
Chapter 4

COMPARISON OF DESIGN- AND DATA-
CENTRIC METHODS FOR DISTRIBUTED
ATTACK DETECTION IN CYBER-
PHYSICAL SYSTEMS

Jennifer Leopold, Bruce McMillin, Rachel Stiffler and Nathan Lutes

Abstract Cyber-physical systems are vulnerable to a variety of cyber, physical
and cyber-physical attacks. The security of cyber-physical systems can
be enhanced beyond what can be achieved through firewalls and trusted
components by building trust from observed and/or expected behaviors.
These behaviors can be encoded as invariants. Information flows that
do not satisfy the invariants are used to identify and isolate malfunc-
tioning devices and cyber intrusions. However, the distributed archi-
tectures of cyber-physical systems often contain multiple access points
that are physically and/or digitally linked. Thus, invariants may be
difficult to determine and/or computationally prohibitive to check in
real time. Researchers have employed various methods for determin-
ing the invariants by analyzing the designs of and/or data generated
by cyber-physical systems such as water treatment plants and electric
power grids. This chapter compares the effectiveness of detecting at-
tacks on a water treatment plant using design-centric invariants versus
data-centric rules, the latter generated using a variety of data mining
methods. The methods are compared based on the maximization of
true positives and minimization of false positives.

Keywords: Cyber-physical attacks, invariants, data mining, water treatment plant

1. Introduction
Cyber-physical systems (CPSs) typically contain multiple entry points,

especially via edge devices (e.g., smart meters, home monitors and cam-
eras) that provide access via service provider core networks. It is often
the case that the distributed architectures of cyber-physical systems have
access points that are physically and/or digitally linked. As a result, a



78 CRITICAL INFRASTRUCTURE PROTECTION XIV

computationally-prohibitive number of (combinatorial) conditions need
to be checked in real-time to enforce the security of the overall systems.

Efforts to secure cyber-physical systems must contend with a number
of challenges:

Cyber and physical information flows should be combined in a
single representational model. However, the semantics of the com-
bined cyber-physical information flows in security domains are of-
ten not well understood. A good understanding of the semantics
is needed to automate the task of securing information flows.

Information flows are fundamentally bidirectional between two se-
curity domains [9]. An information flow either simultaneously pre-
serves integrity but not confidentiality, or simultaneously preserves
confidentiality but not integrity. This needs to be made clear to
system designers.

Mining system behavior by observing system operations may not
uncover all the operational modes or may result in an overly com-
plex model with a surplus of generated rules.

Observations of physical systems may not be timely, accurate or
complete due to malicious information, bad data, noisy data and
communications delays.

The proliferation of individual security domains causes high model
complexity. Merging the security domains can result in a trivial,
all-encompassing security domain.

A promising solution for addressing cyber-physical system vulnerabil-
ities is to enhance the security of cyber-physical systems beyond what
can be achieved through firewalls and trusted components by building
trust from the observed and/or expected behaviors. These behaviors are
encoded as invariants. Redundant, yet inconsistent, information flows
that do not satisfy the invariants can help identify and isolate mal-
functioning devices and cyber intrusions. Researchers have employed a
variety of methods that analyze the designs of and/or data generated
by cyber-physical systems such as water treatment plants and electric
power grids. This work empirically compares the effectiveness of detect-
ing attacks on a water treatment plant using design-centric invariants
versus data-centric rules generated by several data mining methods.

2. Related Work
An invariant is a condition that should hold during the flow of in-

formation through a device or process at it moves from one state to



Leopold, McMillin, Stiffler & Lutes 79

the next. Invariants for a cyber-physical system can be derived using
a variety of methods. A design-centric method determines invariants
by examining the cyber-physical system design and control algorithms.
This method has been employed by Adepu and Mathur [1, 2], with their
Distributed Attack Detection (DAD) system [2] being notable for its
use of only continuous (i.e., non-discretized) data. In contrast, a data-
centric method determines invariants by analyzing the data generated by
a cyber-physical system under (labeled) normal and attack conditions.
Various data mining and machine learning methods have been employed
to generate invariants, including association rule mining, support vector
machines, decision trees and neural networks [7, 10].

Umer et al. [10] have compared design-centric and data-centric meth-
ods for deriving invariants for a water treatment plant. In the design-
centric approach, system component specifications and state condition
graphs of the plant were examined and 39 invariants were manually
defined (see [3] for a discussion of state condition graphs). In the data-
centric approach, association rule mining was employed, which produced
hundreds of invariants.

The analysis of Umer et al. yielded two key conclusions. First, the
data-centric approach did not find all the invariants defined by the
design-centric approach. This was likely due to the loss of information
from the data discretization needed to perform association rule mining
and the lack of data that tested certain possible/expected conditions.
The second conclusion was that the design-centric approach did not in-
clude all the invariants defined by the data-centric method, likely due
to the comprehensive nature of the data mining method that consid-
ered all possible combinations of conditions. Nine invariants were found
to be common to the data-centric and design-centric rules. Umer and
colleagues mention that an integrated approach for invariant generation
might be advantageous, but they did not provide a comparative analysis.

3. Background
This section describes the cyber-physical system testbed used to an-

alyze design-centric and data-centric rules for detecting attacks. It also
discusses the metrics used for evaluating the rule sets.

3.1 Secure Water Treatment Plant
The dataset used in this study was obtained from the Secure Wa-

ter Treatment (SWaT) plant, a testbed for cyber security research [4].
Figure 1 shows the architecture of the plant. The plant produces five
gallons/minute of treated water and can operate non-stop, 24 hours per



80 CRITICAL INFRASTRUCTURE PROTECTION XIV

F
igure

1.
S
ecu

re
W

a
ter

T
rea

tm
en

t
(S

W
a
T

)
p
la

n
t

a
rch

itectu
re

[1
0
].



Leopold, McMillin, Stiffler & Lutes 81

day, seven days a week in a fully autonomous mode. The plant has six
stages (processes), each of which is controlled by a programmable logic
controller. The states of the stages are measured by sensors and the
control actions are performed by actuators. The plant has 68 sensors
and actuators; some of the actuators are standby devices that are used
only when the primary actuators fail.

A multi-layer ring network supports plant communications. Pro-
grammable logic controllers at one level can communicate with sensors
and actuators at another level and in different stages. Plant operations
are monitored and controlled by an operator at a supervisory control and
data acquisition (SCADA) workstation. Physical attacks include replac-
ing or removing sensors, disconnecting wires between components (i.e.,
sensors, actuators and programmable logic controllers) and interrupting
power flow to electronic components.

Each instance in the dataset corresponds to a discrete or continu-
ous value of a sensor and the timestamp denoting when the reading was
taken. The readings were taken every second over 24-hour periods, oper-
ating for a certain number of days under normal conditions and a certain
number of days under attacks.

The original dataset [5] comprised 890,298 instances labeled as sensors
operating normally and 54,621 instances labeled as sensors under attack.
However, when the dataset was created, the system was operating under
a variety of non-standard (i.e., atypical) conditions with no indications of
states. As will be discussed in the next section, some of the design-centric
rules are sensitive to the system operating state. Also, the values of some
attributes in the dataset were not within normal ranges and/or were
fluctuating abnormally during certain states or state changes, although
the system was not under attack. Without the system state information,
the original dataset was inadequate for evaluating design-centric as well
as data-centric methods.

The dataset used in this research (currently available at [5]) does not
contain data related to atypical states (e.g., initial startup and back-
wash). Additionally, the dataset maintains state information. It has
13,070 instances labeled as sensors operating normally and 1,926 in-
stances labeled as sensors under attack (a binary attribute is attack
identifies an instance as normal (0) or attack (1)). However, no infor-
mation is provided about the nature of the attacks.

3.2 Evaluation Metrics
The effectiveness of design-centric versus data-centric rules at detect-

ing attacks was evaluated using the following basic metrics:



82 CRITICAL INFRASTRUCTURE PROTECTION XIV

True Positive (TP): A true positive is an instance labeled as an
attack (i.e., is attack=1) that was correctly detected as an attack.

False Positive (FP): A false positive is an instance labeled as
normal (i.e., is attack=0) that was incorrectly detected as an at-
tack.

True Negative (TN ): A true negative is an instance labeled as
normal (i.e., is attack=0) that was correctly detected as normal.

False Negative (FN ): A false negative is an instance labeled
as an attack (i.e., is attack=1) that was incorrectly detected as
normal.

In the cyber security domain, the highest priority is to maximize the
number of true positives and minimize the number of false negatives. A
false negative – missing an attack – can have severe consequences. False
positives correspond to “crying wolf,” so large numbers of false positives
are undesirable, but they do carry less severe consequences.

The following metrics are derived from the four basic metrics:

Accuracy: Accuracy is the proportion of the total number of
instances that were correctly identified. It is computed as:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Precision: Precision is the proportion of instances that were cor-
rectly identified as positive from among the total number of in-
stances that were correctly or incorrectly identified as positive. It
is computed as:

Precision =
TP

TP + FP
(2)

Sensitivity: Sensitivity, which is also referred to as recall, is com-
puted as:

Sensitivity =
TP

TP + FN
(3)

Specificity: Specificity is the proportion of negative instances
that were correctly identified from among the total number of neg-
ative instances. It is computed as:

Specificity =
TN

TN + FP
(4)



Leopold, McMillin, Stiffler & Lutes 83

In general, precision and sensitivity are important because they are
viewed as metrics of exactness and completeness of testing, respectively.

The kappa statistic is also useful for evaluating a decision model:

Kappa Statistic: The kappa statistic indicates how much bet-
ter a predictive model is compared with random guessing. It is
computed as:

Kappa =
Non-RandomSuccesses−RandomSuccesses

N −RandomSuccesses
(5)

where Non-Random Successes is the number of instances correctly
predicted by a non-random model and Random Successes is the
number of instances correctly predicted by a random model and
N is the number of instances in the dataset.

4. SWaT Rule Evaluation
This section compares the effectiveness of design-centric and data-

centric rules obtained from the SWaT dataset. Rules produced by a
variety of methods are evaluated based on their ability to detect attacks
in the SWaT dataset.

4.1 Design-Centric Method
Umer et al. [10] manually generated 39 invariants by examining the

SWaT specifications and state condition graphs. However, a number
of problems were encountered when attempts were made to test the
accuracy of these rules on the SWaT dataset.

Rules are specified using the syntax Antecedent → Consequent. Each
rule was intended to be checked in the following manner where n is the
number of seconds to wait for the consequent to become true after the
antecedent was satisfied:

If the Antecedent is true
Then wait n seconds
If the Antecedent and Consequent are true

Then the system is functioning normally
Else the system is not functioning normally

End-if
End-if

Interestingly, the situation where the antecedent becomes false during
the n-second wait period is not considered, a condition that occurred



84 CRITICAL INFRASTRUCTURE PROTECTION XIV

seven times in the SWaT dataset. The only concern is that the an-
tecedent and consequent are true at the end of the n-second period.
This could be a problem if, for example, a water tank reaches a certain
level (satisfying the antecedent), leaks some water on the floor due a
malfunction or malfeasance during the wait period (thereby no longer
satisfying the antecedent), but refills to a certain level (again satisfying
the antecedent) before the end of the wait period.

Umer et al. [10] do not report the time constraints for the design-
centric invariants. Therefore, one of the authors (Adepu) was contacted
to obtain the time constraint for each rule. Even then, the time con-
straints for several rules had to be increased by a few seconds to best fit
the SWaT dataset (i.e., increase the attack detection accuracy).

Other problems encountered with the original design-centric rules in-
cluded the specification of attributes that were not in the dataset, un-
specified threshold values, reversals of conjunctions and disjunctions,
and missing conditions in antecedents and consequents. These problems
necessitated the elimination of a few rules (i.e., those involving attributes
that were not in the dataset) and resulted in a proliferation of false pos-
itives and false negatives. Many of these problems were resolved with
the assistance of one of the authors of [10] (Adepu). Other problems
were resolved by examining the data and/or specifications in the SWaT
operating manual [6].

Tables 1 and 2 show the final set of 31 design-centric rules along with
their time constraints in seconds. The order of rules has no significance.
Values of 1 and 2 for pumps (e.g., P101) represent off and on, respec-
tively. Values of 1 and 2 for valves (e.g., MV201) represent closed and
open, respectively. Attributes with the prefix PLC represent the state
of the system (e.g., initial startup and backwash). Interested readers are
referred to the SWaT operating manual [6] for more information about
the attributes.

The rule set was treated as a set of invariants. Starting from any
instance in the dataset, all the rules had to be satisfied or else an attack
was considered to have occurred. Because multiple rules with different
time constraints had to be satisfied for an attack not to have occurred,
it was not possible to compute the true negative rate (i.e., number of
labeled normal instances detected as normal). For similar reasons, false
negatives (i.e., number of labeled attack instances detected as normal)
could not be determined easily. Consequently, the accuracy, specificity
and sensitivity values could not be computed.

When the set of design-centric rules was tested on the SWaT dataset,
the false positive rate (i.e., instances labeled as normal but detected
as attacks) was 55.47% and the true positive rate (i.e., actual attacks



Leopold, McMillin, Stiffler & Lutes 85

Table 1. Design-centric invariants.

Rule Rule Specification Time Cons-
traint (sec)

1 LIT101≤500 → MV101=2 14

2 LIT101≥800 → MV101=1 12

3 LIT101≤250 → P101=1 and P102=1 2

4 LIT301≤800 and PLC1!=1 → P101=2 or P102=2 or 12
PLC1!= 2

5 LIT301≥1000 → P101=1 and P102=1 and MV201=1 3

6 LIT301≤800 and PLC2!=1 → MV201=2 10

7 FIT201≤0.5 → P201=1 and P202=1 and P203=1 and 2
P204=1 and P205=1 and P206=1

8 AIT201≥260 and FIT201≥0.5 → P201=1 and 2
P202=1

9 MV201=2 and FIT201≥0.5 and AIT503≤260 and 7
AIT201≤250 and PLC2!=1 → P201=2 or P202=2

10 AIT503≥260 and MV201≥0.5 → P201=1 and 2
P202=1

11 MV201=2 and FIT201≥0.5 and AIT503≤260 and 2
PLC2!=1 → P201=2 or P202=2

12 AIT202≤6.95 → P203=1 and P204=1 2

13 MV201=2 and AIT202≥7.05 and FIT201≥0.5 and 8
PLC2!=1 → P203=2 or P204=2

14 AIT203≥500 → P205=1 and P206=1 2

15 P101=2 or P102=2 and MV201=2 and AIT203≤420 and 6
FIT201≥0.5 and AIT402≤250 and PLC2!=1 →
P205=2 or P206=2

16 AIT402≥250 → P205=1 and P206=1 2

17 MV201=2 and FIT201≥0.5 and AIT402≤240 and 6
PLC2!=1 → P205=2 or P206=2

18 LIT301≤=250 → P301=1 and P302=1 4

19 LIT401≥1000 → P301=1 and P302=1 2

20 LIT301≥250 and LIT401≤800 → P301=2 or 2
PLC3!=7



86 CRITICAL INFRASTRUCTURE PROTECTION XIV

Table 2. Design-centric invariants (continued).

Rule Rule Specification Time Cons-
traint (sec)

21 LIT401≤250 → P401=1 and P402=1 4

22 LIT401≤250 → UV401=1 4

23 P401=1 and P402=1 → UV401=1 4

24 FIT401≤0.5 → UV401=1 4

25 P401=1 and P402=1 and PLC4=4 → UV401=1 4

26 AIT402≤240 → P403=1 and P404=1 or PLC4!=4 2

27 AIT402≥250 → P403=2 or P404=2 or PLC4!=4 2

28 P401=1 and PLC5=12 → P501=1 5

29 UV401=1 → P401=1 or P402=1 4

30 FIT401≤0.5 and PLC5=12 → P501=1 or P502=1 4

31 LIT101≥1100 → P601=1 2

correctly detected as attacks) was 44.53%. In all, there were 446 occur-
rences of false positives, 14 of which were caused by Rule 1 and 432 by
Rule 5. These problems may have been due to faulty components. For
example, in the case of Rule 5, a motorized valve (MV201) may have
had trouble closing; however, increasing the time constraint for Rule 5
only resolved eight of the 432 false positives attributed to the rule.

Of greater concern than the large number of false positives was the
unacceptably low rate of true positives. A possible explanation is that
the threshold values in the design-centric rules may not have been realis-
tic with regard to the actual performance of the individual components.
For example, the LIT301 attribute was required to be less than or equal
to 800 in Rule 4; however, in one of the data-centric rule sets, LIT301
had to be less than or equal to 793.7869. This was the case for sev-
eral attributes common to the design-centric and data-centric rule sets.
Another possible explanation for the low true positive rate may have
been the time constraints. Manual examination of the dataset revealed
several instances where it took longer than the specified amount of time
for the consequent in a rule to be satisfied. When the time constraint
was increased for some of the rules, the increase in the true positive rate
was often accompanied by an increase in the false positive rate.



Leopold, McMillin, Stiffler & Lutes 87

4.2 Data-Centric Methods
Several data mining methods were employed to generate rules for

detecting attacks in the SWaT dataset. Unlike the set of invariants,
each rule has as its consequent a single binary condition that indicates
whether or not an attack has occurred. Also, unlike the set of invariants,
it is not necessary for an instance to satisfy all the rules in the rule set.
Additionally, none of the data mining methods took into account the
temporal nature of the physical system; specifically, unlike the design-
centric rules, they did not consider that a certain amount of time had
to transpire between the satisfaction of the rule conditions. For this
reason, 10-fold cross validation was used to test the methods. Breaks
in time sequences between instances were not as critical as they were in
the design-centric testing.

All the data mining methods were implemented using the R program-
ming language. None of the methods required discretization of the SWaT
data. However, attributes with values that did not change from row to
row were removed before creating the data-centric models (i.e., AIT401
and all of pumps attributes except for P101, P203, P205, P301, P401
and P601). These attributes were not informative and would not have
been included in any decision model.

The data mining methods – some of them ensemble methods – that
produced the best accuracy were: J48 and C5.0 (both decision tree meth-
ods with pruning), rfRules (random forest specifying a maximum of 300
trees), AdaBoost.M1 (boosting with decision trees), näıve Bayesian net-
work (NB), support vector machine (SVM) (linear with a polynomial
kernel), JRip (association rules with reduced error pruning) and multi-
layer perceptron neural network (NNet). Other methods such as linear
regression models and association rule methods were attempted. How-
ever, the results of these methods are not discussed here because their
accuracy was not competitive or their results were not as informative
as the other methods. Interested readers are referred to [11] for details
about the data mining methods used in this work.

Table 3 compares the results obtained using the eight data mining
methods based only on accuracy and the kappa statistic. Figures 2 and 3
show more extensive comparisons in terms of accuracy, kappa statistic,
precision, sensitivity and specificity.

The results indicate that the two ensemble methods (rfRules and Ad-
aBoost.M1) did not improve on the individual decision tree methods
(J48 and C5.0), and did not justify the additional complexity and mem-
ory requirements of an ensemble method. The näıve Bayesian network
and neural network were also eliminated from the top candidates due to



88 CRITICAL INFRASTRUCTURE PROTECTION XIV

Table 3. Accuracy and kappa for eight data mining methods.

Method Accuracy Kappa

J48 0.998044 0.991256

Näıve Bayesia Network 0.871880 0.212844

Support Vector Machine 0.998311 0.992461

rfRules 0.984352 0.926389

AdaBoost.M1 0.999289 0.996819

C5.0 0.997866 0.990452

JRip 0.998399 0.992863

Neural Network 0.871533 0.000000

Figure 2. Evaluation metrics for the eight data mining methods.

their lower accuracy, kappa statistic, sensitivity (in the case of the näıve
Bayesian network), precision and specificity. Although the support vec-
tor machine performed well, it was decided to investigate only the J48,
C5.0 and JRip models because they performed well and were the most
comparable models in terms of their expression as rule sets.

Stacking was employed using the three selected methods (J48, C5.0
and JRip) as the base classifiers and the best performing of the three,
JRip, as the ensemble method. This was done to see if an ensemble of the
best three methods could improve on the performance of the individual



Leopold, McMillin, Stiffler & Lutes 89

Figure 3. Evaluation metrics for the eight data mining methods (continued).

methods. The accuracy of the ensemble method was 0.998399 and its
kappa statistic was 0.992813. Since these results did not improve on
those obtained using the individual JRip method, the ensemble method
was not considered any further in the interest of memory efficiency.

The J48, C5.0 and JRip predictive models are expressed as rule sets.
Even rules derived from pruned decision trees (e.g., J48 and C5.0) can
result in unnecessary conditions. Therefore, in order to construct the
most efficient rule sets, a program was written in R to check for and
drop unnecessary conditions. The strategy that was utilized (originally
presented in [8]) is summarized in the following paragraphs.



90 CRITICAL INFRASTRUCTURE PROTECTION XIV

Table 4. Contingency table for instances satisfying A’.

C !C

X Y 1 E1

!X Y 2 E2

Let R be a rule of the form A → C where A is the antecedent, C is
the consequent and the antecedent A contains more than one condition.
Let R′ be a more general rule of the form A′ → C where A′ is obtained
by deleting one condition X from A′. Consider the contingency table
in Table 4, where the counts Y 1, Y 2, E1 and E2 were collected by
considering instances in the dataset that satisfy condition A′.

Let U25(E,S) be a binomial distribution using a 25% confidence level
for a sample size S with E negative cases in the sample. The error
rate of rule R is estimated as U25(E1, Y 1 + E1) and the error rate of
rule R′ is estimated as U25(E1 + E2, Y 1 + Y 2 + E2 + E2). If the error
rate of R′ is no greater than that of R, then the condition X is deleted.
Using a greedy approach, the condition that yields the lowest error rate
for the rule is successively eliminated until no more conditions can be
eliminated. The choice of 25% for the confidence level is considered a
conservative value for maintaining high accuracy in rule sets [8].

Table 5. Profile of data-centric rules before and after conditions were dropped.

J48 JRip C5.0

No. of rules before dropping conditions 25 11 19

No. of rules with conditions dropped 19 2 1

Average no. of conditions in antecedents 5.68 2.64 2.42

Table 5 shows the number of rules before dropping conditions, number
of rules that had conditions dropped and average number of conditions
in the antecedent per rule (after dropping conditions) for the J48, JRip
and C5.0 methods.

Tables 6 and 7 show the JRip and C5.0 rule sets, respectively. Due
to space constraints, the J48 rule set is not shown.

Only a few identical rules were produced by the methods, specifically
J48 and C5.0, both of which are decision tree methods. Nevertheless,
there are some commonalties between the rule sets.



Leopold, McMillin, Stiffler & Lutes 91

Table 6. JRip rule set.

Rule Rule Specification

1 AIT202≤8.931236 and LIT301≥923.2809 → is attack=1

2 AIT402≤6.613689 and PIT503≥113.800949 and PIT501≤159.590485 and
LIT101≥596.9952 and DPIT301≤1.245278 and
DPIT301≥1.229272 → is attack=1

3 AIT402≤6.613689 and AIT402≥5.075622 and LIT301≤829.274536 and
LIT101≤769.3148 → is attack=1

4 AIT402≤6.664958 and LIT301≥938.781738 and AIT203≥262.4968 →
is attack=1

5 LIT301≥1024 and AIT502≥69.21302 and FIT503≥0.610313 and
LIT401≤864.932068 → is attack=1

6 LIT301≥1027.94153 and AIT203≤240.810043 → is attack=1

7 LIT301≥1112.57532 and AIT202≥9.202961 and AIT201≥126.24968 →
is attack=1

8 LIT401≤787.2597 → is attack=1

9 FIT601≥0.000384 and LIT301≥1024 and LIT401≥848.936157 →
is attack=1

10 DPIT301≤1.104424 → is attack=1

11 Else → is attack=0

Figure 4 shows the attributes that are common and different in the
J48, JRip and C5.0 rule sets based on their references in the rule an-
tecedents and consequents. Of particular interest are the six attributes
included in all three rule sets: AIT202, AIT203, LIT301, LIT401, AIT402
and AIT201. These attributes could be the primary “canaries in the coal
mine” with respect to detecting attacks. In fact, they may have been
the direct targets of the attacks.

Not surprisingly, the six common attributes also featured prominently
in the design-centric rule set. However, the design-centric rule set was
distinctive in that it frequently specified conditions on various pumps
(attributes with the prefix P followed by three digits such as P201) and
the ultraviolet dechlorinator (UV401), whereas only one pump attribute
(P301) was used in the J48 and C5.0 rules and the dechlorinator attribute
was never used in J48, C5.0 and JRip rules. In fact, the P203 and P205
attributes have identical values in the SWaT dataset, eliminating the
need to test more than one of them.



92 CRITICAL INFRASTRUCTURE PROTECTION XIV

Table 7. C5.0 rule set.

Rule Rule Specification

1 AIT202≤9.383043 and LIT301≤923.2008 → is attack=0

2 LIT301≥923.2008 and LIT401≥878.4286 and AIT201≥126.0895 →
is attack=0

3 AIT402≥6.664958 → is attack=0

4 LIT301≤923.2008 and LIT401≥954.0246 → is attack=0

5 AIT202≥8.931236 and LIT401≤805.5627 → is attack=0

6 AIT202≥8.931236 and PIT503≤113.6728 → is attack=0

7 P301≥0 and AIT202≥8.931236 and LIT401≤849.5514 → is attack=0

8 AIT202≥8.931236 and AIT202≤8.996923 → is attack=0

9 AIT203≤262.3686 and FIT501≥0.80223 and AIT201≤126.0895 →
is attack=0

10 AIT203≤262.3686 and FIT504≥0.209781 and AIT201≤126.0895 →
is attack=0

11 AIT202≤9.020315 and LIT401≥865.4319 → is attack=0

12 AIT202≥8.931236 and LIT301≥923.2008 and LIT301≤938.3812 →
is attack=0

13 LIT301≤793.7869 → is attack=0

14 AIT202≥9.070623 and FIT503≤0.606984 → is attack=0

15 AIT402≤3.409382 and FIT401≥0.802484 → is attack=0

16 AIT202≥8.996923 and AIT402≤6.664958 and LIT401≥805.5627 and
LIT401≤849.5514 → is attack=1

17 AIT202≥9.383043 and AIT203≥243.2453 and AIT402≤6.664958 and
LIT401≤954.0246 → is attack=1

18 AIT202≥9.39554 and LIT301≥793.7869 and AIT402≤6.664958 →
is attack=1

19 LIT301≥923.2008 and AIT402≤ 6.664958 → is attack=1

Another point of interest is that, of the six SWaT stages (labeled
P1–P6 in Figure 1), the least often referenced attributes in the design-
centric and data-centric rules are from stages P1, P5 and P6. Perhaps
the attacks targeted the P2, P3 and P4 stages and/or there is a “ripple
effect” between the sensors in these three stages.



Leopold, McMillin, Stiffler & Lutes 93

Figure 4. Common and different attributes in the data-centric rule sets.

5. Conclusions
Detecting attacks on cyber-physical systems is an important but chal-

lenging task. A promising approach is to enforce invariants, conditions
that must hold during the operation of a physical process and, when
violated, are indicative of a component fault or cyber attack. Invari-
ants can be generated by manually examining the design of a system
(design-centric method) and/or by deducing patterns observed in data
collected under normal and abnormal system operating conditions (i.e.,
data-centric method).

The comparison of the effectiveness of detecting attacks on a wa-
ter treatment plant using one design-centric rule set and multiple data-
centric rule sets generated by data mining methods reveals that the
data-centric methods are far better at predicting attacks and mini-
mizing false negatives. The results of this study cannot be general-
ized and are not intended to indict design-centric invariants. In fact, a
design-centric method leverages domain knowledge about how the sys-
tem should behave under various conditions. However, because the task
is time-consuming (typically manual), it may not cover all the contin-



94 CRITICAL INFRASTRUCTURE PROTECTION XIV

gencies. Furthermore, design-centric rules may require adjustments to
threshold values to account for the wear-and-tear on system components.
In contrast, a data-centric approach can more easily generate an optimal
combination of the numerous conditions that identify anomalous behav-
ior. As demonstrated by the results, a data-centric approach learns (and
re-learns) from a real-time system that may no longer correspond to the
original design specifications. However, a data-centric rule set is only as
complete as the data on which it is based; if the underlying dataset does
not cover all possible situations, the resulting rule set will not check for
all contingencies. Overall, the best strategy is to consider the informa-
tion provided by design-centric as well as data-centric methods.

The data-centric rules produced in this study are based on a single
dataset and may be subject to overfitting, despite undergoing 10-fold
cross validation. In future research, it would be interesting to test these
rules on the live SWaT testbed, much like the work reported in [2].

Other structured cyber-physical datasets are available from the iTrust
Center for Research in Cyber Security [5], including the Water Dis-
tribution (WADI) and Electric Power and Intelligence Control (EPIC)
datasets. Future work could compare design-centric and data-centric
methods for detecting attacks in these datasets. However, this will
require design-centric invariants, which could be generated in a semi-
automated manner from system schematics and design documents.

Finally, future research will investigate other data-centric methods
for detecting attacks. A promising problem is to model a cyber-physical
system as a graph and use dynamic graph anomaly detection algorithms
to deduce invariants. Modeling a cyber-physical system as a graph is a
natural extension of its interconnected physical design and may provide
a bridge to developing automated methods for generating design-centric
invariants.

Acknowledgements
This research was performed with the assistance of three Missouri Uni-

versity of Science and Technology students – Nathan Lincoln, Michael
Macke and Alex Warhover. The research project was supported by the
National Science Foundation under Grant No. CNS-183747.

References

[1] S. Adepu and A. Mathur, Generalized attacker and attack mod-
els for cyber-physical systems, Proceedings of the Fortieth Annual
IEEE Computer Software and Applications Conference, pp. 283–
292, 2016.



Leopold, McMillin, Stiffler & Lutes 95

[2] S. Adepu and A. Mathur, Distributed attack detection in a water
treatment plant: Method and case study, to appear in IEEE Trans-
actions on Dependable and Secure Computing, 2020.

[3] S. Adepu, A. Mathur, J. Gunda and S. Djokic, An agent-based
framework for simulating and analyzing attacks on cyber-physical
systems, Proceedings of the Fifteenth International Conference on
Algorithms and Architectures for Parallel Processing, pp. 785–798,
2015.

[4] J. Goh, S. Adepu, K. Junejo and A. Mathur, A dataset to support
research in the design of secure water treatment systems, Proceed-
ings of the Eleventh International Conference on Critical Informa-
tion Infrastructures Security, pp. 88–99, 2016.

[5] iTrust Centre for Research in Cyber Security, Dataset Charac-
teristics, Singapore University of Technology and Design, Sin-
gapore (itrust.sutd.edu.sg/itrust-labs_datasets/dataset_
info), 2020.

[6] iTrust Centre for Research in Cyber Security, Secure Wa-
ter Treatment, Singapore University of Technology and De-
sign, Singapore (itrust.sutd.edu.sg/testbeds/secure-water-
treatment-swat), 2020.

[7] K. Junejo and D. Yau, Data driven physical modeling for intrusion
detection in cyber-physical systems, Proceedings of the Singapore
Cyber Security Conference, pp. 43–57, 2016.

[8] J. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann Publishers, San Mateo, California, 1993.

[9] D. Sutherland, A model of information, Proceedings of the Ninth
National Computer Security Conference, pp. 175–183, 1986.

[10] M. Umer, A. Mathur, K. Junejo and S. Adepu, Integrating design
and data centric approaches to generate invariants for distributed
attack detection, Proceedings of the Workshop on Cyber-Physical
Systems Security and Privacy, pp. 131–136, 2017.

[11] I. Witten, E. Frank and M. Hell, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann Publishers, San
Francisco, California, 2011.


