Chapter 6

DISTRIBUTED BIAS DETECTION IN
CYBER-PHYSICAL SYSTEMS

Simon Thougaard and Bruce McMillin

Abstract  An attacker can effectively publish false measurements in distributed
cyber-physical systems with noisy measurements. These biased false
measurements can be impossible to distinguish from noise and enable
the attacker to gain a small but persistent economic advantage. The
residual sum, a fundamental measurement of bias in cyber-physical sys-
tems, is employed to develop a detection scheme for bias attacks. The
scheme is highly efficient, privacy preserving and effectively detects bias
attacks.
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1. Introduction

False data injection attacks on power systems have been the subject
of intense study since they were introduced by Liu et al. [4]. The attack
model assumes an attacker who knows the power system configuration
and has the ability to send corrupted measurements to a control entity
(i.e., bad data injection). Liu and colleagues have also shown that such
attacks can be undetectable by standard methods.

False data injection attacks pose a fundamental challenge to cyber-
physical systems: if a node in a cyber-physical system is compromised
by an attacker and the attacker knows what security measures are in
place, the attacker can always inject bad data into a control system
while avoiding detection. This chapter proves this result for any cyber-
physical system that is tolerant to measurement error.

The effectiveness and limitations of false data injection attacks were
discussed in the original paper by Liu et al. [4]. Subsequent papers
have proposed defense schemes and variations of false data injection
attacks. However, some proposed defense schemes suffer from a simple
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lack of imagination. The question is, if an attacker knows the defense
schemes, can the attacker still circumvent them? After all, Liu et al. [4]
assumed that the attacker knows the system configuration and the bad
data thresholds.

This research approaches the problem in a more general manner.
Sound defense schemes result from specific criteria. The proposed scheme
confronts economic attacks specifically and meets the relevant criteria.
A novel queue-based approach to attack detection is employed to opti-
mally trade-off the false positive and false negative rates. Attacks on
the smart grid are considered. Conventional state estimation assumes
the presence of a central system operator who may be able to counter-
act an attack if it is properly identified. Under a distributed electric
grid architecture, a centralized entity may still exist, but it is relevant
to consider privacy issues as well as the practical applicability of any
defense scheme. The literature on false data injection attacks represents
the systems as matrices of data, but for any individual node, only a slice
of the data is available.

2. Related Work

Liu et al. [4] introduced the concept of false data injection attacks in
power system state estimation and proved the existence of zero-residual
attacks. This chapter does not propose a solution, but derives expres-
sions for optimal attack vectors under different conditions. While the
zero-residual attack is the most impressive version of a false data in-
jection attack, it is not considered in this work. Zero-residual attacks
can be considered to be unsolvable as they result from an attacker with
complete power to arbitrarily inject bad data. However, good system
design may make such attacks difficult to conduct. An attacker has to
compromise every measurement related to a state variable — this is com-
parable to the attacker purchasing a bank in order to get access to the
vault. It is theoretically possible, but perhaps not a practical security
concern. Therefore, the focus is on attacks whose residuals are below a
tolerable threshold.

Liang et al. [3] have conducted a thorough review of the literature on
false data injection attacks on power systems. Much of the work focuses
on variations of the attacks and systems under attack, as well as defense
schemes. However, preference is given to attack scenarios that are easy
to define mathematically instead of attack scenarios that capture the
rational behavior of attackers. This stems no doubt from the academic
norms of the control theory and power systems communities. As a re-
sult, an attacker who simply behaves in a sub-optimal or nonconforming
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manner may go perfectly undetected by detection schemes that assume
optimal or conforming behavior.

Xie et al. [8] have introduced economic attacks on electricity markets
that leverage false data injection. Jia et al. [2] have proposed a solution
for detecting such attacks. Economic attacks differ from most attacks
in the literature by considering attackers with known and quantifiable
goals. These attacks may be designed to go undetected at the expense
of the magnitudes of the attacks. If an entity gains a small but reliable
amount of value from a persistent subtle attack, the entity would want
to conduct the attack for as long as possible. However, it is not critical
to quickly uncover such attacks because they pose no security threats.
It would be sufficient to guarantee eventual detection.

The smart grid presents many new opportunities and challenges given
the ability of nodes to coordinate the production, consumption and dis-
tribution of electricity. Mengelkamp et al. [5] present a comprehensive
approach for implementing such coordination in a decentralized man-
ner. Molina-Markham et al. [6] discuss privacy attacks on smart meters.
Specifically, how smart meter data may be used to infer private infor-
mation about a home. The work is a reminder of how secondary data
sources can reveal private sensitive information.

3. Problem Definition

This chapter considers false data injection attacks on power systems.
In power system control, a central operator collects system measure-
ments and decides whether or not to take actions. In a decentralized
grid, these activities may be carried out in a distributed manner, where
local nodes collaborate on decision making and control.

Since measurements may have errors, state estimation is employed to
compute the most probable real state of the system. State estimation
relies on the relations between states. This can be expressed using the
model:

z=h(x)+e (1)

where z is a measurement, x is a system state, h(x) is a function relating
states to measurements and e is the error.

State estimation is the problem of estimating the state & from z when
there are multiple interrelated states. The state estimate SE is expressed
as a function of the measurement z:

&= SE(z) (2)

The computation of state estimates is inconsequential to the rest of
this chapter. It suffices to say, that given noisy measurements, estimates
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of the system state can be obtained. This is especially useful in the
smart grid where the coordination between nodes may be distributed
and traditional state estimation does not apply.

Bad measurement detection is the problem of determining if measure-
ments are abnormal or anomalous. It is computed using the residual r:

r=z-—2% (3)

which is simply the difference between the measurement and the esti-
mate. The residual is tested against a threshold value r < 7 to determine
if the measurement is credible or not.

3.1 Attack Model

In a traditional false data injection attack, the attacker is assumed to
have control over one or several measurements and have detailed knowl-
edge of the system. The attack is modeled by:

2 = h(z) + e+ (4)

where « is a non-zero value. The assumption is that an undetected value
of a will yield a gain to the attacker whereas —a will yield a loss.

The goal of the attack has two parts: (i) avoid any detection scheme
deployed by the controller; and (ii) effect some changes to the estimated
states.

Avoiding detection is a matter of keeping the residual r below some
threshold. Liu et al. [4] have proved the existence of zero-residual at-
tacks that change & without changing r. These attacks are only possible
if an attacker controls every measurement related to some state. Liu
and colleagues have also identified another type of attack where » may
change, but is kept under a threshold 7. These attacks have less impact
on &, but can be carried out with just one corrupt measurement. This
work only considers the latter type of attack where there is some change
to the residual.

Thus, the goal of the attacker is to maximize the change in & while
satisfying r < 7. Given that the attacker knows how SFE(z) is computed
and how 7 is set, it is not very difficult to determine the optimal a value
to be injected.

This work assumes that an attacker attempts to inject a consistent, yet
unobtrusive, bias. The bias may be relatively small compared with the
measurement variance. The attacker attempts to “hide in the error,” so
to speak, by keeping the attack residual too small to be distinguishable
from the measurement error, but consistently in a direction that benefits
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the attacker. The benefit could be simple energy theft or overcharging
for the amount of supplied energy.

3.2 Graph Approach

State estimation is traditionally considered to be an optimization
problem where a power system is modeled as a system of linear equa-
tions. The collected data is represented as a vector of measurements
whose relations are expressed by a matrix.

This work engages a graph model of the system instead of the standard
form involving a system of linear equations. Because an optimization
problem is not considered, there are no benefits to using the standard
form. Additionally, in a distributed system such as a smart grid, control
of the system may be distributed; long delays and response times in
such a system render the collection of all the measurements for analysis
problematic. Privacy may also be a concern.

Let G = (V,E) be a graph representation of a smart grid where V'
is the set of nodes representing endpoints in the smart grid and FE is
the set of edges representing transmission lines between two nodes. Let
N (v) denote the set of neighbors of v.

The problem definition becomes simpler under the assumption that
every node has an attached battery that stores or releases energy at will.
This is not a restriction because a node without a battery is equivalent
to a node that chooses never to use its battery. Each node can measure
and report its incoming power PZ-Jr from each neighbor, outgoing power
Pj* to each neighbor and its battery storage and discharge, PbJr and

P~ respectively. Each node operates under the conservation of power
constraint:

Z P+ Z P-4+ P+ P =0 (5)
v;EN(v) v, EN(v)

FEach node is required to report incoming and outgoing power readings
to each neighbor. To preserve privacy, these readings are not reported
to a central operator. Note that, even if a node reports all the measure-
ments to an observer, it is trivial for the node to appear to be perfectly
consistent internally even if it reports false measurements. If the node
underreports its incoming power by a, it simply has to subtract a from
PbJr to satisfy the equality.

In order to model economic attacks where an attacker seeks to gain
some advantage from false data injection, it is useful to simplify the
model further. Consider the case where two nodes, v; and vo, share a
transmission line, and v; intends to launch a false data attack against
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vy. There are two cases to consider. The first case is that the attack
is strictly directed at vo, which corresponds to a two-node problem. In
second case, the attack is directed at multiple nodes, but it would still
produce some attack residual between v1 and ve. In a situation involv-
ing faulty hardware, it may be reasonable to assume that a bad node
provides bad data to all its neighbor nodes. However, an intelligent at-
tacker may decide to provide bad data to only one neighbor or a select
set of neighbors. Hence, it makes sense to reduce attacks to two-node
problems. This may not be the optimal way to detect all attacks because
some attacks may be detected faster by considering multiple residuals.
But setting optimality aside, it makes for a much simpler problem defi-
nition:

= Given a set of edges E in a system graph G = (V, E), determine
the edges that are likely to be under attack.

Note the emphasis is on edges not nodes, which differs from the stan-
dard problem formulation that emphasizes nodes or state variables. This
makes the problem explicitly about relations between nodes and not the
nodes themselves. Residual sums represent relations between nodes; at-
tacks, when they are detected, reside in the relations between nodes.

3.3 Distinguishing Victim from Attacker

The problem formulation only mentions determining an attacked edge,
not the node that may be the attacker. Although it may be possible in
some circumstances to determine which node is the attacker and which
node is the victim, it is impossible to do so for all cases. Consider the
case where an attacker at vy launches an attack strictly at vs. That is,
v is the only node that can attest to the false data reported by vy. In
this case, a third-party observer would only be able to conclude that a
disagreement exists between v; and vo. In many practical situations, it
would be required to know which node is acting falsely. However, for the
purpose of this work, it is sufficient to determine the edge disagreement.

3.4 False Positives and False Negatives

A common approach to attack detection is to set a threshold that
distinguishes normal data from corrupted data. The threshold could
be derived statistically to have a desired property. Against a sophisti-
cated attacker, the threshold would also define attacks that would be
considered to be tolerable. If a threshold for divergence between two
measurements is set to 10%, then an attacker who controls one of the
measurements may design the attack vector to approach the 10% diver-
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gence without exceeding it. If the threshold were to be reduced to 1%,
it would impose a tighter limit on the attacks that are tolerated, but it
would also increase the false positive rate.

The false positive rate can be adjusted by setting the threshold for
attack detection. If the goal is to have fewer false positives, the threshold
should be increased; if the goal is have fewer false negatives, the threshold
should be reduced. The trade-off between the inversely correlated false
positives and false negatives is adjustable, but a practical solution ought
to include an effective way to balance them.

3.5 Smart Attacker

If an attacker knows the detection schemes that are employed, a so-
lution must assume that the attacker would actively avoid detection.
It is not sufficient to determine the most optimal attack strategy and
then defend against it. This is because sub-optimal attacks would go
completely unnoticed.

3.6 Smart Grid Example

The smart grid is used to demonstrate a distributed bias attack. Roth
and McMillin [7] describe how power mitigation works in a distributed
grid infrastructure. The individual nodes report how much power they
consume and produce, and an observer then verifies that the reported
values are consistent. The model does not take noise into account. How-
ever, noise can be handled by checking the difference between two re-
lated measurements. If the difference exceeds a certain threshold, then
the observer detects the anomaly and takes the appropriate action. If
the difference is within the threshold, then the arithmetic mean of the
two measurements is agreed to be the true state.

Figure 1 shows how a bias attack is conducted on a smart grid power
distribution line between two nodes. The attacker simply underreports
the incoming power when consuming electricity and overreports the out-
going power when producing electricity. The amount of bias depends on
the threshold for tolerance, which the attacker is assumed to know. In
effect, the attack would look like noise to any observer.

The scenario is illustrated in Figure 1, where the attacker underreports
the received power, which amounts to theft. The physical connection (1)
shared between the nodes has an actual flow of power that both nodes
measure (2). The nodes report the measurements to each other, but the
attacker injects bias (3). Both the nodes compute the mean state value
(4) and residuals (5). If the residuals are small enough, no malicious
activity is detected.
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Figure 1. Bias attack on a smart grid power distribution line between two nodes.

In the example, the attacker has gained free power by abusing the
noise tolerance. This works because the nodes use consensus to deter-
mine the real state of the system. In the absence of an attack, this would
be the most reliable approach for many noisy distributed cyber-physical
systems. The goal is therefore to demonstrate how bias attacks can be
detected efficiently.

4. Proposed Solution

This section discusses describes the proposed solution for distributed
bias detection.

4.1 Residual Sum

The residual sum is a central measurement of the integrity of a system.
It is defined as:

r=z-—2 (6)

where & is an estimate of the system state z and z is a measurement
of . A large |r| is obviously an indication of erroneous or false data.
However, if 7 ~ A(0,0?) is assumed to hold when there is no attack,
at any time step, r is expected to be non-zero and |r| > 7 means that
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an attack is detected at a steady rate where 7 is a threshold for the
residual. A certain rate of false positives is expected. If an attacker

1
injects a = 502, the false positives will increase, but it is difficult for

2 is not

an observer to determine that an attack is occurring because o
known.

In a single time instant, it may be impossible to discriminate between
an attack and a random event. If the residual is tracked over multi-
ple time instants, a clearer picture can be obtained. Taking the sum
of absolute residuals until time n would yield a monotonically increas-
ing function. However, the following residual sum function RSUM is

obtained upon summing the signed values of r:

n
RSUM(n) =) r (7)
i=0
The residual sum can be used in much the same way as the residual to
determine if the reported measurements are within the expected bounds.
A large |RSU M| indicates erroneous or false data, but RSUM has some
properties that make it ideal for the problem at hand.

4.2 Statistical Behavior

The residual under no attack is assumed to be r ~ N(0, ¢2) and is
r ~ N(c, 0?) under a bias attack where c is a constant.
The residual sum RSU M, which is just the addition of residuals, has
the distribution:
RSUM (n) ~ N(0, n - o%) (8)

This follows from the fact that the sum of two normally distributed
variables is a normally distributed variable with mean equal to the sum
of the means and variance equal to the sum of the variances. Summing
up n residuals yields the following distribution of RSU M, under biased
attack:

RSUM,(n) ~N(n-c¢, n-o?) 9)

Over time, the mean of the biased RSU M, grows at a rate of ¢ whereas
the mean of the unbiased RSUM is expected to stay at zero.

This leads to the important observation that too much of a good thing
can be a bad thing.

Theorem 1. Let RSUM,(n) and RSU M (n) be the biased and unbiased
residual sums after n measurements, respectively. Let « be a chosen
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significance level for confidence intervals. For any -, there exists some
n for which the confidence interval of RSUM,(n) does not intersect the
confidence interval of RSUM (n).
Proof: Let +z, be the confidence interval for X ~ N (0, 1) with confi-
dence level . Let £2z,(n) be the confidence interval for RSUM (n) with
confidence level v for some n > 1.
By definition:
P(X > zy) =7 (10)

P(RSUM (n) > zy(n)) = (11)
The distribution of RSUM (n) is standardized as follows:

RSUM (n) — p - zy(n) — 1
ov/n ov/n

Since p is zero and RSU M (n) is normalized:

P( )=« (12)

P(X > ?L\/T%)) =y (13)

Comparing Equations (11) and (14) yields:

_ %(n) (14)

oy = NG
And ultimately:
zy(n) = 2y - ov/n (15)

Since z, is a constant, z,(n) is O(y/n). Let £z,(n)" denote the con-
fidence interval for RSUM,(n). Since the mean of RSUM (n) is zero
and the mean of RSUM,(n) is np, +zy(n)" will grow at a rate of
O(np =+ z, - \/(n)) = O(n). Since z,(n) REPHRASE: in a greater
order than z,(n), there exists some n;, such that for every n; where
J >1, |zy(n)'| > |zy(n)|. Hence the two confidence intervals do not in-
tersect after n; measurements. O

The interpretation of this result is that, no matter what confidence
level v is chosen and how small the bias residual value, eventually the
biased RSU M, will distinguish itself from an unbiased RSUM. DOES
THIS GO HERE? Figure 2 shows the diverging confidence in-
tervals for biased and unbiased RSUM values. The important
point is that a small attack may go undetected for a long time, but
eventually it will be detectable with any arbitrary level of confidence.
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Figure 2. Diverging confidence intervals for biased and unbiased RSUM values.

4.3 Resource Requirements

RSUM is not only a useful tool for detecting bias attacks, but it also
requires very limited computational resources for a distributed system.
In terms of space, since RSUM can be computed dynamically, each
RSUM value requires only a single (numeric) storage location. The
solution requires each node to store 2-deg(v) values, where deg(v) is the
degree of node v.

In terms of computations, each RSU M requires only one addition at
each time step. However, the estimate £ may require additional compu-
tations depending on the method.

In terms of bandwidth, at minimum, each RSUM requires a single
value to be transmitted between two nodes. However, this value only
has to be transmitted between adjacent nodes, so it will not affect the
communications network significantly.

4.4 Published Residuals

A valuable property of the residual sum is its potential to protect
the privacy of individual nodes. In a traditional cyber-physical system,
where data is sent to a central controller, privacy depends on how well



132 CRITICAL INFRASTRUCTURE PROTECTION XIV

the controller is trusted. In a fully distributed system, trust may not be
assumed, but with the residual sum it may not be an issue.

Consider the case of a smart grid where the nodes may not wish to
publish their energy consumption and production to a third-party con-
troller. If the residual sum is published instead, an observer would not
be able to determine much. The residual sum only expresses the dis-
agreement between nodes, not the actual amounts of energy transferred.

The only observation that can be made from the residual sum is:

RSUM(n) < zn:(z) (16)
i=0

This may be considered to be a privacy loss since a non-zero RSUM
would indicate activity, and vice versa. However, the concern can be
alleviated by incorporating the following noise addition scheme.

Suppose two nodes share a physical connection and publish their
shared residual. To obfuscate activity between them, they add a noise
value e to every published value. The noise value e is drawn from a list
of values L via the following steps:

1. A random seed value is exchanged between the nodes.

2. At coordinated intervals, n values are randomly generated by a
linear congruential generator and added to a list L.

3. Every original element e in L is replaced with o - (¢%100)/100 and
—e is added to the end of L.

4. For every 2n time steps, an element ¢ is drawn randomly and
removed from L. The element €' is then added to the current
published RSUM.

This scheme makes it impossible for an observer to determine if pub-
lished values between time 0 and 2n reflect activity or inactivity. Since
the values in L sum to zero, it also guarantees that the published RSU M
is accurate at the end of each interval. Although ¢ may not be known,
a suitable scalar may be used in its place.

4.5 Action and Queue-Based Inspection

This subsection demonstrates how the residual sum is used to discover
bias attacks. The solution assumes that inspectors are tasked with find-
ing and handling attacks and abnormalities. Such inspectors already
exist in electric grids — they conduct routine inspections of meters for
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possible tampering. It is assumed that inspectors can identify and han-
dle tampering of any meter, have full access to the entire system and
carry specialized equipment. While these assumptions are convenient,
they are not far from reality. The main issues are resources and distri-
bution — hiring inspectors and scheduling them effectively.

The solution is to use residual sums to prioritize the work of the
inspectors. Simply put, the focus is on the edges in the system that
have high residual sums. Since the residual sums are published, the
inspectors do not have to travel to the sites and can operate from a
central control facility to handle a large region.

The idea is to set a threshold 7 for the residual sums and alert the
inspectors to edges that exceed 7. Choosing a 7 value effectively sets
the rates of true and false positives. If 7 is too low, more false positives
would be generated than the inspectors could handle. If 7 is too high,
the wait times would be much longer before inspectors can act on any
malfeasance. A good threshold should yield manageable true and false
positive rates.

However, a simpler approach that does not rely on thresholds exists.
This approach sorts the residual sums by magnitude and schedules in-
spections at the corresponding locations in descending order. Thus, the
most likely attacked nodes are inspected first and at the exact rate that
the inspection crews can handle.

5. Experimental Results

Simulation experiments were conducted to demonstrate the effective-
ness of using residual sums to detect bias attacks. The simulations were
conducted using the well-known IEEE 14-bus system [1] and the MAT-
POWER package in MatLab.

The variance of the measurements was artificially set. It was accom-
plished by producing a set of base measurements by iteratively running
state estimation on an initial set of measurements and replacing them
with the estimated values. This yielded a measurement set with a square
sum residual close to zero. The measurement set served as the basis for
the simulation experiments.

Simulations were executed over 10,000 time steps. At each step, some
N(0,0?) distributed noise was added to the base measurement of a node
with ¢ = 0.1. All the simulations used ten unbiased nodes and a varying
number k of biased nodes. For the biased nodes, an additional 0.01 was
added to each measurement, corresponding to exactly one-tenth of the
standard deviation of the noise.
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Figure 3. Simulations with ten unbiased (gray) and two biased (black) RSU M s.

State estimation of the power system was conducted using MAT-
POWER at each time step using the adjusted measurements. The resid-
ual of each variable was then calculated as the difference between the
measurement and estimate, and each residual was added to its corre-
sponding residual sum. At regular intervals h, the highest magnitude
residual sum was identified and reset to zero.

Figure 3 shows the simulation results with ten unbiased RSUM s
(gray) and k = 2 biased RSUM s (black) conducted at regular intervals
of h = 500 time steps with the highest residual sums were reset to zero.
In this particular simulation instance, 13 out of 19 inspections found a
biased node to have the highest RSU M, corresponding to a true positive
rate of 68%. The figure highlights the chaotic nature of the noisy mea-
surements, where some of the unbiased RSU M s become outliers while
the biased nodes consistently grow in the positive direction.

Table 1 presents the true positive rates obtained for varying numbers
of biased nodes k and inspection intervals with varying lengths (time
steps) h. Note that when there are many biased nodes and the inspection
intervals are long, the true positive rate effectively becomes 100%. The
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Table 1. True positives for varying numbers of biased nodes and inspection intervals.

Biased Nodes (k) Inspection Intervals (h)
100 300 500 700 900

1 0.27 045 047 057 0.73
2 0.42 0.64 0.68 0.64 0.91
3 0.55 0.67 0.74 0.86 0.91
4 0.7 082 095 1.0 1.0
5 0.74 088 095 1.0 1.0
6 0.78 091 1.0 1.0 1.0
7 0.86 094 1.0 1.0 1.0
8 0.86 1.0 1.0 1.0 1.0
9 0.83 094 1.0 1.0 1.0
10 093 1.0 1.0 1.0 1.0

table illustrates a practical benefit of the queue approach. Inspectors
know the true positive rate and can adjust the inspection interval, but
they do know have any information about the number of biased nodes.
Nevertheless, they can achieve the desired true positive rate by adjusting
the inspection interval.

The simulation results demonstrate the applicability of Theorem 1.
Because the biased and unbiased nodes diverge, it becomes easy to pri-
oritize the edges on which inspections should focus.

6. Conclusions

A sophisticated attacker can easily conduct bias attacks on a noisy
cyber-physical system while evading conventional detection methods.
The proposed scheme for detecting bias attacks leverages the residual
sum, a fundamental measurement of bias in cyber-physical systems. The
properties that render the residual sum optimal for detection are dis-
cussed and theoretical bounds are derived in the absence and presence
of bias attacks. The theoretical treatment and the simulation results
demonstrate that the detection scheme is highly efficient, privacy pre-
serving and effectively identifies bias attacks.

Future research will attempt to conduct experiments on a physical
testbed. While this work has focused on electricity theft, future re-
search will investigate other economic attacks. Additionally, multiple
colluding attackers will be considered, which may lead to new challenges
and opportunities.
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