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Abstract—Recognizing the need for proactive analysis of cyber
adversary behavior, this paper presents a new event-driven
simulation model and implementation to reveal the efforts needed
by attackers who have various entry points into a network.
Unlike previous models which focus on the impact of attackers’
actions on the defender’s infrastructure, this work focuses on
the attackers’ strategies and actions. By operating on a request-
response session level, our model provides an abstraction of
how the network infrastructure reacts to access credentials the
adversary might have obtained through a variety of strategies.
We present the current capabilities of the simulator by showing
three variants of Bronze Butler APT on a network with different
user access levels.

Index Terms—DEVS, cybersecurity, adversary behavior, APT

I. INTRODUCTION

Historically, the cybersecurity research of adversary be-
havior was reactive, rather then proactive. However, with
proliferation of Advanced Persistent Threats (APTs), stealthy
malware, and incorporation of machine learning into attacker
control, there is a growing need to proactively study and
develop adversary strategies. Currently, most of the research
focuses on the impact of attackers’ actions and not on the
actions and attack strategies themselves, which is reflected in
the state of available simulation approaches.

To address the lack of appropriate adversary-focused simu-
lation tools, this paper brings two main contributions:

• Introduction of the concept and the implementation of a
new simulation model, enabling evaluation of adversary
behavior on the session level.

• Enabling integration of different attack models within one
simulation engine, demonstrating its flexibility.

This paper is structured as follows. Section II provides
a review of relevant state of the art. In Section III, we
introduce the proposed simulation model and describe its
implementation and integration with different attack models.
Section IV presents our case study referencing to the Bronze
Butler APT (BB) and its implementation in the simulator
engine. In Section V, we evaluate the simulator engine by
showing and reasoning different BB attack strategies using
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random and learning attackers. We conclude the paper and
discuss future opportunities in Section VI.

II. STATE OF THE ART

There exist several approaches to simulate the behavior
of adversaries in networked systems. Some are designed
specifically to test IDS systems, e.g., [1], while others expertly
define static attack scenarios with little configurablility [2].
Some use real networks (virtual machines) [3], and the data
is often tailored to a specific type of attack [4], [5]. In this
section, we review three branches of approaches modelling the
interactions between adversaries and the networked systems,
which are relevant to the adversary simulation approach we
introduce in this paper.

A. Attack Graphs

The attack graphs were first proposed by Swiler et al. [6]
and are used to simulate steps an attacker can take within the
infrastructure. They describe an abstracted network topology
and show the nodes, paths and consequences of network
attacks. Once an attack graph is constructed, it enables various
tasks of network security analysis. The use of attack graphs is a
widely researched topic including attack graph generation [7],
[8], application scenarios [9], [10] and analytic methods [11].
To support automatic graph generation, tools such as MulVAL,
NetSPA, or TVA were developed, as summarized in [12].

The downside to attack graphs is that they require the
totality of knowledge about the target infrastructure and known
vulnerabilities. While they model possible attacker actions,
they are in effect centered on the defense and represent a
vulnerability model rather than an attack model. They offer
only limited options to analyze adversarial behavior.

B. Game Theoretic Approaches

Game theoretic approaches applied to cyber security are
well researched and traditionally involve an attacker-defender
model where the defender optimizes their defensive strategy
for risk minimization [13]–[16] or maximize the uptime of
network assets [17]–[19]. The games played rely on some
amount of information sharing of various amount (complete
or incomplete) where typically the defender observes the at-
tacker and responds according to their objective function [20],



whereas the amount of works focusing on the attacker is either
focused on a specific attack type like DDoS [21] or relies on
unspecified mission models [22]. Liang et al. mentions that the
attacker-defender model specifically for impact assessments
requires extensive data to understand the dynamic relationships
between the attacker and defender, creating complex models
that may or may not have a solution [20].

C. Simulation Approaches

Similar to game theory, the impacts of attacks and attackers
can be realized through the use of configurable cyber at-
tack simulation platforms. NeSSi2, an agent-based simulation
platform by Grunewald et al. [23], models a packet-level
description of a network with the primary focus on simulating
the effects of distributed denial of service (DDoS) attacks.
NeSSi2 models the effects of various worm behaviors and how
worms propagate through a network. This technique proves to
be useful in other contexts such as smart grid networks [24].
Moskal et al. [25], [26] presents a knowledge-based cyber
attack simulator CASCADES, where the attacker’s actions
are determined by the “Attacker Behavior Model" (ABM)
and the knowledge obtained about the target network through
performing actions on the network. CASCADES focuses on a
monte-carlo style approach to attack simulation and generates
1000’s of plausible attack scenarios given the ABM and a
detailed network description known as the Virtual Terrian (VT)

Several other simulation platforms exist and base mostly on
a discrete event formalism, e.g., Chi et al. [27], Liljenstam et
al. [28], Futoransky et al. [29], and Kuhl et al. [30]. These
platforms offer synthetic network and attack emulation and
evaluation. To overcome limited realism, emulators using vir-
tual machines and integrated with offensive tools are available,
such as DCAFE [31] and SVED [32]. It is also worth noting
that others have experimented cybersecurity simulations based
on general-purpose simulators such as OMNet++ [33].

III. SIMULATION MODEL

In this section we present a new non-stochastic simulation
model based on discrete event formalism, which enables
synthetic network attack emulation and evaluation, dynamic
selection of attack models, and integration with non-simulated
IDS systems. This model thus occupies a space between
various simulation models and tools described earlier.

The simulator implementing the model as well as the
evaluation scripts can be freely downloaded from here:
https://muni.cz/go/565e43

A. Model goals

This work aims at developing a cyberattack simulator that
models the interactions between the progression in adversary
intended outcomes and the network session level responses.
Here, the session level means that the units of interaction
between adversaries and the attacked environment are requests
and responses, i.e., rough equivalent of TCP sessions. Such
interactions are meant to maximize autonomy for both the

attackers and defenders. The model described in this paper is
a step towards the longer-term and broader goals to enable:

• lightweight simulation of multi-agent cybersecurity sce-
narios,

• integration of different attack models,
• non-stochastic simulation of interaction between attackers

and defenders for in-depth analysis of attack strategies,
• rapid prototyping of attack and defense strategies,
• *smooth transition of simulated actors into emulated and

real-world settings,
• *modelling of environments, which can be emulated in

virtual environments using already provided data,
• *integration of simulation and emulation to remove the

need to re-implement existing cyberdefense mechanisms.
Note that the last three goals are outside of the scope of

this paper; yet they influence the current model design and
development. Section VI briefly describes the relevant projects
and activities beyond this paper linking to the long-term goals.

B. Model components

The simulation model adopts the message-based approach
and consist of a number of components, which can be divided
into four levels: environment, network, host, and logical.

1) Environment level: The environment level is a top-most
layer of components, which are used for orchestration of
particular scenario runs. There are two components present:
message and environment.

Message is a unit of information exchanged between actors
in the simulation. The message carries routing and statistical
information, activity descriptions and actors’ responses.

Environment keeps track of all simulation elements, man-
ages interaction between these elements by passing messages,
controls the simulation time and evaluates an impact of actors’
activities. It is the only point of interaction between actors and
the simulation.

2) Network level: The network level represents the topol-
ogy of simulation. The components used mimic the compo-
nents of the network, with some simplifications enabled by the
conceptual level the simulation happens on. The components
are: nodes, firewalls, connections, routers, and sessions.

Nodes represent physical or virtual machines. Each node is
accessible from the outside via a set of network ports, which
are a simplification of an Ethernet port, i.e., these ports have an
IP address and can be uniquely identified (although no explicit
MAC addressing is used).

Firewalls function as their real-world counterparts by con-
trolling inbound and outbound messages. They implement an
equivalent of a simplified filter table of iptables with source-
destination filtering and default filtering policies.

Connections represent links between ports of particular
nodes. Messages go through the connections and can be
affected by connection properties.

Routers partition the networks. Unlike the real network
settings, they are the only active switching elements. Routers
control permeability between different networks and enable



fine-grained control depending on both sources and destina-
tions of messages.

Sessions represents a set of connections going through the
network, which are not subject to routing policies in the
intermediate routers. An example of a session is a VPN tunnel
or a tunnel through several layers of NAT. The name stems
from attacker taxonomy, where attacker exploits weaknesses in
infrastructure to open sessions to or from their targets, which
would be otherwise prohibited by intermediate active network
elements.

3) Host level: The host level covers activities happening
at a node. In addition to network ports, a node is modelled
as a set of services representing running processes. A node
does not define an OS, as this is instead expressed as a set
of services representing OS functions required for simulation.
Services come in two variants, which are the components of
the host level: active services and passive services.

Active services can initiate the communication with their
surroundings by sending messages through the environment.
They also processes inbound messages and react according
to their programmed behavior. Thus, they must understand
the semantics of the incoming messages. Typical example of
active services are attackers and defenders, i.e., actors whose
behavior is the focus of a simulation.

Passive services, on the other hand, do not initiate a
communication. Inbound messages are instead evaluated by
the environment based on the definition of a passive service.
The definition contains service name, version, ability to create
sessions, locality, etc. Passive services are used to create
a believable environment for the active services, while not
pushing the burden of implementation on the user of the
simulator.

4) Logical level: The logical level represents the activity
domain for active actors, and relations between scenario ele-
ments and scenario goals. There are four components: data,
authorizations, exploits, and actions.

Data represent units of information, which may be interest-
ing to an attacker, such as trade secrets or employee records.
Obtaining data does not help an attacker with the actual attack,
but they may be essential to reaching the goal of the given
scenario.

Authorizations encode the ability of actors to access partic-
ular services or data. They can be defined in the scenario
configuration or they can be created as a result of actors’
activities, e.g., new authorization resulting from successful
privilege escalation. Terminology-wise, they conflate both au-
thorization and authentication for the sake of simplicity.

Exploits represent mechanisms to abuse vulnerabilities of
particular services and are tied to the name and the version of
a service. To enable better machine reasoning about exploits
and their effects, they are categorized by their effect and
locality and allow only limited parametrization to create a
bounded exploit domain from which an attacker can choose.
The exploits are expected to map to real-life exploits, such as
those listed through CVE.

Actions represent the type of activity of actors. They can
comprise anything from getting the simulation time to launch-
ing a DDoS attack. They are a mean to express an attack
model within a simulator. In this case, we understand the attack
model as an abstraction of activities an attacker can perform.
The actions are then the elements of the actions space defined
by a particular model. One such model, which we used for
our simulation evaluation is presented in the following text.

C. Attack model

Defining the action space of the adversary is a particularly
challenging task for cyber-attack simulators as the action space
is effectively infinite, constantly expanding, and extremely di-
verse in the types of actions that can be performed. Modelling
each vulnerability in the simulator is time consuming and
unsustainable, so we choose to represent the action space as
an abstraction of the objective or intent of an attacker given
the simulated attack stage of the attacker. The Action-Intent
Framework (AIF) [34] is a cyber-attack action classification
framework where the focus is to describe attack actions with
respect to the intended objective of performing a specific
action such as: information discovery, privilege escalation, data
exfiltration, etc. The AIF differentiates itself from other attack
descriptions by providing significantly more detail then typical
Cyber Attack Kill Chains while finding a middle ground
between the highly detailed MITRE ATT&CK by remaining
network and service agnostic.

The AIF is broken up into two layers of abstraction: the
Macro Action-Intent States (Macro-AIS) describe the effect of
the actions at a high-level such as reconnaissance or destroy
information, whereas the Micro Action-Intent States (Micro-
AIS) describe the method used to achieve the corresponding
Macro-AIS. An example is a brute-force credential access
Micro-AIS for the privilege escalation Macro-AIS. We use
the Micro-AIS to represent our desired simulated attack sce-
narios and as a method to select simulated actions given the
network topology and the services running on the network.
Given the session-based approach of our proposed simulation
architecture the abstracted model of the attacker’s process
will allow for attack scenarios to be quickly created and then
applied to the network topology without the need for detailed
exploit definitions. In Section IV we demonstrate how a known
description of a real cyber-attack can be described using the
AIF and then we use that description as the driving force of
our simulation engine.

D. Integration of Components and Simulation Execution

Fig. 1 illustrates the component relations and how mes-
sages traverse between components. When a simulation run
begins, all active services are executed. The services produce
messages, which are inserted into environment queues and
distributed on a hop-by-hop basis to their intended targets.
Thus the message transport mimics the packet transport over
a network. The messages trigger component responses, simu-
lating the actions and responses when the network is attacked.
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Fig. 1. Diagram of model components

A message passing a connection can arrive into a router,
active service, or passive service. Each component computes a
simulation-relative processing time, which models link delays
and processing complexity. Arriving into a router the message
can either be forwarded or dropped based on firewall and
routing rules. If the message arrives in a passive service, it is
evaluated by the environment, which has an implementation of
attack models’ semantics (in our case the AIF). The model’s
implementation decides on the response given the action (in
our case a Micro-AIS) and message and passive service
parameters. If the message arrives into an active service,
the service decides on the response based on the observable
properties of the message. Note that active services do not
have access to action as it would be equivalent to knowing
an attacker’s intent just by looking at the packet and would
bypass the hard problem of cybersecurity analysis.

IV. CASE STUDY: BRONZE BUTLER APT

To present the expressive power of the simulation engine
and to show how it can be used to reason about attackers’ and
defenders’ abilities, we consider various scenarios simulating
Bronze Butler APT breaching into an organization with the
goal of data theft. We model the Bronze Butler APT with
the Micro-AIS described in Sec. III-C and compare it to
the MITRE ATT&CK framework [35]. We then present the
common network topology and an attack graph modelling the
three variants of the breach scenario, which we further discuss.

A. Bronze Butler in Micro-AIS

Bronze Butler is a well documented Chinese hacker group
infamous for targeting Japanese critical infrastructures be-
tween 2012–2017. Bronze Butler has been reported to use a va-
riety of spearphishing techniques, remote access exploits, and
web-based zero-day malware to target high profile executives
to obtain sensitive business strategies and sales information.
Depending on the target, Bronze Butler employed two tech-
niques to gain initial access to their target: 1) a spearphishing
email to an executive with a malicious attachment [36] or
exploited VPN services to gain access to the target network
[37]. The end goal of Bronze Butler is to exfiltrate critical
business or user information through the use of file-share
servers.

We choose to use Bronze Butler for our case study as
the techniques employed by Bronze Bulter are sufficiently
complex to demonstrate the capabilities of our simulation
engine exhibiting distinct behaviors that are well represented
in attack action descriptions such as MITRE ATT&CK and
the AIF.

Bronze Butler is comprised of a team of highly skilled
attackers. However, we abstract the behaviors of Bronze Butler
as a single entity and represent the behaviors as a set of
Micro-AIS to represent their scenario in our simulation engine.
Using the threat reports from SecureWorks [37] and technique
description from MITRE ATT&CK [38], we map attack action
evidences to a corresponding Micro-AIS to capture some of
the key behavioral properties of Bronze Butler that will be
used as the basis of our simulation experiments.

The Table I summarizes Bronze Butler capabilities in terms
of MITRE ATT&CK, the AIF, and the simulation engine.
The table demonstrates that the simulator using Micro-AIS as
an attack model is able to simulate most of Bronze Butler
behavior, with the exception of user interaction and host-
level interaction, by means of simulated actions and their
parameters.

B. Network Topology and Access Control

To emulate the various scenarios how Bronze Butler can
penetrate into a network, we prepare a small-scale network
as depicted in Fig. 2. The topology is partitioned into four
logical segments, separated by routers with firewalls. The
first segment is outside of the organization and represent the
attacker. Note that Bronze Butler may compromise the organi-
zation’s partner in a different network domain. For simplicity,
we consider all external sources in the same network. The
second segment is the DMZ with a Web server, VPN server
and an Email server. Each server has two network interfaces,
one accessible from the outside and the other accessible from
the inside. The third segment contains the desktop machines of
an employee and a CTO. Machines in this segment can access
the DMZ and can only be accessed from the SRV segment. The
fourth is the SRV segment containing an API gateway to the
organization’s services, a database server (DB), and a domain
controller (DC). This segment is accessible from the DMZ
and from the CTO’s PC. The API gateway is also accessible
via a VPN tunnel from the outside. The simulated machines
are populated with various services and access credentials to
enable the attacker multiple paths through the network.

To limit the scope of the demonstration and to better reason
about the simulating engine, the modelled network does not
contain any active defenses. The defenses are passive and
based on network and host access control. While the resulting
configuration cannot be considered secure, it will be shown
later that it is hardened enough to resist inept attack attempts.

C. Attack Graph and Scenario Variations

The combination of the network configuration, the deployed
services, and the access credentials on the simulated hosts,
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gives the Bronze Butler multiple ways to achieve the ulti-
mate goal of exfiltrating data from the DB server. We have
manually crafted an attack graph from the total knowledge of
the scenario. The attack graph covering all shortest paths is
depicted in the Fig. 3. To preserve clarity of the graph, the
paths that do not lead to the goal are excluded; these paths,
however, can be explored by the attacker in the simulation
and can greatly prolong the attack duration. This can lead to a
counter-intuitive behavior of attacker with elevated privileges,
which is later discussed in the Section V-C.

Despite the possible variations, each path in the attack
graph starts with a successful spearphishing attempt, because
it is the predominant entry-point for the Bronze Butler APT.
Note that the current simulation concentrates on modeling the
interactions between the attacker and the network, and does not
include the exact user interactions with the attacker phishing
emails, for example. For each scenario variant the attacker

begins with the simulated artifact of the phishing attempt - an
opened session to the target machine.

There are three main variants of the scenario, which differ
by the successfully spearfished machine. The first one repre-
sent a successful attack on the CTO of the organization, who
can access the DB server and also has the necessary credentials
to extract the goal data from the database. The second one
represents a successful attack on the partner, who has an API
access via VPN into the SRV segment. The attacker has to
use the API server as a stepping stone to get access to the
domain controller and follow by forging a golden Kerberos
ticket, which is then abused to get access to the data. The
most complicated variant begins with a successful attack on
an employee. The attacker has to go through the Web server
in DMZ, discover domain controller credentials there and con-
tinue the attack inside the SRV segment as in the previous case.
Those three variants require the attacker to execute 2(3), 6(7),
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T1087 used net user /domain to identify account information. information discovery
T1088 malware xxmm contains a UAC bypass tool for privilege escalation. user privilege escalation
T1003 used various tools to perform credential dumping. information discovery
T1005 exfiltrated files stolen from local systems. data exfiltration
T1039 exfiltrated files stolen from file shares. data exfiltration
T1140 downloads encoded payloads and decodes them on the victim. lateral movement
T1083 collected a list of files from the victim and uploaded it to its C2 server, and then created a new list of specific files to steal. data exfiltration
T1107 uses command to delete the RAR archives after they have been exfiltrated. data destruction
T1097 created forged Kerberos Ticket Granting Ticket (TGT) and Ticket Granting Service (TGS) tickets to maintain administrative access. root privilege escalation
T1060 used a batch script that adds a Registry Run key to establish malware persistence. lateral movement
T1105 used various tools to download files, including DGet (a similar tool to wget). lateral movement
T1018 use ping and Net to enumerate systems. host discovery
T1053 used at and schtasks to register a scheduled task to execute malware during lateral movement. lateral movement
T1102 MSGET downloader uses a dead drop resolver to access malicious payloads. lateral movement
T1113 used a tool to capture screenshots. information discovery
T1124 used net time to check the local time on a target system. -
T1210 used a CVE-2016-7836 to exploit VPN connection command and control

A
ct
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n
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et
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za

tio
n T1024 used a tool called RarStar that encodes data with a custom XOR algorithm when posting it to a C2 server. -

T1002 compressed data into password-protected RAR archives prior to exfiltration. -
T1059 uses the command-line interface. -
T1132 encode data with base64 when posting it to a C2 server. -
T1022 compressed and encrypted data into password-protected RAR archives prior to exfiltration. -
T1086 used PowerShell for execution. -
T1064 used VBS, VBE, and batch scripts for execution. -
T1071 used HTTP for C2. -
T1032 used RC4 encryption (for Datper malware) and AES (for xxmm malware) to obfuscate HTTP traffic. -

U
se

r
in

te
ra

ct
io

n T1189 compromised three Japanese websites using a Flash exploit to perform watering hole attacks. -
T1193 used spearphishing emails with malicious Microsoft Word attachments to infect victims. -
T1203 exploited Microsoft Word vulnerability CVE-2014-4114 for execution. -
T1204 attempted to get users to launch malicious Microsoft Word attachments delivered via spearphishing emails. -

N
/A T1009 included "0" characters at the end of the file to inflate the file size in a likely attempt to evade anti-virus detection. -

T1036 given malware the same name as an existing file on the file share server to cause users to unwittingly launch and install the malware on additional systems. -

TABLE I
BRONZE BUTLER APT CAPABILITIES IN TERMS OF MITRE ATT&CK FRAMEWORK, THE AIF, AND THE SIMULATION ENGINE.
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and 7(9) appropriate actions respectively to achieve the goal.
The numbers above represent the minimal number of steps
in the attack graph from the given start to the terminal node.
The numbers in parentheses also include the reconnaissance
steps, which would be necessary in a real-world setting. Note
that each step could actually be one or many activities in
simulation, especially in case of reconnaissance.

V. EVALUATION AND DISCUSSION

In this section, we introduce three different implementations
of Bronze Butler, each representing a different attack strategy;
namely a scripted, a random, and a learning attackers. We
deploy these attackers into the simulator and let them attempt
the three scenario variants. By analyzing the results and
extracting insights into the attack strategies, we demonstrate
how the simulator can be used to reason about particular attack
strategies and about attackers’ behavior.

A. Scripted attacker

The scripted attacker represents the idealist situation and
follows the shortest path in the attack graph from each of the
three starting points, as depicted in Fig. 3. This attacker type
is implemented as omniscient, i.e. knowing the topology of
the infrastructure and all system weaknesses, so it does not
need to perform reconassance tasks. Therefore, its number of
actions is the lower bound on actions needed to finish each
scenario variation. For the three scenario variants (CTO, VPN,
and Employee), the abstract actions are:

• CTO: Acquire CTO credentials and Exfiltrate data from
the DB server (2 total).

• VPN: Access infrastructure via VPN exploit, Acquire DC
credentials, Establish session to the DC, Get root access
to the DC, Get the golden ticket, Exfiltrate data from the
DB server (6 total).

• Employee: Acquire Employee credentials, Establish ses-
sion to the Web server, Acquire DC credentials, Establish
session to the DC, Get root access to the DC, Get the
golden ticket, Exfiltrate data from the DB server (7 total).

The total counts shown above are the minimal steps for
each variant and the attacker cannot take a shorter path due
to the lack of access or authorization. It is not surprising the
CTO case presents much shorter path than the other two in this
idealist setting. In reality, however, getting the CTO credential

might be harder to achieve than getting such from the large
population of employees, especially if the CTO is well versed
in cybersecurity hygiene.

Note that the minimal step counts will be used to calculate
the so called normalized attack difficulty, i.e., an average
number of attack actions between advancing to a next step
in the attack graph. This will enable a comparison of efforts
and thus difficulty for the attacker to achieve the ultimate goal
in each of the CTO, VPN, and Employee cases, respectively,
when the idealistic assumption is lifted.

B. Random attacker

The random attacker, as the name implies, selects random
actions from the entirety of the action space until the goal
is reached or the number of actions in a run exceeds a
given threshold. The network being considered seem to be
small scale but there are a significant number of sessions
and accesses for each attack step. While not resembling real-
world attackers, the random attacker provides an important
benchmark to evaluate:

• correctness of the system behavior through fuzzying of
simulation environment.

• complexity and effect of different scenarios.
• efficiency of different attack strategies.
Fig. 4 illustrates how the random attacker is used to evaluate

the complexity of the action space and the impact of different
strategies applied to the underlying CTO scenario variant. It
shows the number of actions needed to reach the goal over
100 runs. Note that the CTO scenario requires a sequence of
only two correct actions to reach the goal. Yet it can take
a significant number of actions to reach the goal due to the
large action space the CTO has access to. We consider the
following random attacker strategies (rules followed by the
random attacker) to reduce the action space:

• Known services: the attacker targeted only services it
knew were running on particular hosts.

• Live machines: the attacker did not try again a combi-
nation of session and a target if it received a network
failure.

Fig. 4 provides insights to the impact of particular strategies
as well as to the usage of randomized attackers to test simu-
lated cyberattack scenarios. To begin with, having a random
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Fig. 4. Number of actions needed to reach the goal when simulating
different random CTO attacker strategies and their combinations. Each box-
plot represents 100 runs with up to 150,000 actions.

attacker utilize the entire action space without any effort to
reduce it is pointless. The current scenario variant had at least
1.5 million possible actions which could double with each
successful session-establishing action not leading to the goal.
Therefore, it is not surprising that the majority of runs ended
by reaching the threshold and failing the goal. Focusing on
known services does have an impact which is proportional to
the average number of services on each host and the totality
of services in the scenario. Focusing only on live hosts has the
biggest impact and is the factual prerequisite to running more
complex scenarios. Finally, compounding the two strategies
reduces the action space even further.

The general insight is that randomized attackers are a viable
concept for evaluation and benchmarking simulations, but they
require aggressive tactics to reduce the possible action space,
especially for more complex scenarios with a lot of different
host, services, exploits, and authorization mechanisms. For
the benchmark in the next section, we opted-in for the live-
hosts strategy as it ensures steepest reduction in activity with
minimal interference with random selection process.

C. Learning attacker

The learning attacker treats the simulated scenarios as a
multi-armed bandit problem and employs the UCB1 [39] al-
gorithm to reach the scenario goal. The attacker keeps track of
the uses of targets, actions, sessions, etc. By assigning specific
reward values for successful and unsuccessful activities, it is
able to compute the upper confidence bound and choose the
next action accordingly. To prevent nonsensical ordering of
actions, such as data deletion before extraction, it uses fixed
action priorities. Essentially, the learning attacker act more
intelligently by selecting the viable targets and sessions. This
serves as a step closer to mimic real-world attacks and is used
to compare to the random attacker on the actions needed to
reach the goal when interacting with the network components.
We formulate the following two hypotheses:

• On average, the learning attacker will require consider-
ably less actions to finish the scenario than a random

attacker employing the live machines strategy.
• The normalized attack difficulty (NAD)1 of the learning

attacker will decrease over time, whereas for random
attacker it will remain constant.

The first hypothesis is based on the learning attacker’s
ability to gradually add possible targets, rather than removing
them from the entire target space as the random attacker em-
ploying live machine strategy does. The second hypothesis is
based on the random attacker not understanding any relations
between actions and their consequences and selecting actions
by chance, whereas the learning attacker learns the appropriate
actions over time.

Figures 5 and 6 show the raw and normalized number of
actions required to finish each of the scenario variants for the
random and the learning attackers. For both attackers, each
scenario variant was run 1000 times. It is apparent that the
first hypothesis holds and even a cursory glance on the graphs
shows that the learning attacker’s strategy is between one and
two orders of magnitude more efficient.

 500

 1000

 5000

 10000

 50000

 100000

 150000

CTO
Random

CTO
Random

Normalized

VPN
Random

VPN
Random

Normalized

Employee
Random

Employee
Random

Normalized

Fig. 5. Number of actions for random attacker to finish under each scenario.

 10

 50

 100

 500

 1000

CTO
Learning

CTO
Learning

Normalized

VPN
Learning

VPN
Learning

Normalized

Employee
Learning

Employee
Learning

Normalized

Fig. 6. Number of actions for learning attacker to finish under each scenario.

1NAD is the simulated attack actions count normalized by the minimal
attack steps under each of the CTO, VPN, and Employee variant.



The second hypothesis also holds, but gives additional
insights based on two observations from the plots. The first
can be seen in Fig. 5, where the median NAD for the CTO
variant is approximately 1/2 of the other two variants. The
reason is that those two variants require the attacker to acquire
a new session via exploitation and this new session doubles
the attacker’s action space. The second observation can be
seen in Fig. 6. Event though the median NAD decreases over
time as expected, the CTO variant displays unexpectedly large
variation and in many cases the easier scenario took longer
to finish than the other more complex variants. This counter-
intuitive behavior is rooted in that the attacker under the CTO
variant has visibility to the entirety of the infrastructure and
is free to explore unfruitful branches of the attack graph. This
has led to more possibilities and thus large variations where
the CTO variant can have very small or very high NAD’s
comparing to the other two variants, which are constrained in
what the attackers have access to.

VI. SUMMARY AND FUTURE WORK

This paper introduced a new event driven simulation tailored
to analyzing and evaluating adversarial behavior. The model
fills a gap between different cybersecurity simulation works
and tools by focusing on attackers’ intent and actions, by
enabling integration of different attack models, and by oper-
ating on a session level. The model and its implementation
were evaluated with three variants of Bronze Butler APT
(BB). These variants of attacking agents possess the BB’s
capabilities and launching them against a simulated corpo-
rate infrastructure with insecure configuration. We simulated
random and learning attackers for each of the three variants,
and assessed the efforts needed in each case to complete the
attack goal. Our results showed not only insights on how
to realize session level cyber adversary simulation, but also
how different levels of accesses (CTO, VPN, and Employee)
can lead to orders of magnitude differences in the number of
actions needed to retrieve critical data.

The presented simulation engine is the first stage in a co-
ordinated effort to create an infrastructure for development of
autonomous cybersecurity agents, spearheaded by the NATO
IST-152 research group [40]. In the near term, the simulation
model will be used as a basis for automated generation of
cybersecurity scenarios for both the agent training and human
hands-on training. For the latter, support for transition of
the infrastructure from simulator description to an emulation
environment, such as KYPO [41], and the ability to use agent
algorithms to drive real-world attacking platforms, such as
Cryton [42], will be used.
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