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Existing topic modeling and text segmentation methodologies generally require large datasets for training,

limiting their capabilities when only small collections of text are available. In this work, we reexamine the

inter-related problems of “topic identification" and “text segmentation" for sparse document learning, when

there is a single new text of interest. In developing a methodology to handle single documents, we face two

major challenges. First is sparse information: with access to only one document, we cannot train traditional

topic models or deep learning algorithms. Second is significant noise: a considerable portion of words in any

single document will produce only noise and not help discern topics or segments. To tackle these issues, we

design an unsupervised, computationally efficient methodology called BATS: Biclustering Approach to Topic

modeling and Segmentation. BATS leverages three key ideas to simultaneously identify topics and segment

text: (i) a new mechanism that uses word order information to reduce sample complexity, (ii) a statistically

sound graph-based biclustering technique that identifies latent structures of words and sentences, and (iii)

a collection of effective heuristics that remove noise words and award important words to further improve

performance. Experiments on four datasets show that our approach outperforms several state-of-the-art

baselines when considering topic coherence, topic diversity, segmentation, and runtime comparison metrics.
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1 INTRODUCTION
Innovations in topic identification and text segmentation have demonstrated the potential for

automated analyses of large collections of documents. Broadly speaking, topic identification refers

to finding a collection of topics (e.g., groups of words) that represent a given document, whereas

document segmentation refers to partitioning a document into components (e.g., sentences) about

the topics. Existing solutions to these problems are usually based on analyzing statistical patterns

in text across datasets that consist of large collections of documents. For example, the popular

Latent Dirichlet Allocation (LDA) algorithm for topic modeling [3] assumes that each document

comprising a corpus, and every word in them, are generated according to the latent Dirichlet

process. With this assumption, EM-based algorithms can then be employed to infer the latent states

of the documents [24]. Word embedding models such as word2vec [31] and GloVe [36] have also

become popular, building joint distributions of word sequences by transforming every word in a

document into a high-dimensional space learnt over a large corpus. The resulting high-dimensional

representations then help to identify topics in the document and perform segmentation based on

these topics.

While algorithms for finding topics [3, 14, 24] and segmenting documents [10, 23, 41] have been

extensively studied, none have fully addressed the “new and single document” issue. In this setting,

we may need to analyze a newly created text whose topics have not been seen before. Such cases

are especially prevalent in politics, when new names of political actors or nicknames for events (e.g.

“Brexit” or scandals ending in “gate”) may appear suddenly and require rapid analysis. Neologisms

are not the only problem; existing words may acquire new context-specific meaning. For instance,

the word “like” has acquired meaning in the age of social media (i.e., due to “like buttons”) it lacked

before the rise of Facebook and other such platforms [6]. Academia is subject to the same problem

when new articles/books/lectures appear without enough training data for thorough analysis.
1
Any

model operating on user-generated text data will eventually be presented with content containing

topics it has not seen previously. Furthermore, this new content may be the most salient, as it

is likely to reflect evolving events or trends which users are most interested in exploring. Rapid

analysis to identify such topics and segments is often necessary while the content is most relevant

(for instance, the night of an election) [26].

Existing deep and statistical learning approaches are unsuitable solutions for these situations.

For one, pre-trained models by nature will rely on large amounts of historical data [50], and thus it

is often difficult to adapt them effectively for these situations. Relying on existing word embeddings

is equally difficult, as even powerful contextualized embedding models [15, 30] struggle to capture

new word senses emerging from developing events that have limited training data. Moreover,

training new models (i.e., on the newly relevant, emerging data) is error-prone and costly, because

the new dataset may not be sufficiently large to produce a generalized model and the cost of

frequent training/re-training may be prohibitive for real-time systems [15].

1.1 BATS: Objectives and Key Techniques
In this paper, to address the challenges outlined above, we design a statistically sound, computa-

tionally efficient, unsupervised algorithm that can simultaneously extract topics and segment text

from a single document of interest. Designing such an algorithm is challenging because we need to

determine model parameters on a sparse dataset. Our development is guided by three key ideas:

1.1.1 Idea 1: Using word ordering information properly. Traditional topic modeling approaches

assume bag-of-words models [3] where information on the order in which words appear is neglected.

1
Consider, for example, the introduction of a technique with a name which previously had no meaning, or the changes in

the use of the word “transformer" in the scientific community before and after the publication of [45].
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BATS: A Spectral Biclustering Approach to Single Document Topic Modeling and Segmentation 3

Fig. 1. Block diagram summary of the modules comprising BATS, the spectral biclustering methodology we
develop in this paper for single-document topic modeling and text segmentation.

While this has proven effective in the analysis of full corpuses, compression to a bag-of-words

in the case of a single document may lose information valuable to the task at hand. The recent

success of recurrent models and the addition of positional encodings in non-recurrent models for

the application of machine translation [45] is further evidence of the potential value of word-order

information on single document.

Motivated by this, our approach aims to leverage word-order information to achieve good

performance in the presence of a small, single document training dataset. In particular, we consider

the location of words in neighboring sentences. In designing this mechanism, we will make two

assumptions guided by basic rules of written language: (i) words appearing in the same sentences

are more likely to be on the same topic, and (ii) words located in nearby sentences are more likely

to be on the same topic.

1.1.2 Idea 2: Design a biclustering algorithm that addresses sparsity. For joint topic modeling and

text segmentation, we will find it convenient to model documents with sentence-word matrices.

But word-to-word interactions and word-to-sentence interactions are noisy by nature [5]. This

problem becomes even more pronounced with small datasets like single documents where these

interactions are likely to be sparse (e.g., the sentence-word matrices for datasets considered in this

paper have only 15% of entries nonzero on average). A well-designed denoising process is necessary

so that a sentence-word matrix can be utilized effectively in the downstream topic extraction and

text segmentation tasks.

Our approach connects the denoising problem here with the denoising problem in stochastic

block models [38]. In particular, we design a specialized spectral biclustering algorithm which

operates on a regularized sentence-word graph Laplacian representation of a document to address

sparsity. The topics and segments emerge from clustering the right and left singular vectors of

this Laplacian. Given this, we term our overall solution BATS: Biclustering Approach for Topic
modeling and Segmentation.

1.1.3 Idea 3: Optimize heuristics to analyze single documents. We design a number of heuristics to

enhance our algorithm’s performance. Our heuristics are designed based on two major observations:

(i) extremely low frequency words (i.e. words with only one appearance in the text) tend to introduce

noise to document analysis and thus need to be removed, and (ii) part-of-speech (POS) tagging

can help to identify more important elements of a document and thus should be considered in

our model. Therefore, we remove the low frequency words in the text, but award the important

words according to their POS tags. Specifically, because nouns and verbs often convey the body

and condition of a sentence, they are typically more informative in topic modeling than other parts

of speech [21]. As a result, we award nouns and verbs by giving them additional weight.

, Vol. 1, No. 1, Article . Publication date: August 2020.
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1.1.4 Experimental validation. We evaluate BATS against five baselines in both topic modeling and

text segmentation tasks. For topic modeling, we compare performance in terms of topic coherence

(i.e., quality of individual topics) and topic diversity (i.e., overlap in topic words) on three datasets,

in which we find that BATS always performs the best in topic diversity, performs comparably to

the best existing algorithms in topic coherence, and obtains the best with respect to a composite

metric. For text segmentation, we add in one more standard dataset, and show that we outperform

baselines substantially in most cases in terms of agreement with a ground truth. We also show that

our method scales well with the size of the input document compared with the baselines.

1.2 BATS: Architecture and Roadmap
Figure 1 outlines the methodology we develop and provides a roadmap for the paper. The inputs to

BATS are a single document and a single hyperparameter (segment number, which also indicates

topic number). Then, the two major stages of BATS are preprocessing and extraction. In the

preprocessing stage (Sections 3.1 and 3.2), we leverage ideas 1 and 3 to build an effective feature

matrix representation of a document under sparse and noisy conditions. In the extraction stage

(Sections 3.2 and 3.3), we use idea 2 to identify low-dimensional representations of the signals

through spectral biclustering, with agglomerative methods to segment the text and KMeans to

identify the topics. Our subsequent evaluation (Section 4) assesses performance of the resulting

text segments and topic words in terms of diversity, coherence, and segmentation metrics.

1.3 Summary of Contributions
Our key contributions are summarized as follows:

• We develop a novel methodology called BATS that performs topic modeling and text seg-

mentation on a single document simultaneously. BATS is unsupervised and scalable in its

implementation, as it does not rely on pre-trained word embedding models.

• We connect the joint topic extraction and segmentation problem to spectral biclustering of

sentence-wordmatrices, and showhow a factorization of the graph Laplacianwith appropriate

pre-processing and post-clustering can lead to effective results.

• Our evaluation on several datasets establishes that BATS achieves higher performance on

topic modeling and text segmentation metrics when compared with key baselines on single

documents, and shows that BATS is scalable with document length.

2 RELATEDWORK
We identify three areas of related work: biclustering techniques, topic modeling, and text segmen-

tation algorithms.

2.1 Biclustering Techniques
Biclustering techniques (e.g., [16, 17, 43]) have been proposed to model interactions among two

types of nodes represented in a bipartite graph, with nodes of each type grouped into clusters

according to different methods. These techniques are widely used in part because of their sound

theoretical properties [17]. In [16] and [25], the authors propose algorithms which translate input

data into bipartite graphs and apply spectral techniques to the adjacency matrices; in [16], a block

diagonal structure is assumed, while in [25], the case of a checkerboard pattern is considered, with

implications to the spectral decomposition. [43] can be viewed as an extension of the algorithm in

[16] to deal with asymmetric data matrices. By contrast, [17] proposes a probabilistic approach to

graph biclustering, where the input data matrix is treated as a joint probability distribution between

, Vol. 1, No. 1, Article . Publication date: August 2020.
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two random variables, which are then clustered according to relative entropy and mutual informa-

tion metrics. Our work builds off the spectral clustering foundations in [16, 43], accommodating

rectangular sentence-word data matrices instead of traditionally assumed square matrices.

2.2 Topic Modeling
Several models have been proposed to extract topics from a corpus consisting of multiple long

documents, including Latent Semantic Analysis (LSA) [14], Non-negative Matrix Factorization

(NMF) [35], Probabilistic Latent Semantic Analysis (pLSA) [24], Latent Dirichlet Allocation (LDA)

[3], and variants on LDA, e.g., hierachical modeling [44] (see [12] for a survey). Analysis on short

texts, however, usually faces the issue of sparsity in word occurrences. To overcome this challenge,

works such as [48, 49] make additional assumptions on word co-occurrence patterns; [34, 51]

have resorted to word embeddings which leverage pre-trained models; [11, 20] depend on further

external knowledge including social relationships in microblogs and user preferences.

Different from these methods, ours aims at identifying topics in a single, newly created document

without an extensive training/re-training component. To overcome issues of input data sparsity

and noise, BATS turns to word-ordering information between sentences and regularization in the

spectral clustering phase, as opposed to making additional assumptions on word co-occurrence

patterns. Through evaluation on several datasets, we show that BATS outperforms these methods

on single document topic modeling in terms of topic coherence, topic diversity, and scalability

metrics.

2.3 Text Segmentation
Text segmentation algorithms are designed to detect breakpoints in a document and split the

document into multiple segments accordingly. Algorithms such as Lexical Chains [28] and Text-

Tiling [23] use lexical co-occurrence and distribution patterns to divide sets of paragraphs into

multi-paragraph sub-blocks that become segments. A potential drawback of these approaches,

however, is that the segments are not associated or labeled with explicit topic information, and

that it is not always clear how to translate from a lexical distribution to topics. This motivates the

consideration of topic modeling and text segmentation jointly.

More recently, to improve segmentation performance, topic-based segmentation methods such as

TopSeg [4], LDA_MDP [33], and TopicTiling [41] have been proposed. Similar to the topic modeling

algorithms discussed above, these segmentation methods depend heavily on the training process,

and usually require training on a large corpus [8]. This is problematic when only small datasets are

available, let alone the single document case that we consider in this paper. Through biclustering

of the sentence-word matrix and development of other pre-processing techniques, BATS does not

demand an expensive training process. Further, our evaluation shows that BATS outperforms the

segmentation methods discussed here on single documents across several datasets in terms of

standard segmentation metrics.

3 SPECTRAL BICLUSTERING METHODOLOGY
As shown in Figure 1, our proposed methodology BATS consists of two main stages: the text

preprocessing stage (Section 3.1) and the extraction stage, with the latter broken down into graph

Laplacian regularization (Section 3.2) and sentence/word clustering (Section 3.3). Topics and seg-

ments emerge from the word and sentence clusters, respectively. In this section, we detail the

development of these modules.

, Vol. 1, No. 1, Article . Publication date: August 2020.
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3.1 Document Preprocessing and Matrix Construction
Consider an input document comprised of m sentences, indexed i = 1, ...,m. We denoteW =

{w1, ...,wn} as the set of words we are interested in for modeling, indexed j = 1, ...,n. In defining

W, we do not include all the words that ever appear in the document; instead, a word is included in

W if and only if it appears in more than one sentence in the document and it is not in a stopword

list.
2
In this way,W excludes “degree-one” words that can skew models in single documents; we

observe that these words often behave as pure noise in our inference algorithms.

Let X = [Xi j ] ∈ Rm×n denote the sentence-word matrix. We develop two steps to construct X ,
taking into account both word order and parts-of-speech information:

3.1.1 Step 1. Using parts-of-speech information. Our first optimization trick is based on parts-of-

speech (POS) tags, which are generated through analysis of the word positions in the sentences [21].

In particular, the lexical model presented in [18] shows hierarchies exist according to the syntactic

and semantic similarities of the words; looking into the hierarchies, it is clear that nouns and verbs

convey more information than other word types, and thus should be given a larger weight [40]. As

a result, letting X o = [X o
i j ] where X o

i j is the number of occurrences of wordw j ∈ W in sentence i ,
we define

X a = X o + λT , (1)

where T = [Ti j ], Ti j = 1 if X o
i j , 0 and w j is tagged as a noun or verb in sentence i , and Ti j = 0

otherwise. λ > 0 is a scalar parameter for awarding POS; by default, λ = 1. In our implementation,

Python’s spaCy module is used to tag the words, as this pre-trained model based on word positions

is more robust to novel words or topics than would be, for instance, a word-embedding model.

3.1.2 Step 2. Transformation by using word-order information. Our incorporation of word-order

information is based on the intuition that words in neighboring sentences are likely to be similar in

their constituent topics, with this effect decaying as the sentences grow further apart. Assumptions

on words appearing within a certain window being related can be found in other text analysis

techniques as well, including word embedding models [36]. Concretely, we bond neighboring

sentences to the current sentence according to

Xi =

i+w∑
ℓ=i−w

d |ℓ−i |X a
ℓ , i = 1, ...,m, (2)

where Xi = (Xi1, ...,Xin) is the ith row of X and X a
ℓ
is the ℓth row of X a

for ℓ = 1, ...,m (for ℓ < 1

and ℓ > m, X a
ℓ
is taken as a vector of zeros). Parameterw controls the size of the bonding window,

and d ∈ [0, 1] is a decay rate for the distance. In this way, the presence of a word in one sentence will
impact neighboring sentences, and words appearing in several consecutive sentences are increased

in importance. Doing so also alleviates the issue of sparsity associated with single documents, as

each sentence’s data smoothens its neighbors’ representations too. The procedure for tuningw and

d will be discussed in Section 3.2.

3.2 Graph Laplacian and Singular Vectors
Consider the bipartite graph G(X ) of the sentence-word matrix X , where the sentences i = 1, ...,m
and words j = 1, ...,n each form a node set, and edge (i, j) of weight Xi, j is in G(X ) if and only if

Xi, j , 0. In this section, we derive a graph Laplacian for X according to G(X ), and employ that

to construct low dimensional embeddings. Graph Laplacians have been noted for their success in

2
Our stopword list combines the English and Spanish lists from the NLTK module:

https://www.nltk.org/book/ch02.html.
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spectral clustering algorithms [46], which we will develop in Section 3.3. Specifically, our approach

here consists of two steps:

3.2.1 Step 1. Regularizing the graph Laplacian. Given the issue of document sparsity, and the

asymmetric nature of the bipartite graph, we derive a regularized version of the graph Laplacian

as in [1, 9, 38]. Formally, define two diagonal matrices P = diag(P1, ..., Pn) ∈ Rn×n and O =
diag(O1, ...,Om) ∈ Rm×m where Pj =

∑m
i=1

Xi j , j = 1, ...,n and Oi =
∑n

j=1
Xi j , i = 1, ...,m are the

row and column sums of X . With regularization parameters τp ,τo ≥ 0, the regularized graph

Laplacian L ∈ Rm×n is computed as

Pτ = P + τp Ip ,

Oτ = O + τoIo ,

L = (Oτ )−
1

2X (Pτ )−
1

2 ,

(3)

where Ip and Io are identity matrices. Multiplying these by regularization parameters τp and τo can
resolve issues due to poor concentration since the degrees for every vertex are inflated. Following

prior work [38] which has indicated that such regularization parameters should be proportional

to the average degrees of the vertices (so that the asymptotic bounds will be indicative of the

mis-clustering rate), we set the average degrees as defaults, i.e., τp =
∑

j Pj/n and τo =
∑

i Oi/m.

3.2.2 Step 2. Obtaining a low dimensional embedding. We consider the singular value decomposition

(SVD) of L. By definition, the SVD yields

L = U ΣVT , (4)

whereU ∈ Rm×m andV ∈ Rn×n are unitarymatrices and Σ contains the singular valuesσ1, ...,σmax{m,n }
on its diagonal. Since LTL = V (ΣT Σ)VT

is a measure of similarity between words, counting their

degrees of connectivity via sentences, and LLT = U (ΣΣT )UT
is a measure of similarity between

sentences, counting their degree of connectivity via words, we expect the SVD can be used to

cluster words (usingV ) and sentences (usingU ). Further, as the eigenvalues of LTL and LLT are the

square of the singular values in Σ, we introduce another parameter k which denotes the number of

left U1, ...,Uk ∈ Rm and right V1, ...,Vk ∈ Rn dominant singular vectors used, where we assume

the singular values are in decreasing order σ1 ≥ σ2 ≥ · · · . We then re-normalize the rows of the

resulting matrices

V ′ = [V ′iℓ] = [V
′

1
V ′

2
· · · V ′k ], U ′ = [U ′jℓ] = [U

′
1
U ′

2
· · · U ′k ] (5)

to have unit length, i.e., so that

∑
ℓ V

′
2

iℓ =
∑

ℓU
′
2

jℓ = 1 for each sentence i and word j. Following

[46], which suggests that the dimensionality should be consistent with the number of clusters to

be grouped, we use the same parameter k for bothU and V .

The full matrix decomposition process developed in Sections 3.1 and 3.2 is summarized in

Algorithm 1.

3.2.3 Impact ofw and d . Recall the windoww and decay d parameters from (2). We investigate

the impact of these parameters on the matrix decomposition in (5) by considering the L2-norm

distances between the resulting sentence vectors in U . Figure 2 gives heatmaps of these distances

for an arbitrary document in one of our datasets (see Section 4.1), where entry (x ,y) on each

heatmap takes the value

∑
ℓ(Uxℓ −Uyℓ)2. Since neighboring sentences should cover similar topics,

we seek values ofw and d for which ordering information is clearly embedded in the matrix. In

Figure 2(a), for small values of w (i.e., w = 0, 1), the sentence order is less clear as the elements

near the diagonal are more blurry. Asw increases, the pattern becomes more obvious, and when

w = 3 we observe clear block patterns in the heatmap. Whenw is increased further (i.e., tow = 5),

, Vol. 1, No. 1, Article . Publication date: August 2020.
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Algorithm 1Matrix decomposition on regularized Laplacian.

INPUT: Original sentence-word matrix X o
, POS-based matrix T

PARAMETER: Awarding value λ, window sizew , decaying rate d , segment number k

OUTPUT:MatrixU for sentences and VT
for words

1: functionMAT_DECOMP(X o
,w , d)

2: if λ > 0 then
3: X a = X o + λT //Word awarding

4: else
5: X a = X o

6: F ← tf-idf(X a
) //Tf-idf assignment

7: for i ← 1, ...,n do
8: Xi =

∑i+w
ℓ=i−w d |ℓ−i |X a

ℓ
//Sentence bonding

9: for j ← 1, ...,n do
10: Pj ←

∑m
i=1

Xi j

11: for i ← 1, ...,m do
12: Oi ←

∑n
j=1

Xi j

13: τp ←
∑

j Pj/n, Pτ ← P + τp Ip //Regularization

14: τo ←
∑

i Oi/m, Oτ ← O + τoIo //Regularization

15: L = (Oτ )−
1

2X (Pτ )−
1

2 //Graph Laplacian

16: U ΣVT = L //Singular value decomposition

17: for u ′← rows ofU do
18: u ′← u ′[1 : k] //Reserve first k dimensions

19: u ′← u ′/
√∑

i u
′
2

i //L2 normalization onU ′

20: for v ′← rows of V do
21: v ′← v ′[1 : k] //Reserve first k dimensions

22: v ′← v ′/
√∑

i v
′
2

i //L2 normalization on V ′

23: returnU ′, V ′, F //U ′ for sentences, V ′ for words

the sharpness of the block pattern does not continue to improve; intuitively, sentences at the far

ends of the bonding window for largew will have higher dissimilarity, but this effect is blunted

by the decay d (which is 0.7 here). Since a higherw also increases the runtime of the method, in

considering several documents, we find that the best choice ofw is typically between 3 and 5 (i.e.,

the number of topic-neighboring sentences is 6 to 10).

By this logic, then, the value of d should be significantly lower than 1. As it is decreased in Figure

2(b) (i.e., from d = 0.9), we see that the sharpness of the blocks improves, with d = 0.7 giving the

clearest pattern. Beyond this (i.e, d = 0.5, 0.3), however, the sharpness begins to decrease. In these

cases, neighboring sentences are assigned lower weights, confirming that the SVD uncovers topic

similarity between neighbors. In considering several documents, we find that the best choice is

d ≈ 0.7 for this reason.

, Vol. 1, No. 1, Article . Publication date: August 2020.
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(a) Varying w (b) Varying d

Fig. 2. Heatmaps of the pairwise distances between sentence vectors in the SVD for a sample document
taken from the Introductions dataset (see Section 4.1) under different values of parametersw and d . (a) varies
w for fixed d = 0.7, and (b) varies d for fixed w = 3. Block similarity is the clearest for the combination
w = 3,d = 0.7. Other documents yield qualitatively similar results.

3.3 Word and Sentence Clustering
With the embedding from (5) in hand, we move to obtain topics and segments via spectral clustering

of the word V and sentenceU matrices respectively. To justify that clustering can provide desired

results in both cases, we consider the problem from a graph cut point of view [46], where the cuts

are taken on a similarity graph of words or sentences.

Formally, let G = [дi, j ] ∈ Rn×n be the similarity matrix among a set of n nodes v1, ...,vn (i.e.,

words or sentences), where дi, j ≥ 0 is the similarity between nodes vi and vj . We seek to minimize

KCut(S1, ..., Sk ) = 1

2

∑k
p=1

cut(Sp , S̄p ) while cut(Sp , S̄p ) =
∑

i ∈Sp,
j ∈S̄p

дi, j . Note S = {S1, S2, ..., Sk } is a

grouping of the nodes into k disjoint sets S1, ..., Sk . A simple and straight forward solution for

this minimization problem is to cut off individual nodes which are weakly connected to the rest.

However, there is usually no topic with one word or text segment with one sentence, therefore, the

groups of words or sentences are supposed to have more balanced sizes. As a result, the objective

function needs to take group sizes into consideration and build the balanced cut problem

BCut(S1, ..., Sk ) =
k∑

p=1

cut(Sp , S̄p )
|Sp |

. (6)

Taking group sizes into account makes the problem NP hard and requires further relaxation. We

reorganise the problem by defining a group indication matrix H = [h1 · · ·hk ] ∈ Rn×k consisting of

k weighted indicator vectors hp = (h1,p , ...,hn,p )T ,p = 1, ...,k where

hi,p =

{
1/
√
|Sp | if node vi ∈ Sp

0 otherwise.

(7)

We can see HTH = I where I is the identity. For the node similarity graph G, we have its degree

matrix as D = diag(d1, ...,dn) where di =
∑

j дi j , i = 1, ...,n and the unnormalized graph Laplacian

as Lu = D −G. Through some easy math, we can get

hTp Luhp =
cut(Sp , S̄p )
|Sp |

, for p = 1, ...,k . (8)
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Combining this with (6), we conclude that

BCut(S1, ..., Sk ) =
k∑

p=1

hTp Luhp = Tr (HTLuH ). (9)

Thus, the minimization problem can be presented as

min

S1, · · · ,Sk
Tr (HTLuH ) subject to HTH = I , H defined as (7).

(10)

This problem is equivalent to minimizing (6) and is known as NP-hard. Therefore, in the BATS

methodology, we relax this constraint by allowing hi,p ∈ R to take any arbitrary value, and turn

(10) into

min

H ∈Rn×k
Tr (HTLH ) subject to HTH = I . (11)

This approach allows us to employ clustering algorithms to solve the minimization problem. In

the following sections, we detail our methods for solving (11) to cluster words (Section 3.3.1) and

sentences (Section 3.3.2), respectively.

3.3.1 Topics via word clustering. To obtain the topics, we consider spectral clustering for the nor-

malized matrix V ′ in (5). Since each row v ′j ∈ Rk , j = 1, ...,n ofV is a k-dimensional representation

of a word, the clustering optimization in (9) takes these n words as the nodes to be grouped into

k sets S1, S2, ..., Sk based on the similarities дj, j′ between pairs of word representation vectors vj
and vj′ . This is equivalent to minimizing the pairwise deviations between representations of nodes

within the sets:

S = arg min

{S1, ...,Sk }

k∑
p=1

∑
j, j′∈Sp | |v ′j −v ′j′ | |2

2|Sp |
. (12)

This optimization is equivalent to a KMeans clustering [27] of the vectors v ′
1
, ...,v ′n . The number of

clusters is determined by the number of segments k , and each resulting word cluster Sp refers to a

topic. To obtain a description of each topic in terms of its top words, we further rank the words in

each cluster according to the standard term frequency-inverse document frequency (tf-idf) metric

[39] applied to the awarded sentence-word matrix X a
in (1). The tf-idf assignment matrix F is

obtained during the matrix decomposition process and it is the same size of X a
. To assign each

word a single tf-idf score for sorting, we sum the tf-idf scores of each word over all sentences. The

summed scores for every word are therefore used for sorting.

3.3.2 Segments via sentence clustering. We then turn to clustering the normalized matrix U ′ in
(5) to obtain the segments. Compared with the topic clustering problem, this one will have more

constraints since the clusters are related to the sentence orders and the cluster sizes can be largely

uneven. As a result, the KMeans method is no longer applicable, and we resort instead to an

agglomerative clustering method with connectivity constraints [13] to solve (9). In agglomerative

clustering, nodes are grouped together sequentially according to their pairwise similarities: the

process recursively merges two groups of nodes that yield the minimum between-cluster distance

together into one group, with this merged cluster then being seen as a node in the following

iterations.

Formally, recall that the sentence embeddings are the rows u ′i ∈ Rk , i = 1, ...,m of the matrix U ′.
We form the graph of sentences GS = (V ,ES ), where V = {i |i = 1, 2, ...,m} and ES = {(i, j)|i, j =
1, 2, ...,m, i , j}, with the weight of the edge (i, j) ∈ ES being the cosine similarity between u ′i
and u ′j . The ordering constraint should be such that only adjacent sentences can be clustered; we

therefore initialize a connectivity graphG1

C = (V ,E1

C )where for all pairs of nodes i, j ∈ V , (i, j) ∈ E1

C
if and only if j = i + 1, i.e., each node connects to the next sentence. Letting Sri denote cluster i of
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Algorithm 2 BATS topic modeling and text segmentation.

INPUT: Single text document, segment number k

PARAMETER: Awarding value λ, window sizew , decaying rate d

OUTPUT: Topic words, text segments

1: procedureMainProcess(text, k , λ,w , d)

2: Remove degree-one words from text.

3: Compute sentence-word matrix X o
and POS-based matrix T .

4: U ′,V ′, F ←MAT_DECOMP(X o
, T , λ,w , d , k). // Alg.1

5: Cluster the rows of V ′ with KMeans into k clusters. Sort the words in each cluster by F

(tf-idf scores).

6: Cluster the rows ofU ′ with agglomerative clustering into k clusters with a connectivity

constraint.

7: Topic words← Sorted words in each cluster

8: Text segments← Sentence clusters

9: return Topic words, Text segments

the sentences at the r th iteration, initialized as S1

i = {i} for each i , the merging operation of our

constrained agglomerative clustering is given by

(Srp , Srq) = arg min

(i, j)∈ErC
D(Sri , Srj ),

Sr+1

p = Srp ∪ Srq ,
Sr+1

q = ∅,
Er+1

C = ErC \ {(p,q)} ∪ {(p,ar (q)},

(13)

for r = 1, ...,m − k , where D(Sri , Srj ) refers to the distance between the sets Sri and Srj , which is

treated as the average distance between sentences in Sri and S
r
j according to their link weights in

ES , and a
r (q) = v : (q,v) ∈ ErC is the single node that q points to in Gr

C . In each iteration, the two

adjacent clusters of sentences that have minimum distance are merged together. The procedure

ends after r =m − k iterations, when there are k clusters i for which Ski , ∅; these are taken as the

segments.

3.3.3 BATS methodology summary. The full BATS topic modeling and text segmentation method-

ology (including Algorithm 1) developed in this section is summarized in Algorithm 2. The inputs

are the single text document of interest and k , the number of topics and segments to extract.

The algorithm begins with denoising, which removes all degree-one words, and constructing the

sentence-word matrix X o
and parts-of-speech matrix T . X o

and T are then inputted to the matrix

decomposition procedure, detailed in Algorithm 1, which employs sentence bonding and graph

Laplacian regularization to obtain the matricesU ′ andV ′, containing the encodings of the sentences
and words, and the tf-idf matrix F . The rows of V ′ are then clustered into k clusters of words via

KMeans, with the words in each cluster sorted by tf-idf score in F , forming the topics. Finally,

the rows of U ′ are clustered into k clusters of sentences via constrained agglomerative clustering,

forming the segments.
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3.4 Time Complexity Analysis
We also perform a complexity analysis to investigate the efficiency of our algorithm. From Algo-

rithm 1, note that there are three main procedures in BATS which have major impacts on the time

complexity: matrix decomposition, KMeans clustering for words, and agglomerative clustering for

sentences. The matrix decomposition process consists of multiple matrix multiplication and sum-

mation operations, of which matrix multiplication dominates with a complexity of O(max(m3,n3)),
wherem and n are the number of sentences and words, respectively. However, in our application,

the sentence-word matrix is sparse and therefore the matrix decomposition procedure can be done

in a much less complex manner. Sparse matrices are usually stored in compressed sparse column

(CSC) format, compressed sparse row (CSR) format, or triplet format. The complexity of matrix

operations on these compressed formats depends mainly on the number of non-zero entries [7].

Formally, we can show that these non-zero entries in the matrix decomposition dominate the time

complexity of BATS:

Lemma 1. For a given document, let z be the number of non-zero entries in X a ∈ Rn×m . For
sufficiently large n, i.e., for sufficient diversity in the number of unique words comprising a document,
the runtime of BATS can be approximated as O(z2/m).

Proof. Since we are doing multiplication based on CSC or CSR format, from [7], the complexity

of the matrix decomposition under sparse conditions is known to be

O

(
max

(
z2

m
,
z2

n

))
, (14)

where z is the number of non-zero entries. In the KMeans clustering procedure, all n word vectors

are compared to k centroids to find the closest centroid, and this step iterates tK times, leading to a

time complexity of O(ntKk). In the constrained agglomerative procedure, the similarities between

m sentence vectors are computed for clustering, and with tA iterations, the time complexity is

O(tAm logm) with the efficient priority queue implementation [29]. The overall time complexity of

our method is the sum of all these procedures, which leads to

O

(
max

(z2

m
,
z2

n

)
+ ntKk + tAm logm

)
. (15)

Noting that in most cases n ≫m, tK , tA,k , the term max(z2/m, z2/n) reduces to z2/m, and the term

tAm logm can be ignored. Moreover, tK , tA,k are usually very small (less than 10) compared with

m, and thus ntKk is dominated by n. Noting also that z grows with nm, z2/m will dominate ntKk .
As a result, we can approximate the time complexity as O(z2/m) when n is sufficiently large. □

For the datasets considered in this paper (see Section 4), after preprocessing, we find that the

average percentage of non-zero entries in a document’s X a
matrix (see Table 1) are only 15.2% (for

Introductions), 24.8% (for Textbook), 11.0% (for Lectures), and 23.5% (for Choi). These generate low

expected computational complexities in Lemma 1 as the size of documents grow. The scalability of

BATS will be verified experimentally in Section 4.4.

4 EXPERIMENTAL EVALUATION AND DISCUSSION
We turn now to evaluating our BATS methodology. After describing the datasets (Section 4.1), we

consider performance against baselines on the topic modeling (Section 4.2) and text segmentation

(Section 4.3) tasks. Finally, we consider the scalability of our method (Section 4.4). All experiments

are conducted on a server with eight 4.2GHz Intel Core i7-7700k processors and 16 GB of memory.
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Table 1. Basic statistics of the four datasets used for evaluation. The first three are used in topic modeling,
while all four are used in text segmentation.
Dataset Documents Avg. sentences Avg. segments Avg. words Avg. words Avg distinct words Avg. distinct words Avg. sparsity Avg. sparsity

per doc per doc before preproc. after preproc. before preproc. after preproc. before preproc. after preproc.

Textbook 227 136 4 2590 3551 640 241 97.9% 75.2%

Lectures 55 392 8 4924 8002 686 342 99.0% 89.0%

Introductions 2135 195 5 4752 7022 1016 449 98.6% 84.8%

Choi 920 74 10 (const) 1673 1489 650 162 98.0% 76.5%

a
The number of segments for each document in the Choi dataset is set to be constantly 10.

4.1 Description of Datasets
We consider documents from four datasets – Textbook, Lectures, Introductions, and Choi – obtained

from different text applications. Basic statistics on these datasets are given in Table 1, including the

number of documents, the average sentences per document, the average word counts per document,

and the average sparsity per document (fraction of zero entries in the X a
matrix), before and after

the preprocessing procedures of stopword removal, degree-one removal, and noun/verb awarding

described in Section 3.1. More specifics on these datasets are as follows:

(i) Textbook dataset: This is drawn from the medical textbook in [47]. Each chapter is treated as a

document, and each section as a segment. The numbers of segments per document and the numbers

of sentences per segment have a high variance. Moreover, segments within a document tend to be

similar in their constituent words, as they are different sections of the same chapter. As a result,

this dataset helps us to test the algorithms on cases where documents have different segments

discussing similar topics.

(ii) Lectures dataset: This dataset contains transcripts of conversational lectures on AI and physics

topics.
3
As each lecture is divided into sections by the speaker, we treat lectures as documents

and sections as segments. Each lecture script has 6-10 sections, and the topics of the sections are

relatively independent. Compared with the other datasets, the sentences are more conversational,

tending to be shorter and simpler. Therefore, this dataset helps us examine algorithm performance

on lengthy conversational documents.

(iii) Introductions dataset: In this dataset, every document is an artificial combination of abstracts and

introductions from academic articles in different fields.
4
We randomly choose 3-8 articles, extract

the abstract and introduction as one sample, and combine multiple samples into one document.

Each sample is treated as one segment in the text segmentation task. Compared with the other

datasets, this will allow us to test on cases with large segment sizes, uneven segment lengths, and a

diverse set of topics.

(iv) Choi dataset: This is a standard dataset [10] widely used to evaluate text segmentation ap-

proaches. The documents in the dataset are artificial combinations of the first ℓ sentences of the
documents in the Brown corpus [19]. Each document has 10 segments, with few sentences per

segment. Because the dataset lacks explicit topic distributions and contains mostly segments that

are too short for topic modeling, we use it only for evaluating text segmentation.

4.2 Topic Modeling
We first consider the performance of BATS in topic modeling on the Textbook, Lectures, and

Introductions datasets compared with five standard baselines.

4.2.1 Topic modeling baselines. We compared BATS against five state-of-the-art baselines for topic

modeling:

3
These are from https://github.com/jacobeisenstein/bayes-seg/tree/master/data/lectures.

4
These are taken from the sentence classification datasets at https://archive.ics.uci.edu/ml/datasets/Sentence+Classification.
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Topic 1 Topic 2

Human 
Summary

“Effects of protein epsin on a 
membrance with clathrin-coat in 
eukaryotic cells.”

“Investigate the conditions of 
existence of the energy function.”

BATS
membrane protein coat clathrin
result   vesicle suggest   cell domain  
interaction

function energy study   potential
algorithm symbol demonstrate   
rule framework adaption

LSA
clathrin epsin coat   membrane
energy protein vesicle parameter
bind   symbol

citation   model number   parameter
function protein symbol energy
membrane use

LDA
make   membrane parameter   
clathrin study   behavior   describe   
work   problem   experiment

function show   analysis   algorithm
morphology   heuristic space   apt   
inference   example

Fig. 3. Example of topics extracted from an arbitrary document in the Introductions dataset. Words in color
red are those consistent with a human-generated summary, and duplicated words are boldfaced. Our results
produce the best descriptions as well as the least overlaps.

(i) Latent Dirichlet Allocation (LDA) [3]: LDA is a probabilistic topic model which uses two inde-

pendent Dirichlet priors for the document-topic and word-topic distributions. It trains a model to

best estimate the Bayesian probabilities P(word |topic) and P(topic |document). We use the sklearn
implementation in Python with the default parameters.

(ii) Hierarchical Dirichlet Process (HDP) [44]: HDP is a mixed-membership model which extends

LDA to an unknown number of topics by building a hierarchy. Specifically, it builds a two-level

hierarchical Dirichlet process at the document-level and the word-level to perform parameter

inference. We use the gensim implementation in Python with the default parameters.

(iii) Latent Semantic Analysis (LSA) [14]: LSA decomposes a document-word matrix, based on TF-IDF

scores, into a document-topic matrix and a topic-word matrix; the decomposition is performed

through a truncated SVD technique. We use the gensim implementation in Python.

(iv) Probabilistic Latent Semantic Analysis (pLSA) [24]: pLSA is developed from LSA, using a proba-

bilistic method instead of SVD to find the latent topics via generative modeling of the observed

document-word matrix. We implement pLSA de-novo in Python, using 30 as the max number of

iterations, 10.0 as the breaking threshold, and k as the number of topics.

(v) Non-negative Matrix Factorization (NMF) [35]: NMF is a linear-algebraic model which factorizes

a high-dimensional matrix into two lower-dimensional ones. In this case, NMF decomposes the

document-word matrix (based on TF-IDF scores) into a topic matrix and a coefficient matrix for

the topics. We use the sklearn implementation in Python with the default parameters.

Since our focus is on single document topic modeling, we evaluate the models on each document

separately. Given that the baselines usually learn across multiple documents, to provide a fair

comparison, we treat the sentences within each document as the “documents” for the baselines, i.e.,

we feed them the preprocessed sentence-word matrices. For each document, the number of topics

assumed by each baseline is taken to be the number of segments. The performance of each baseline

is averaged over several trials.

4.2.2 Evaluation metrics. We employ two popular coherence metrics to assess extracted topic: CV

[42] and UMass [32]. Higher values of these metrics have been associated with better performance

in terms of interpretability and consistency of topics with human evaluation [42]. Since these

metrics treat topics separately, in order to evaluate the diversity between topics, we also include

two similarity measures: Jaccard (Jacc) Index and Sørensen-Dice (Dice) Index [22]. They measure

overlaps in words between the topics, with lower values (i.e., less overlap) being better. More

specifically:
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T1
hypothesis patient problem examination symptom

laboratory sign history physical disease

T2
patient problem examination symptom hypothesis
sign physical pain mark palpate

T3
symptom hypothesis sign patient disease

laboratory analysis history pain problem

T4
palpate examine examination ascites patient

sign system problem skin disease

T5
laboratory hypothesis examination physical history

patient data palpate process physician

Fig. 4. Example of topics extracted from one document (known to have five topics) in the Textbook dataset
by LSA. Duplicated words are denoted in boldface. There is high overlap, motivating the need to consider
topic diversity in addition to coherence.

(i) Topic coherence measures: CV is an extrinsic metric which uses an external corpus (i.e., a different

corpus from the dataset under consideration) to compute empirical probabilities of each topic word.

It then checks word co-occurrences within a Boolean sliding window, computes the normalized

pointwise mutual information, and averages the results. By contrast, UMass is an intrinsic evaluation

metric which takes the sequence of words into consideration by computing the conditional log-

probability of each pair of words; the pairwise scores are not symmetric, and therefore the order of

the words matters. In our single-document evaluation, we consider the external corpus for CV to

be the dataset from which that document originates, and the internal corpus for UMass to be the

document itself.

(ii) Similarity score measures: With Ti and Tj as the sets of words comprising topics i and j , the Jacc
Jacc(Ti ,Tj ) and Dice Dice(Ti ,Tj ) similarity scores are computed as:

Jacc(Ti ,Tj ) =
|Ti ∩Tj |
|Ti ∪Tj |

, (16)

Dice(Ti ,Tj ) =
2|Ti ∩Tj |
|Ti | + |Tj |

. (17)

To see the importance of considering both types of metrics, consider the example in Figure 3,

which shows topics extracted from an arbitrary document. Those extracted by the LSA baseline

tend to have many duplicated words (50% in the example) as compared with results from LDA

and BATS, even though it has roughly the same number of words that are consistent with a

human-generated summary as our method. Further, since the overall scores for each document are

averaged across topics, poor results in terms of one metric on any given topic can be outweighed by

high performance on other topics. Since the overall topic coherence scores for each document are

averaged across topics, similar topics with duplicate words and high coherence scores will achieve

a high average score. Figure 4 shows another example of this for LSA: though this method achieves

high topic coherence, the topics are highly overlapped, motivating the need to take diversity into

consideration.

As a result, we also define composite metrics for evaluation which penalize the coherence scores

on pairs of topics according to the similarity scores. Specifically, using CVi and UMassi as the
coherence scores for topic i and simi, j as the similarity score between topics i and j according to
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Table 2. Performance of each algorithm on the Introductions, Textbook and Lectures datasets in terms of
topic coherence, similarity, and composite metrics. The means and standard deviations across documents are
shown. Our algorithm has the highest performance on most of the metrics, indicating it achieves the best
balance between topic coherence and diversity.

Textbook Dataset

Jacc Dice CV CV Jacc CVDice
UMass UMass Jacc UMassDice

LDA 0.00 ± 0.00 0.00 ± 0.00 0.45 ± 0.07 0.45 ± 0.07 0.45 ± 0.07 −14.74 ± 2.78 −14.74 ± 2.78 −14.74 ± 2.78

HDP 0.01 ± 0.01 0.02 ± 0.02 0.33 ± 0.05 0.32 ± 0.05 0.32 ± 0.05 −22.30 ± 0.61 −22.52 ± 0.68 −22.72 ± 0.80

LSA 0.28 ± 0.10 0.42 ± 0.13 0.57 ± 0.08 0.41 ± 0.08 0.33 ± 0.09 −8.11 ± 2.21 −10.38 ± 2.96 −11.49 ± 3.30

pLSA 0.10 ± 0.09 0.14 ± 0.12 0.35 ± 0.10 0.33 ± 0.09 0.31 ± 0.09 −14.65 ± 2.82 −16.06 ± 3.34 −16.78 ± 3.77

NMF 0.21 ± 0.10 0.31 ± 0.13 0.47 ± 0.09 0.37 ± 0.07 0.32 ± 0.07 −13.41 ± 2.82 −15.94 ± 3.99 −17.22 ± 4.28

BATS 0.00 ± 0.00 0.00 ± 0.00 0.53 ± 0.07 0.53 ± 0.07 0.53 ± 0.07 −11.37 ± 2.45 −11.37 ± 2.45 −11.37 ± 2.45

Lectures Dataset

Jacc Dice CV CV Jacc CVDice
UMass UMass Jacc UMassDice

LDA 0.00 ± 0.00 0.00 ± 0.00 0.39 ± 0.05 0.39 ± 0.05 0.39 ± 0.05 −14.60 ± 2.52 −14.60 ± 2.52 −14.60 ± 2.52

HDP 0.01 ± 0.01 0.01 ± 0.01 0.38 ± 0.04 0.38 ± 0.04 0.38 ± 0.04 −21.55 ± 0.34 −21.72 ± 0.37 −21.86 ± 0.42

LSA 0.27 ± 0.07 0.41 ± 0.09 0.53 ± 0.08 0.38 ± 0.06 0.31 ± 0.05 −7.13 ± 1.76 −8.97 ± 2.12 −9.92 ± 2.34
pLSA 0.04 ± 0.03 0.07 ± 0.04 0.36 ± 0.04 0.35 ± 0.04 0.34 ± 0.04 −19.44 ± 0.78 −20.27 ± 1.04 −20.901.31

NMF 0.26 ± 0.08 0.39 ± 0.10 0.47 ± 0.05 0.35 ± 0.04 0.29 ± 0.05 −9.07 ± 2.30 −11.39 ± 2.84 −12.51 ± 3.10

BATS 0.00 ± 0.00 0.00 ± 0.00 0.48 ± 0.04 0.48 ± 0.04 0.48 ± 0.04 −10.80 ± 1.75 −10.80 ± 1.75 −10.80 ± 1.75

Introductions Dataset

Jacc Dice CV CV Jacc CVDice
UMass UMass Jacc UMassDice

LDA 0.00 ± 0.00 0.00 ± 0.00 0.30 ± 0.04 0.30 ± 0.04 0.30 ± 0.04 −15.38 ± 1.72 −15.38 ± 1.72 −15.38 ± 1.72

HDP 0.01 ± 0.01 0.01 ± 0.02 0.33 ± 0.04 0.33 ± 0.04 0.33 ± 0.04 −21.78 ± 1.61 −21.92 ± 1.61 −22.04 ± 1.62

LSA 0.21 ± 0.09 0.31 ± 0.12 0.43 ± 0.07 0.34 ± 0.07 0.30 ± 0.06 −8.11 ± 2.03 −9.88 ± 2.77 −10.77 ± 3.11

pLSA 0.04 ± 0.05 0.06 ± 0.07 0.35 ± 0.09 0.35 ± 0.09 0.35 ± 0.09 −16.15 ± 2.29 16.76 ± 2.39 −17.16 ± 2.56

NMF 0.21 ± 0.08 0.32 ± 0.11 0.31 ± 0.05 0.25 ± 0.04 0.21 ± 0.04 −14.18 ± 2.32 −17.05 ± 2.61 −18.50 ± 2.85

BATS 0.00 ± 0.00 0.00 ± 0.00 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 −8.18 ± 1.68 −8.18 ± 1.68 −8.18 ± 1.68
a
The titles of composite metrics are highlighted in boldface.

b
The best results on each metric are highlighted in boldface.

Jacc or Dice, we compute the following:

CV sim =

∑k
i=1

∑k
j=1
(CVi + CVj )(1 − simi, j )/2

k2
, (18)

UMasssim =

∑k
i=1

∑k
j=1
(UMassi + UMassj )(1 + simi, j )/2

k2
, (19)

where k refers to the total number of topics. Since CV scores are positive and UMass scores are

negative, penalties are set as 1 − simi, j and 1 + simi, j , respectively.

4.2.3 Results and discussion. The results obtained by each algorithm on the three datasets are

given in Table 2. We present the mean and standard deviations on topic diversity, topic coherence,

and the four cases of joint metrics. The first two columns, Jacc and Dice, indicate the diversities of

the topics (smaller being better). The following columns then give the topic coherence scores, CV

and UMass (larger being better), followed by their combinations with the similarity measures (e.g.,

CV Dice
is CV with Dice used for simi j in (18)).

Overall, we see that compared with the baselines, our method BATS obtains competitive topic
coherence scores, the lowest similarity scores, and the best composite scores in most cases. For the Intro-
ductions dataset, our method maintains higher performance than all baselines in all metrics except

UMass. On the Textbook and Lectures datasets, our method still obtains the highest performance

in the most cases. Across the datasets, the percent improvements over the strongest baselines in
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Table 3. Text segmentation evaluation metrics obtained on each of the four datasets. The average and standard
deviation of each metric across documents is shown. Our method outperforms the baselines in all cases,
except for C99 on the Choi dataset.

Textbook Dataset Lectures Dataset Introductions Dataset Choi Dataset

Pk WD Pk WD Pk WD Pk WD

TextTiling 0.45 ± 0.177 0.47 ± 0.169 0.43 ± 0.099 0.48 ± 0.088 0.29 ± 0.158 0.33 ± 0.170 0.33 ± 0.076 0.34 ± 0.075

C99 0.55 ± 0.142 0.79 ± 0.206 0.51 ± 0.075 0.85 ± 0.164 0.20 ± 0.120 0.29 ± 0.184 0.14 ± 0.077 0.15 ± 0.081
TopSeg 0.58 ± 0.128 0.71 ± 0.091 0.60 ± 0.088 0.75 ± 0.084 0.59 ± 0.090 0.72 ± 0.085 0.41 ± 0.056 0.44 ± 0.062

LDA_MDP 0.52 ± 0.161 0.60 ± 0.121 0.53 ± 0.117 0.63 ± 0.118 0.51 ± 0.142 0.59 ± 0.136 0.49 ± 0.079 0.050 ± 0.088

TopicTiling 0.50 ± 0.157 0.56 ± 0.140 0.51 ± 0.110 0.56 ± 0.100 0.50 ± 0.138 0.57 ± 0.122 0.45 ± 0.079 0.47 ± 0.082

BATS 0.42 ± 0.167 0.44 ± 0.165 0.41 ± 0.161 0.46 ± 0.118 0.16 ± 0.134 0.18 ± 0.147 0.22 ± 0.103 0.23 ± 0.109

a
The scores in boldface are the best performing ones for each dataset and metric.

the composite CV metrics are between 18% and 40%. The baseline which tends to outperform our

algorithm in terms of topic coherence, LSA, also performs the worst in terms of topic diversity.

To interpret this diversity performance, we note that a Jacc score of 0.25 and a Dice score of 0.4
correspond roughly to |Ti ∩Tj | ∝ 0.4 in (16),(17), i.e., a 40% duplication between topics. Thus, LSA

(as well as NMF) usually has up to 40% average overlap in topic words, leading to confusing topics,

while our method yields no noticeable overlap. On the other hand, the baseline which matches our

algorithm in topic diversity, LDA, is among the lowest performing in terms of coherence, which is

also reflected in the composite metrics. We can thus conclude that, among the algorithms tested,

our algorithm finds the best balance between topic coherence and diversity for single document topic

modeling; its consistent performance across the datasets also shows that it is robust to variations

in dataset properties like segment and document length.

We also observe an interesting pattern in the baselines: the spectral methods – LSA and NMF

– perform high in coherence but low in similarity, while the generative models – LDA and pLSA

– have the opposite trends. While spectral approaches can extract topics that are interpretable

when taken individually, there is high similarity between them because they are based on matrix

decomposition and do not consider diversity. Generative models can extract diversified topics, but

when they are operating on single documents with few word co-occurrences, the resulting topics

will not be as coherent. These observations are consistent with the comparison between LSA, LDA,

and BATS in Figure 3.

4.3 Text Segmentation
Next, we consider the performance of BATS in text segmentation on the four datasets compared

with five standard baselines.

4.3.1 Text segmentation baselines. We compared BATS against five state-of-the-art baselines for

the text segmentation task:

(i) TextTiling [23]: TextTiling divides the text into pseudosentences, assigns similarity scores at the

gaps, detects peak differences in the scores, and marks the peaks as boundaries. The boundaries

are normalized to the closest sentence breaks. We use the implementation from the nltk package

in Python.

(ii) C99 [10]: C99 is another popular text segmentation algorithm that inserts boundaries based

on average inter-sentence similarities. More specifically, a ranking transformation is performed,

pairwise cosine distances between sentences are computed based on the ranking, and boundaries

are determined based on these similarities. We implement C99 de-novo in Python.

(iii) TopSeg [4]: TopSeg is a text segmentation method which make use of the pLSA topic modeling

technique. The model requires pretraining the topic model on the targeting dataset, and the text
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Fig. 5. Factor increase in runtime when varying the number of sentences in each segment for the Choi dataset.
The time increase is relative to the case of 50 sentences, and each bar is an average over 10 runs. Our method
scales well compared with the baselines.

segmentation process is then dependent on the trained topic model. We implement the TopSeg

model de-novo in Python.

(iv) Modified DP Algorithm with LDA (LDA_MDP) [33]: LDA_MDP performs text segmentation based

on another topic model, LDA, with the segmentation being implemented with dynamic processing

(DP) techniques. The method has also been tested using an alternate topic model, multinomial

mixture, but LDA has has been found to obtain better performance. We implement the LDA_MDP

model de-novo in Python.

(v) TopicTiling [41]: TopicTiling is based on TextTiling, with additionally integrated topic infor-

mation from the LDA topic model for text segmentation. We implement TopicTiling de-novo in

Python, using a window size of 2 and 500 iterations.

To say consistent across the algorithms, note that for the topic-based text segmentation methods

– TopSeg, LDA_MDP, and TopicTiling – we train the topic model with the single document that it

is segmenting.

4.3.2 Evaluation metrics. We consider two standard text segmentation metrics, Pk [2] and Win-

dowDiff (WD) [37]. Lower values indicate better performance. Each of these metrics compares the

ground truth (i.e., reference) segmentation ref to the estimated (i.e., hypothesized) segmentation

hyp. The Pk metric calculates the number of disagreements in the positions of segment boundaries

between hyp and ref; in doing so, it ignores the exact number of boundaries to be detected, and

weights false positives more heavily [37]. WD, on the other hand, slides a fixed-sized window

across the document, calculates the number of boundaries within that window, and records an

error if ref and hyp disagree on the number.

Formally, let (x1,x2, ...,xN ) be the sequence of N words comprising a document, where each

xi ∈ W, the set of document words. With δz (i, j) as the binary indicator of whether words xi and
x j are in the same segment under segmentation z, and bz (i, j) as the number of segment boundaries
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between xi and x j under z, the metrics are calculated as

Pk =
1

N − ℓ

N−ℓ∑
i=1

1{|δhyp(i, i + ℓ) − δref(i, i + ℓ)| > 0}, (20)

WD =
1

N − ℓ

N−ℓ∑
i=1

1{|bhyp(i, i + ℓ) − bref(i, i + ℓ)| > 0}, (21)

where the window size ℓ is set to one less than half the average segment length, and 1 is the

indicator function.

4.3.3 Results and discussion. The results obtained by each algorithm on each of the four datasets

are given in Table 3. The mean and standard deviation across documents is shown in each case.

Overall, we see that our method BATS consistently outperforms all of the baselines in terms of text
segmentation on the first three datasets. The highest performing baseline changes depending on the

dataset, with TextTiling being most competitive on Textbooks and Lectures, and C99 being most

competitive on Introductions and Choi. The three topic-based text segmentation methods (TopSeg,

LDA_MDP, and TopicTiling) actually perform considerably worse than these other baselines,

possibly due to single documents containing insufficient data for training their topic models (recall

in particular that LDA had poor topic diversity performance in Table 3). Combined with the results

in Sec. 4.2, we conclude that our method is capable of identifying accurate segment boundaries and
topic words for a single document simultaneously.
On the Choi dataset, BATS outperforms each of the baselines except C99. C99 is designed

specifically with datasets such as Choi in mind, where documents are artificially built with identical

numbers of short segments and sparse content in each segment [10]. Specifically, as shown in Table

1, the average sentences per segment and per document in Choi are significantly smaller than the

other three datasets. This is due to the way it is constructed – with each document as combinations

of first ℓ sentences from documents in another corpus – making it less realistic than the other

datasets.

4.4 Scalability Analysis
Finally, we evaluate the effect of the number of sentences and segments on the runtime of ourmethod

compared with the baselines. Figure 5 shows the increase in runtime from varying the number of

sentences in each segment for the Choi dataset, relative to the case of 50 sentences (we choose this

dataset because all documents are constructed with a constant number of segments). We can see

that the growth in runtime of our methodology BATS is comparable to the most scalable baselines,
with the rate of increase in runtime less than the corresponding increase in sentences. Additionally,

BATS is the only methodology performing both topic modeling and text segmentation. Out of the

baselines in Figure 5, TextTiling, c99, and pLSA have considerably higher increases in runtime, with

pLSA performing the worst. The substantial difference between LSA, the most scalable, and pLSA

is consistent with spectral approaches being known to scale better than generative algorithms that

require multiple iterations [52].

Figure 6 shows the impact on runtime from varying the number of segments per document for

the Lectures dataset (recall from Table 1 this dataset has the longest documents available). Here we

have excluded pLSA, as its runtime is significantly longer, and also the text segmentation baselines,

as their runtimes are not dependent on the number of segments. NMF is by far impacted the most,

followed by LSA, while HDP and LDA exhibit the best scalability. Our method remains impacted

under 10% for a 5-fold increase in segments, again implying that our method supports changes in the
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Fig. 6. Increase in runtime when varying the number of segments per document in the Lectures dataset.
The baseline is 10 segments, and each bar is over 10 runs. Our method again scales well compared with the
baselines.

size of input efficiently. Taken together, Figures 5 and 6 validate our theoretical analysis in Section

3.4 which concluded that BATS has low computational complexity.

5 CONCLUSION AND FUTUREWORK
In this work, we developed an unsupervised, computationally efficient, statistically sound method-

ology called BATS that simultaneously extracts the topics and segments the text from one single

document. BATS first leverages word-order information together with optimization tricks such

as parts-of-speech (POS) tagging to refine a document’s sentence-word matrix. It then obtains a

singular value decomposition from a regularized form of the graph Laplacian, with the singular

vectors yielding low dimensional embeddings of words and sentences. Finally, BATS employs

clustering algorithms to extract topics and text segments from the left and right singular vectors.

Through evaluations against five topic modeling baselines on three datasets, and against five text

segmentation baselines on four datasets, we confirmed that our algorithm achieves the best overall

performance on standard metrics in both topic extraction and segmentation tasks. For topic extrac-

tion, this was especially true when considering the dual objectives of coherence maximization and

similarity minimization across topics. Our experimental results also showed that BATS scales well

with the size of the input data, and that it is robust to changes in dataset characteristics such as

document lengths and segment numbers, which confirmed our preceding analysis on computational

complexity.

We identify several potential avenues of future work. A more elaborate POS awarding scheme in

the sentence-word matrix construction phase may improve topic coherence further. Since BATS

provides both topic and text segment information, the application of our methodology to text

summarization can also be considered, e.g., in identifying the most important segments according

to the number of corresponding topic words, or in generating a set of keywords from topic words

for the entire document. Text summarization on single documents would also be useful for the

motivating examples given in Section 1, e.g., in rapidly summarizing emerging news events for

users.
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