-optimal model.

Liu et al. (2020) introduce a setting where each agent re-
sponds to a classifier by intervening directly on the outcome
variable, which then affects the feature vector in a manner
depending on the agent’s population subgroup membership.

Parameter estimation. Bechavod et al. (2020) study the
effectiveness of repeated retraining at optimizing the pa-
rameter estimation objective in a linear setting. Like us,
they argue that the decision-maker’s control over the deci-
sion rule can be conducive to causal discovery. Specifically,
they show that if the decision-maker repeatedly runs least
squares regression (with a certain tie-breaking rule in the
rank-deficient case) on batches of fresh data, the true param-
eters will eventually be recovered. Their setting is similar to
ours but does not include an effort conversion matrix (nor
hidden features, which we also omit from our parameter
estimation section).

Non-causal strategic classification. The primary goal of
the decision-maker in much of the classic strategic classifi-
cation literature is robustness to gaming; the target measure
is typically prediction risk. Our use of a Euclidean squared
norm cost function is shared by the first paper in a strategic
classfication setting (Briickner & Scheffer, 2011). Other
works use a variety of different cost functions, such as the
separable cost functions of Hardt et al. (2016). The online
setting was introduced by Dong et al. (2018) and has also
been studied by Chen et al. (2020), both with the goal of
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minimizing “Stackelberg regret”.! A few papers (Milli et al.,

2019; Hu et al., 2019) show that accuracy for the decision-
maker can come at the expense of increased agent costs and
inequities. Braverman & Garg (2020) argue that random
classification rules can be better for the decision-maker than
deterministic rules.

Economics. Related problems have long been studied in
information economics, specifically in the area of contract
theory (Salanié, 2005; Laffont & Martimort, 2002). In
principal-agent problems (Holmstrom, 1979; Grossman &
Hart, 1983; Holmstrom & Milgrom, 1991; Ederer et al.,
2018), also known as moral hazard or hidden action prob-
lems, a decision-maker (called the principal) faces a chal-
lenge very similar to the agent outcomes objective. Notable
differences include that the decision-maker can only ob-
serve the outcome variable, and the decision-maker must
pay the agent. In a setting reminiscent of strategic classifi-
cation, (Frankel & Kartik, 2020) prove that the fixed points
of retraining can be improved in terms of accuracy if the
decision-maker can commit to underutilizing the available
information. Ball (2020) introduces a three-party model in
which an intermediary scores the agent and a decision-maker
makes a decision based on the score.

Ethical dimensions of strategizing. Ustun et al. (2019)
and Venkatasubramanian & Alfano (forthcoming) argue that
it is normatively good for individuals subject to models to
have “recourse”: the ability to induce the model to give a
desired prediction by changing mutable features. Ziewitz
(2019) discusses the shifting boundaries between morally
“good” and “bad” strategizing in the context of search engine
optimization.

Other strategic linear regression settings. A distinct lit-
erature on strategic variants of linear regression (Perote &
Perote-Pefia, 2004; Dekel et al., 2010; Chen et al., 2018;
Toannidis & Loiseau, 2013; Cummings et al., 2015) studies
settings in which agents can misreport their y values to max-
imize their privacy or the model’s prediction on their data
point.

2. Problem Setting

Our setting is defined by the interplay between two par-
ties: agents, who receive decisions based on their features,
and a decision-maker, who chooses the decision rule.2 We
visualize our setting in Figure 2.

'See Bambauer & Zarsky (2018) for a discussion of online
strategic classification from a legal perspective.

*In the strategic classification literature, these are occasionally
referred to as the “Jury” and “Contestant”.
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Figure 2. Visualization of the linear setting. Each box corresponds
to a real-valued scalar. The two boxes with dark red outlines
represent features that are correlated.

Each agent is described by a feature vector z € R 3
initially drawn from a distribution P € A(Rd/) over the
feature-space with covariance matrix 3. Agents can choose
an action vector a € R* to change their features from  to
24, according to the following update rule: x, = v + Ma
where the action-effect matrix M € R?** has an (i, j)th
entry corresponding to the change in the ith feature of x as
a result of spending one action unit along the jth direction
of the action space. Each action dimension can affect mul-
tiple features simultaneously. For example, in the context
of car insurance, a prospective customer’s action might be
“buy a new car”, which can increase both the safety rating
of the vehicle and the potential financial loss from an acci-
dent. The car-buying action might correspond to a column
M; = (2,10000)7, in which the two entries represent the
action’s marginal impact on the car’s safety rating and cost-
to-refund-if-damaged respectively. M can be rank-deficient,
meaning some feature directions are not independently per-
turbable.

Let y be a random variable representing an agent’s true
outcome, which we assume is decomposable into a noisy
linear combination of the features y := (w*, z4) + 7, where
w* € RY is the true parameter vector, and 7 is a subgaus-
sian noise random variable with variance o. Note that w;
can be understood as the causal effect of a change in feature
1 on the outcome y, in expectation. Neither the decision-
maker nor the agent knows w*. Overall, this setting captures
any linear structural equation model with perfectly observed
features, so long as the outcome itself does not affect the
features.

To define the decision-maker’s behavior, we must introduce
an important aspect of our setting: the decision-maker never
observes an agent’s complete feature vector x4, but only

3z, and all subsequent notation, uses homogenous coordinates

for simplicity.
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a subset of of those features Vxy, where V is a diagonal
projection matrix with 1s for the d visible features and Os
for the hidden features.

Now, our decision-maker assigns decisions (w, V), where
w € R is the decision rule. Note that because the hidden-
feature-dimensions of w are never used, we will define them
to be 0, and thus w is functionally defined in a d-dimensional
subspace.

For convenience, we define the matrix G = MMTV as
shorthand. (We will see that G maps w to the movement in
agents’ feature vectors it incentivizes.)

Agents incur a cost C(a) based on the action they chose.

Throughout this work this cost is quadratic C(a) = 3||a||3.
This corresponds to a setting with increasing costs to taking

any particular action.

Importantly, we assume that agents will best-respond to the
published decision rule by choosing whiehver action a(w)
maximizes their utility, defined as their received decision
minus incurred action cost:

a(w) = arg max |(w,V(x + Ma)) — 1||CLH2 (1)
a’ ER* 2

However, to take into account the fact that not all agents will

in practice study the decision rule to maximize their utility,

we further assume that only a p fraction of agents game the

decision rule,* whilea 1 — p fraction remain at their initial

feature vector.

Now, the interaction between agents and the decision-maker
proceeds in a series of rounds, where a single round i con-
sists of the sequence described in the following figure:

Forroundt € {1,...,r}:
1. The decision-maker publishes a new decision rule w;.

2. A new set of n agents arrives: {x ~ P}.
Each agent games w.r.t. wy; i.e. x + Ma(wy).

3. The decision-maker observes the post-gaming visible
features V' (x + Ma) for each agent.
Agents receive decisions w] V (z + Ma).

4. The decision-maker observes y ~ (w*)T (x+ Ma)+n
for each agent.

In general, we will assume that the decision-maker cares
more about the number of rounds required for an algorithm
than the number of agent samples collected in each round.

We now turn to the three objectives that decision-makers

“Note that this means that all strategic agents will, for a given
decision rule w, choose the same gaming action a(w).

may wish to optimize.

Objective 1. The agent outcomes objective is the average
outcome over the agent population after gaming:

Eympy [(w*,x + Ma(w)) + 1) (2)

In subsequent discussion we will restrict w to the /5 unit
ball, as an infinitely large w can cause infinitely positive
outcomes.

A decision-maker might care about maximizing agent out-
comes if it is in their interest for agents to achieve outcomes
that are as positive as possible. For example, a teacher
formulating a test for their students may care more about
incentivizing the students to learn the material than they
care about accurately stratifying students based on their
knowledge of the material.

Objective 2. Prediction risk captures how close the output
of the model is to the true outcome. It is measured in terms
of expected squared error:

Epmpy |((W 2 + Ma(w)) + 1 — (w, V(z + Ma(w))))?
3)

A decision-maker cares about minimizing prediction risk
if they want the scores they assign to individuals to be as
predictive of their true outcomes as possible. For exam-
ple, insurers’ profitability is contingent on neither over- nor
under-estimating client risk.

In the realizable linear setting, there is a natural third objec-
tive:

Objective 3. Parameter estimation measures how close the
decision rule’s coefficients are to the visible coefficients of
the underlying linear model:

V(w = w2 )

Below, we show that these objectives may be mutually non-
satisfiable. A natural question is whether we can optimize a
weighted combination of these objectives. In Section 4, we
outline an algorithm for optimizing a weighted combination
of prediction risk and agent outcomes. Our parameter recov-
ery algorithm will only work in the fully-visible (V = I)
case; in this case, all three objectives are jointly satisfied by
w = w*, though each objective implies a different type of
approximation error and thus requires a different algorithm.

2.1. Illustrative example

To illustrate the setting, and demonstrate that in certain cases
these objectives are mutually non-satisfiable, we provide
a toy scenario, visualized in Figure 3. Imagine a car in-
surer that predicts customers’ expected accident costs given
access to three features: (1) whether the customer drives
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Figure 3. A toy example in which the objectives are mutually non-
satisfiable. Each w optimizes a different objective.

a minivan, (2) whether they own their own car, and (3)
whether they have a motorcycle license. There is a single
hidden, unmeasured feature: (4) how defensive a driver
they are. Let w* = (0,0,1,1), i.e. of these features only
knowing how to drive a motorcycle and being a defensive
driver actually reduce the expected cost of accidents. Let the
initial data distribution have “owning a minivan” correlate
with defensive driving (because minivan owners are often
parents worried about their kids). Let the first action effect
column M; = (1, 0,0, 2) be the action of purchasing a new
car, which also makes the customer a much more defensive
driver to protect their investment. Let the second action-
effect column M> = (0,0, 1, —2) be the action of learning
to ride a motorcycle, which slightly improves the likelihood
of safe driving by understanding how motorcyclists will
react, while making the customer themselves substantially
more thrill-seeking and thus reckless in their driving and
prone to accidents.

How should the car insurer choose a decision rule, to maxi-
mize each objective? Minivans (1) may be a useful predictor
because of a historical correlation (good for prediction risk),
but anyone buying a minivan specifically to reduce insur-
ance payments will not be a safer driver (unhelpful for agent
outcomes) nor does minivan ownership truly cause lower
accident costs (bad for parameter estimation). If the rule
rewards (2) customers who own their own car, this will
make those customers more responsible (good for agent out-
comes), but will cause the decision-maker to be inaccurate
on the (1 — p)-fraction of non-gaming agents who already
had old cars they worried about less (bad for prediction risk),
and owning a car does not itself reduce expected accident
costs (bad for parameter estimation). Finally, if the decision
rule rewards customers who (3) have a motorcycle license,
this does reflect the fact that possessing a motorcycle license
itself does reduce a driver’s expected accident cost (good
for parameter estimation), but an agent acquiring a license

will do more harm than good to their overall likelihood of
an accident due to the action’s side effects (bad for agent
outcomes), and rewarding this feature in the decision rule
will lead to poor predictions as it is anti-correlated with
expected accident cost once the agents have acted (bad for
prediction risk).

3. Agent Outcome Maximization

In this section we will propose an algorithm for choosing a
decision rule that will maximize agents’ outcomes by incen-
tivizing agents to choose actions that maximally increase
their outcome. Throughout this section, we will assume that
w.l.o.g. p = 1. If only a subset of agents are strategic, the
non-strategic agents cannot affect their own outcome and
can thus be safely ignored. 3

Wimp = argmax E;.p w*T(erMa(w))} )
weER,[|w]]2<1

In our car insurance example, this means choosing a de-
cision rule that causes drivers to behave the most safely,
regardless of whether the decision rule accurately predicts
accident probability.

Theorem 1. Suppose the covariance matrix 3. has largest
eigenvalue < A, qz, and suppose the outcome noise 1 is
1-subgaussian. Then Algorithm I learns an approximation
of Wimyp With squared ly error at most € in d + 1 rounds with
O(e " A\paed + 1) samples in each round. Furthermore,
Algorithm 1 is non-adaptive. It succeeds and achieves the
desired error with high probability.

Algorithm 1 Agent Outcome Maximization

Input: scalar parameters A4, €, matrix V
Let n = O(e M\ naad)
Sample z1 ... x, withw = 0.
Leti= 2% a;
fori =1toddo
Sample z; ...z, withw = ¢e;
Letw; = % Z x;

end for

if ||@]| > 1 then
Let& = yi2p

end if

Return @

Proof Idea. First we note that it is straightforward to com-
pute the action that each agent will take. The agent max-
imizes W'V (z + Ma) — ||a||® over a € R™. Note that

SWe will require, for the related algorithms, that ||w|l2 < 1
because without a bound on w, the decision-maker could provide
arbitrarily large incentives to agents, who would then take actions
of arbitrary magnitude.
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Vao(TVMa - 1|a||?) = MTVw — a. Thus,

1
argmaxw’ V(z + Ma) — §||a||2

a

1
= argmaxw? VMa — =||al?
a 2
=MV

That is, every agent chooses 7, = 2 + MMTVw = z +
Gw. This means that if the decision-maker publishes w, the
resulting expected agent outcome is w*T(x + Gw). Hence,
the optimal value of w for the decision—maker to choose is

GTw*
[GTw* |2

Imagine for a moment that there were no outcome noise
7. We could directly make linear measurements of per-
fect quality by choosing w’s that form a basis, as the agent
outcomes corresponding to each basis vector decision rule
would differ from the w = 0 case® by, on average, e} GTw*.
Algorithm 1 is a robust version of this basic intuition. We
leave a complete proof to the appendix. O

Note that this procedure will learn to reward any visible
features which, even if they do not truly affect the outcome,
cause agents to choose actions which do increase the true
outcome.

This algorithm has several desirable characteristics. First,
the decision-maker who implements the algorithm does not
need to have any knowledge of M or even of the number
of hidden features d’ — d. Second, the algorithm is non-
adaptive, in that the published decision rule in each round
does not depend on the results of previous rounds. Hence,
the algorithm can be parallelized by simultaneously apply-
ing d separate decision rules to d separate subsets of the
agent population and simultaneously observing the results.
Finally, by using decision rules as causal interventions, this
procedure resolves the challenge associated with the hard-
ness result of (Miller et al., 2020).

4. Prediction Risk Minimization

Low prediction risk is important in any setting where the
decision-maker wishes for a decision to accurately match
the eventual outcome. For example, consider an insurer who
wishes to price car insurance exactly in line with drivers’
expected costs of accident reimbursements. Pricing too low
would make them unprofitable, and pricing too high would
allow a competitor to undercut them.

SWe can modify this same algorithm to find an “outcome-
maximizing adjustment” to some pre-existing decision rule w’ by
replacing the base outcome estimate with w’, and adding each
basis vector to w'.

Specifically, we want to minimize expected squared error
when predicting the true outcomes of agents, a p-fraction of
whom have gamed with respect to w:

Risk(w) =Eyup,y | (1 —p) (w'Vaz - (w*)TVx)2

+p (wTVA(x, w) — (w*TA(x, w) + 77))2]
(6)

We begin by noting a useful decomposition of accuracy in
the linear setting:

Lemma 1. Let w be the linear decision rule and let a be
the action taken by agents in response to h. Suppose that
Ma and x are uncorrelated. Then the expected squared
error of a decision rule w on the gamed distribution can be
decomposed as the sum of the following two positive terms
(plus a constant offset):

1. The risk of w on the original distribution

2. The squared error of h in predicting the expected im-
pact (on agents’ outcomes) of a, weighted by p.

That is,

Risk(w) o< Exp [((Vw - w*)%)ﬂ (7)
+p-Epup {((VW - w*)T(Ma))z]

Note that this lemma holds regardless of the choice of agent
action model.

The proof appears in the appendix.

This decomposition illustrates that minimizing prediction
risk requires balancing two competing phenomena. First,
one must minimize the risk associated with the original
(ungamed) agent distribution by rewarding features that are
correlated with outcome in the original data. Second one
must minimize error in predicting the effect of agents’ gam-
ing on their outcomes by rewarding features in accordance
with the true change in outcome. The relative importance of
these two phenomena depends on p, the fraction of agents
who game.

Unfortunately, minimizing this objective not be straight-
forward. Even with just squared action cost (with actions
a(w) linear in w), the objective becomes a non-convex quar-
tic. However, we will show that in cases where the naive
gaming-free predictor overestimates the impact of gaming,
this quartic can be minimized efficiently.

Remark 1. Let wpogaming be the decision rule that mini-
mizes the prediction risk without gaming, and let agent
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action costs be quadratic. If Wy-gaming OVerestimates the
change in outcome as a result of the agent action, then we
can find an approximate prediction-risk-minimizing deci-
sion rule in O(poly(d)) rounds via a gradient-free convex
optimization algorithm.

Proof Idea. As shown in Lemma 1, the prediction risk con-
sists of two terms: the prediction risk before gaming (a
convex quadratic), and the error in estimating the effect
of gaming on the outcome, which can be written out as
(Vw— w*)T(MMTVwT))2 using our equation for a(w)
in the quadratic action cost case. We’ll refer to this second
term as the “gaming error”, and study its geometry.

The matrix VMMTV is symmetric and positive-
semidefinite, so the gaming error will be a normal quartic
as a function of w. More specifically, there is an affine
transformation of w into a vector z such that this quartic
decomposes into the square of the squared magnitude of z
minus a constant: (27 + 23 + - - - + 22 — t)? for some ¢ > 0.
The zero of this equation defines an ellipse. Every w on the
ellipse makes the gaming-error quartic’s value 0. Each such
point corresponds to perfect prediction of gaming’s effects.
For any w corresponding to a point in the interior of the
ellipse, w”'V Ma underestimates the true effect of gaming
(w*)T Ma. Conversely, for any w corresponding to a point
outside the ellipse, the decision rule over-estimates the true
change in outcome. This entire region is convex by compo-
sition of a convex monotonic function (the square outside
the ellipse) and a convex function (the internal quadratic).

If Who-gaming happens to fall in this convex “overestimate”
region, then Risk(w) is convex in the neighborhood of this
no-gaming decision rule, since it is the sum of two convex
functions.

Furthermore, we will show that some global prediction-risk-
minimizing w falls in a convex set which includes wyo-gaming>
and that the prediction risk objective is convex on this set. To
see why, assume that the opposite is true. Then any global
minimizer w’ has the property that somewhere on the slice
of the quartic from who-gaming t0 W’ the objective Risk(w) is
not convex. This is only possible if this slice intersects the
zero-ellipse. (This is because the line’s starting point is in
the convex region, and all non-convex regions are contained
within the ellipse.) But at the slice’s first intersection with
the zero-ellipse (starting from wyo-gaming) Which we call w,
the value of the gaming-effect component is 0. Additionally,
the gaming-free risk component at w, is at least as small as
that at w’, because w, is strictly closer to wyo-gaming than w’.
Thus the value at w, is itself a global minimizer with only
convex points on the line from it to Wno-gaming, l€ading to a
contradiction. Therefore, there exists a global minimizer
lies in a convex region which also includes the no-gaming
optimal decision rule, and for which the prediction risk

objective is convex everywhere.

We now have a sketch of our prediction-risk-minimization
algorithm: start by collecting data without publishing a de-
cision rule (i.e. publishing the rule w = 0), and learn the
no-gaming risk-minimizing decision rule wpo-gaming. Publish
this decision rule, and observe empirically whether the pre-
dicted decisions over-estimate the true outcomes. If they
do, we now know that the global minimum lies in a convex
set around our point, and that our risk is convex on this set.
We now use a derivative-free convex optimization algorithm
to propose a sequence of decision rules, until our proce-
dure converges. Note that we must ensure the queries must
remain within the convex region with high probability. [

This raises an interesting observation: in our scenario it is
easier to recover from an initial over-estimate of the effect
of agents’ gaming on the outcome (by reducing the weights
on over-estimated features) than it is to recover from an
under-estimate (which requires increasing the weight of
each feature by an unknown amount).

‘We make one further observation:

Remark 2. The procedure described in Remark 1 can
also be used to minimize weighted sum of the outcome-
maximization and prediction-risk-minimization objectives.

This follows from the fact that the outcome-maximization
objective is linear in w, and therefore adding it to the
prediction-risk objective preserves the convexity/concavity
of each of the different regions of the objective. Thus, if
a credit scorer wishes to find the optimum of a weighted
sum of their predictive accuracy at assigning loans, and the
fraction of their customers who successfully repay (accord-
ing to some weighting), this provides a method for doing so
under certain initial conditions.

5. Parameter Estimation

Finally, we provide an algorithm for estimating the causal
outcome-generating parameters w”, specifically in the case
where the features are fully visible (V' = I).” Estimating
the causal parameters is desirable both because they deepen
our understanding of the outcome-generating phenomenon.
Furthermore, when used as a decision rule in the fully-
visible case, parameter estimation ensures accuracy and
good performance even when the distribution of agents P
or their actions M shifts.

Theorem 2. (Informal) Given V = I (all dimensions are
visible) and ¥ + N\M M7 is full rank for some X (that is,
there exist actions that will allow change in the full feature

"For simplicity, we also assume p = 1, though any lower
fraction of gaming agents can be accomodated by scaling the
samples per round.
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space), we can estimate w* to arbitrary precision. We do so
by computing an w that results in more informative samples,
and then gathering samples under that w. The procedure
requires O(d) rounds. See the appendix for details.)

The algorithm that achieves this result is actually simple to
sketch. It consists of the following steps:

1. Estimate the covariance of the initial agent feature
distribution before strategic behavior X by initially
not disclosing any decision rule to the agents, and
observing their features.

2. Estimate parameters of the Gramian of the action ma-
trix G = M M7 by incentivizing agents to vary each
feature sequentially.

3. Use this information to learn the decision function
w which will yield the most informative samples in
identifying w™, via a convex optimization.

4. Use the new, more informative samples in order to run
OLS to compute an estimate of the causally precise
regression parameters w™.

At its core, this can be understood as running OLS after ac-
quiring a better dataset via the smartest choice of w (which
is again, surprisingly, unique!). Whereas the convergence
of OLS without gaming would be controlled by the mini-
mum eigenvalue of the second moment, convergence of our
method is governed by the minimum eigenvalue of follow-
ing matrix:

E[(z + Gw)(z + Gw)T] = © + 2uw” GT + GuwT GT

Our method learns a value of w that results in the above
matrix having a larger minimum eigenvalue, potentially
resolving issues of rank and improving the convergence
rate.

The proof and complete algorithm description is left to the
appendix.

6. Discussion

In this work, we have introduced a model and techniques for
analyzing decision-making about strategic agents capable
of changing their outcomes. We provide algorithms for
leveraging agents’ behaviors to maximize agent outcome,
minimize prediction risk, and recover the true parameter
vector.

Let us dwell on several real-world considerations that should
inform the utility of these algorithms. First, while these
algorithms eventually yield more desirable decision-making
functions, they substantially reduce the decision-maker’s

accuracy in the short term while exploration is occurring,
and this tradeoff should inform their use. In general, these
procedures make the most sense in scenarios with a fairly
small period of delay between decision and outcome (e.g.
predicting short-term creditworthiness rather than long-term
professional success), as at each new round the decision-
maker must wait this length of time to receive the first
samples gamed according to the new rule. That said, our
algorithms are either non-adaptive procedures, or have very
limited adaptivity. This allows them to be parallelized in a
straightforward fashion by using different decision rules for
different agents.

It is also important that these methods only be applied to
agents whose actions do not change their state in irreversible
and possible detrimental ways. In particular, in the case of
repeated decision-making (as in a credit scoring setting), an
agent may make changes to respond to a temporary decision
rule, only to realize their features leave them in a worse
position when the decision rule changes as part of the type
of algorithm we’ve described. Only if agents have no future
expectation of the consistency of the decision rule, or if they
receive a decision only once (as in college admissions), can
we be certain that the exploration induced by the decision
rule is not exploitative. (After all, agents will only incur
action cost if they actually benefit from the decision they’ll
receive.)

As we have mentioned, our model has several notable so-
cial implications. First, in many settings, our results show
that decision-makers are incentivized not only to be fully
transparent, but to be actively informative. Sharing details
about workings of their algorithm can potentially maximize
both the decision-maker’s and agents’ utilities. More radi-
cally, agents may actually be incentivized to join together
to construct a decision-maker if one does not exist. The
agents themselves may wish to know w*, and the way to
do that is to aggregate their data, and have the agent-led
decision-maker reward different agents for gaming in dif-
ferent directions, in order to more quickly identify the true
causal parameters, as in Section 5.

Our work opens up several avenues for future work. First,
one can explore algorithms that work under a more gen-
eral set of action cost models, or where different agents
have different action costs, or where the actions available
to agents are state-dependent. One can explore methods
for minimizing the regret of decision-makers during the ex-
ploration phase of our algorithms. One could also explore
the dynamics of decision rules when agents have persistent
states across multiple decisions.

One could also explore improving the efficiency of the algo-
rithms we proposed. Finally, one could extend these results
to the setting where both the decision rule, and the true
outcome-producing function, are non-linear.
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