
BinaryQuilting to Generate Patched Executables without
Compilation

Anthony Saieva
Columbia University
ant@cs.columbia.edu

Gail Kaiser
Columbia University

kaiser@cs.columbia.edu

ABSTRACT

When applying patches, or dealing with legacy software, users are

often reluctant to change the production executables for fear of

unwanted side effects. This results in many active systems run-

ning vulnerable or buggy code even though the problems have

already been identified and resolved by developers. Furthermore

when dealing with old or proprietary software, users can’t view

or compile source code so any attempts to change the application

after distribution requires binary level manipulation. We present a

new technique we call binary quilting that allows users to apply the

designated minimum patch that preserves core semantics without

fear of unwanted side effects introduced either by the build process

or by additional code changes. Unlike hot patching, binary quilt-

ing is a one-time procedure that creates an entirely new reusable

binary. Our case studies show the efficacy of this technique on real

software in real patching scenarios.

KEYWORDS

binary analysis; binary patching

ACM Reference Format:

Anthony Saieva and Gail Kaiser. 2020. Binary Quilting to Generate Patched

Executables without Compilation. In 2020 Workshop on Forming an Ecosys-

tem Around Software Transformation (FEAST ’20), November 13, 2020, Virtual

Event, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/

3411502.3418424

1 INTRODUCTION

In most cases the typical software maintenance lifecycle is sufficient

to keep code updated and secure. Users report bugs, developers

investigate the issue, resolve the problem, release a new version

of the software in line with the pre-existing release schedule, and

users deploy the new version of the software. However, in software

that deals with critical system functionality users tend to update

software only when absolutely necessary for fear of updates in-

troducing side effects that disrupt service. Since most software is

released according to a common schedule, new releases often con-

tain many modifications most of which a singular user would deem

unnecessary. These pose an unnecessary risk and in fact the user

may not be able to integrate new versions if relevant interfaces

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

FEAST ’20, November 13, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8089-8/20/11. . . $15.00
https://doi.org/10.1145/3411502.3418424

have been replaced or wiped away. This leaves many users in an

awkward position: they have code with known deficiencies and the

corresponding updates, but they also can’t apply those updates.

While not necessarily problematic for standard feature releases,

this situation proves disastrous when failing to fix security vul-

nerabilities. In the Equifax hack of 2017 [21], attackers exploited

a well-known vulnerability in the Apache Struts library that had

been fixed months earlier, but had not been applied to Equifax’s pro-

duction code, to steal approximately 145.5 million U.S. consumers’

personal data, including their full names, Social Security numbers,

birth dates, addresses, and driver license numbers.

If users had access to the version control repository and build

process, they could theoretically search the change log to build the

specific version that suits their needs, but proprietary and legacy

code users either don’t have access or no such build exists since

many unrelated changes have been included in the update. Instead

we present a new technique called binary quilting that allows users

to apply the minimum patch designated by the developers as fixing

only the targeted software bug. This eliminates side effects from

unwanted changes, thus providing a way for users to apply updates

to legacy binaries while still supporting necessary functionality.

We developed a technique that integrates with the build process

called Binary Patch Decomposition (BPD) that automatically cre-

ates the necessary metadata for the quilting procedure (BinQuilt).

BPD creates metadata associated with each commit that might be

of interest to users. The developers then supply this metadata for

each bug-fix patch along with the new release (potentially consist-

ing of many commits), to enable BinQuiltto operate in the user

environment (without developer source code or build process).

This work presents the following contributions:

(1) Binary Quilting (BinQuilt) - a technique leveraging the Egal-

ito binary łrecompilationž framework [25] to generate patched

binaries by combining executables. To try to minimize confu-

sion, we henceforth refer to Egalito’s notion of łrecompilingž,

from its intermediate representation without source code or

a conventional compiler, as ł(re)generationž.

(2) Binary Patch Decomposition (BPD) - a build process inte-

grated technique to map specific source code changes to the

corresponding binary changes.

(3) Peanut (Patch dEcomposition ANd qUilTing), an implemen-

tation of BPD and BinQuilt for Linux on x86.

(4) Case studies demonstrating Peanut’s potential in realistic

update scenarios.

2 BACKGROUND AND RELATED WORK

2.1 ELF Format and Existing Binary Diffs

ELF files are the standard executable format on Linux operating

systems, which contain all the metadata required to link, load,

(a) Typical Update Cycle

(b) Update Cycle with Quilting

Figure 1: Problem Overview

and run the program. This extra information includes the symbol

table which maps the location of every symbol in the binary to

the name of the symbol in the associated string table. The string

table is simply a list of strings delimited by null bytes. This data

structure allows for linking across object files and executable ELF

files. The ELF file also contains a relocation table for link time and

load time symbol resolutions. In many production binaries symbols

are stripped for performance and security so may not be available

for analysis. Lastly, the ELF format splits the binary into data and

code segments with different permissions for security reasons.

Binary diffs is a well studied problem, however it is usually taken

from the perspective of a reverse engineer. Such tools include Bin-

Diff [26], BinHunt [13], iBinHunt [20], BinSlayer [11], BinSequence

[17], and SemDiff [24]. All of these tools rely on some variant of

control flow graph extraction and comparison. Usually this entails

significant computing overhead and heavy analysis. However in

the context of binary quilting, these techniques fail to leverage

information available during the build process, so these diffs may

pick up on changes not relevant to the patch desired by a given

user, resulting in an inaccurate quilting effort.

2.2 x86 Calling Conventions

While the minimum binary diff information provided by BPD relays

where changes occur, since small changes in source code can result

in large semantic changes like changing register usage and memory

layout, copying semantically equivalent or nearly equivalent code

from one binary to another is precarious. Fortunately the Intel x86

architecture defines strict calling conventions as to what registers

must be maintained by the calling and callee functions as well as

the state of the stack for arguments to be passed from one function

to another [12]. As long as the arguments are consistent between

two function versions, the initial state of the stack and the register

layout is presumed to be the same. In the event a function’s argu-

ments change, this guarantee no longer holds true, but the calling

functions must also change to accommodate the new signature

so for the purposes of applying patches, these calling functions

provide the points of interface between original and new versions.

2.3 Related Work in Hot Patching and Binary
Rewriting

Binary rewriting has been used for many reasons including im-

plementing defenses, automatic program repair, hot patching, and

optimization. Hot patching is an interesting example since it re-

quires conserving dynamic program state at the time the repair is

applied similar to binary quilting. Katana [22] has highly sophisti-

cated mechanisms for handling this problem, many of which would

augment our current quilting procedure, but relies on trampolines

to apply the patches which could incur significant overhead the

same as [18]. Other binary rewriting mechanisms like Zipr [15, 16]

raise the binary to a higher level IR which allows for increased

efficiency in the reassembly process similar to Egalito [25] but have

demonstrated generic binary level defense transformations instead

of semantically complex bug specific patching.

3 DESIGN

3.1 Binary Patch Decomposition

3.1.1 Source code diff analysis. Standard version control systems

(VCS) like Git [14] use source code diffs to track source code changes.

For any given code change the VCS maintains a record of exactly

what changed. Most VCS’s save this record following a standard

patchfile convention as shown in Figure 2. This patchfile includes

the modified function name, line numbers, source code changes,

and file names among other information.

3.1.2 Symbol Table Parsing. BPD parses the patchfile, and extracts

the names of the modified function(s). In the event that the change

modifies a data related symbol like a global variable or a string then

that symbol is marked as modified. After the executable is built

Peanut’s BPD parses the symbol table to extract the location of the

modified function in the new binary. The symbol name provides an

interface between the source code changes and the binary addresses

as shown in Figure 3 where the addresses are denoted in hex on

the left and the symbols in text on the right. The symbol table

also includes a description of the data type. In the example shown

the symbols are function names designated by FUNC but if they

were data symbols like global variables or structs they would be

designated OBJECT. This information is relevant because depending

on the data type they will be in different sections of the binary. The

symbol table also specifies the size of the symbols so we can extract

the length of the functions and the size of the data types. Once we

know the location, size and contents of the modified, even if the

symbol table is stripped after building (usually pre-deployment) we

can still identify the patched portions of the binary completely.

3.1.3 Database storage for on the fly patch decomposition. BPD

is designed to track binary changes without interfering with the

normal development process. One way to track changes would be

to keep a separate copy of the binary for each commit and then

extract information as needed to create the binary patch. However

keeping so many versions of the binary doesn’t really make sense

since most of the information is redundant. BPD stores only the

necessary information to construct the binary patch as shown in

...

@@ -3167,10 +3167,13 @@ png_check_chunk_length(...) {

...

- (png_ptr->width * png_ptr->channels // source changes

...

+ (size_t)png_ptr->width

+ * (size_t)png_ptr->channels

Figure 2: libpng-bug-1 Abbreviated Example Patchfile

0000000000003fe0 56 FUNC ... png_check_chunk_name

0000000000004020 221 FUNC ... png_check_chunk_length

0000000000004100 172 FUNC ... png_read_chunk_header

Figure 3: libpng-bug-1 Abbreviated Symbol Table Entries

Figure 4: Datastore Implementation

Figure 4. Essentially the binary is split based on it’s symbols and

the symbol contents and meta data are stored in the database. The

database must reflect the binary’s structural information to apply

the patch after symbols have been stripped, its contents so the patch

can be built, and maintain flexibility so a patch can be constructed

from multiple code versions. This means that each piece of code

must keep track of its external references across versions.

3.1.4 Metadata Construction Algorithm. When a user asks for a

particular patch, Peanut’s BPD must transform the entries in the

database into metadata that can be leveraged to build and apply

the patch in the user environment. The process to construct this

metadata is described in Algorithm 1. The algorithm takes the

parsed original and new binaries as inputs, and then for every

changed symbol it has to do two things. First, if the symbol exists

in the old binary, it must add the old size and position data so

any references to this piece can be removed. Second, BPD must

search through all the dependencies of each changed symbol (a

dependency is any nonlocal reference); if the dependency existed

in the old binary (as per the symbol name), then the metadata

can simply add the new code piece and the location of its own

dependencies. If the dependency doesn’t exist, it must be added

to the metadata as a newly changed symbol and its dependencies

searched as well.

Algorithm 1: Pseudocode: Metadata Construction

Result:Metadata(old_info, new_info)

Input :parsed original binary OV; parsed new binary NV;

BPD datastore DB

Output :metadata information required to construct patch

MD

getMetadata (𝑂𝑉, 𝑁𝑉 , 𝐷𝐵)

original_code = DB.get_code_pieces(OV);

new_code = DB.get_code_pieces(NV);

res.new_info← ∅, res.old_info← ∅;

changed_symbols = DB.getChangedSymbols(NV);

foreach 𝑠𝑦𝑚𝑏𝑜𝑙 ∈ 𝑐ℎ𝑎𝑛𝑔𝑒𝑑_𝑠𝑦𝑚𝑏𝑜𝑙𝑠 do

res.new_info.add(symbol);

if 𝑠𝑦𝑚𝑏𝑜𝑙 ∈ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑐𝑜𝑑𝑒 then

res.old_info.add(symbol);

foreach 𝑐𝑝 ∈ 𝑠𝑦𝑚𝑏𝑜𝑙 .𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦_𝑙𝑖𝑠𝑡 do

if 𝑐𝑝 ∉ 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑐𝑜𝑑𝑒 then

sym = Symbol(cp, newChange=True);

res.new_code.add(sym);

end

end

return Metadata(res.new_info, res.old_info)

Algorithm 2: Pseudocode: Binary Quilting

Result: Updated Pointers

Input :parsed original binary OV; parsed new binary NV;

BPD metadata MD

Output :The quilted binary

getQuilted (𝑂𝑉, 𝑁𝑉 ,𝑀𝐷)

foreach 𝑟𝑒 𝑓 ∈ 𝑂𝑉 do

if 𝑖𝑠𝑂𝑣𝑒𝑟𝑤𝑟𝑖𝑡𝑡𝑒𝑛(𝑟𝑒 𝑓 .𝑡𝑎𝑟𝑔𝑒𝑡) then

ref.target = metadata.new_info[target_symbol];

end

foreach 𝑟𝑒 𝑓 ∈𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎.𝑛𝑒_𝑖𝑛𝑓 𝑜 do

if 𝑖𝑠𝐶𝑜𝑑𝑒𝑅𝑒 𝑓 (𝑟𝑒 𝑓 .𝑡𝑎𝑟𝑔𝑒𝑡) then
//adjust pointer

if 𝑖𝑠𝐷𝑎𝑡𝑎𝑅𝑒 𝑓 (𝑟𝑒 𝑓 .𝑡𝑎𝑟𝑔𝑒𝑡) then

if 𝑂𝑉 .𝑑𝑎𝑡𝑎𝑆𝑒𝑐𝑡𝑖𝑜𝑛(𝑟𝑒 𝑓) then
//adjust pointer

else
//add new data

//adjust pointer
end

if 𝑖𝑠𝑃𝐿𝑇𝑅𝑒 𝑓 (𝑟𝑒 𝑓 .𝑡𝑎𝑟𝑔𝑒𝑡) then
//update PLT entries

end

3.2 Binary Quilting Procedure

Once the BPD metadata has been produced and shipped to the

user as described in the previous section, now the user must run

Peanut’s quilting function, BinQuilt, to actually create the patched

binary and the fully linked form of the patch. The fully quilted

binary is shown in Figure 5.

In order to parse the binaries and identify the reference locations

as well as the regeneration phase we rely on the Egalito framework.

It lifts the binary into an intermediary representation (EIR) that

extracts the control flow graph and provides an interface to the

data sections. Egalito also provides a portable XML format (HOB-

BIT) that encodes all the structural and data related information.

Egalito then generates an ELF file to run on the specified hardware.

This provides some interesting opportunities for updating legacy

binaries to different hardware.

In order to quilt the new version of the binary into the old version,

we must handle three different types of references. These are code

references, data references, and external references. The algorithm

is described in Algorithm 2. Each link from the old binary to the

old versions of the patched code must be removed, and updated to

point to the new versions where appropriate. In the event that the

new binary relies on an updated version of a library the user must

have access to this version. However as long as the new binary

has the correct external references, then the quilting procedure

still supports it. This becomes particularly useful in the context of

dealing with legacy binaries since patching a legacy binary may

rely on pieces of new library versions. This means the BinQuilt

technique could support multiple versions of the same library as

long as BPD provides the correct metadata.

3.2.1 Code section quilting. One important change in newer bi-

naries is that they are built with position independent code (PIC)

by default. PIC code became the default on Ubuntu 17.0 across all

architectures in 2017 [19]. For security reasons PIC code is designed

with relative references so can be deployed anywhere in the ad-

dress space, but this also means it can be moved from one binary

to another. Older code with absolute references on the other hand

require finding the corresponding reference in the new binary. In

order to do this the symbols become a point of reference between the

binaries. Each absolute reference can be represented as a symbol

and offset. This symbol and offset remains constant across versions

even though the absolute addresses will change across versions.

First the links from the original binary to the code that has since

been updated need to be removed. The EIR is scanned for any

references that point to dead code, and the links are deleted. In

most cases these are function pointers. The metadata contains the

translation data to update the pointers from the old symbols to

the appropriate symbols in the new binary. Next the patched code

from the new binary needs to point to the correct places in the

original binary. In the event that the patched code depends on code

only in the new version these new versions of the code need to be

quilted in as well. This allows the quilted binary to be a composite

of multiple versions. BinQuilt can quilt all combinations of PIC and

non PIC code. The binary patch decomposition metadata contains

both the locations of references in the new version that need to be

linked, as well as where those links should point. We depend on

Egalito to generate the corresponding ELF file.

3.2.2 Data section quilting. The ELF specification splits the binary

into data and code sections for security reasons. This introduces

some complications to quilting. The code references pointers in the

global offset table (GOT) which point to the correct part of the data

segment. The second difficulty comes from having to reformat the

Figure 5: Quilted Binary Construction

data segment if it needs to be resized. Since this adjusts the position

of every data piece, all entries in the GOT need to be updated.

Strings are a special case. There are no entries in the symbol table

for strings and they are not in the data section with global variables

and other data entries. Instead for security reasons they are in a read-

only data section and the GOT contains the appropriate offset entry

without any associated entry in the symbol table. Instead, BinQuilt

iterates through all strings in the old binary for the referenced

string in the new binary.

3.2.3 PLT and external reference quilting. In modern executables

most libraries are dynamically linked, so instead of direct address

entries, the ELF spec uses the procedure linkage table (PLT) to

implement lazy loading. Only when the procedure is called does

the dynamic linker locate the external symbol in question. In the

event the new binary depends on an external symbol that isn’t

in the original binary, as is the case when the updated functions

depend on updated library versions, the PLT needs to be updated

with the appropriate entry and the BPD metadata must include the

appropriate information for the linking procedure.

4 CASE STUDIES

We use a series of case studies to answer three main questions.

(1) Does Peanut successfully resolve references across versions

in real software?

(2) How much new attack space does quilting introduce?

(3) After the patched binary has been created can it be used to

verify that both bugs have been patched and no side effects

have been introduced?

We evaluated our Peanut prototype on a Dell OptiPlex 7040

with Intel core i7-6700 CPU at 3.4GHz with 32GB memory, running

Ubuntu 18.04 64bit, using gcc/g++ version 7.4.0 and python 3.4.7.

Peanut is built using CMake version 3.10.2 and Make version 4.1.

4.1 Resolving References

We used Peanut’s BPD and BinQuiltto construct quilted binaries

for across a variety of projects with a variety of different updates.

Table 1 shows the bugs that were patched, a summary of the reason

for the code change, the source code size of the change, the number

of code section and data section resolutions Peanut made during

the quilting procedure.

To test our quilting procedure with the updates from Table 1,

we quilted the minimally changed patched version of the binary

and the latest available buggy version. We also developed inputs

that covered the patched code such that we could test that all

references were resolved correctly. If there were any references

Update Patching Effort LOC

Changed

Code

Resolu-

tions

Data

Resolu-

tions

curl [5] Changes how a string is

parsed

16+, 16- 31 4

curl [6] Changes functions ar-

guments and call.

9+, 9- 318 69

libpng [23] Calculation modifica-

tion for divide by 0

error

6+, 3- 6 1

wc [9] Added new function

and changed condition

check

23+, 2- 298 109

yes [10] Substantial changes in

option parsing

40+,

141-

399 234

ls [3] Added condition for

change in option

parsing

1+, 2- 387 380

mv [2] Adding a conditional

check before operation

6+, 0- 204 89

df [7] Replacing open calls

with stat calls

12+,8- 348 164

bs [1] Changing a loop condi-

tion

2+, 1- 296 140

wget [4] Adding conditional

check for log

1-, 2+ 10 3

redis [8] Adding conditional

check

1+, 1- 16 8

Table 1: Patch-Testing Dataset

that Peanut didn’t resolve correctly during the program run, the

program would break. We found that the outputs of the quilted

versions were consistent with the outputs of the updated versions.

It should be noted that the number of resolutions Peanut requires

is independent of the size of the patch but instead dependent upon

how central the modified code is to the program’s control flow.

4.2 Mathematical Errors: Libpng

In some applications mathematical errors have security implica-

tions causing pointer errors or integer overflows. In this instance,

an attacker could craft a malicious PNG image that triggers a bad

calculation of row_factor in Figure 6 [23]. This causes a divide-by-

zero error and Denial-of-Service (DoS). After the developer writes

the patch and builds the new binary, Peanut will automatically

generate the patch metadata for the quilting procedure. Then the

user can use Peanut to build a quilted binary and update any soft-

ware running an old version of libpng. When the quilted binary

was tested with a maliciously crafted image, where the row_factor

was no longer 0, the quilted binary correctly handled the malicious

image the same way as the updated version.

4.3 String Parsing: libcurl

String parsing is tricky since there are many corner cases. Fig-

ure 7 [5] adjusts Curl’s treatment of URLs that end in a single colon.

png_check_chunk_length(...) {

...

size_t row_factor =

- (png_ptr->width * png_ptr->channels

- * (png_ptr->bit_depth > 8? 2: 1)

- + 1 + (png_ptr->interlaced? 6: 0));

+ (size_t)png_ptr->width

+ * (size_t)png_ptr->channels

+ * (png_ptr->bit_depth > 8? 2: 1)

+ + 1

+ + (png_ptr->interlaced? 6: 0);

Figure 6: libpng Mathematical Error

...

+ if(!portptr[1]) {

+ *portptr = '\0';

+ return CURLUE_OK;

+ }

- if(rest != &portptr[1]) { ...

- ...

+ *portptr++ = '\0'; /* cut off the name there */

+ *rest = 0;

+ msnprintf(portbuf, sizeof(portbuf), "%ld", port);

+ u->portnum = port;

...

Figure 7: Curl URL Parsing

+/* Return non zero if a non breaking space. */

+ static int iswnbspace (wint_t wc) {

+ return ! posixly_correct && (wc == 0x00A0 ...

+ static int isnbspace (int c) {

+ return iswnbspace (btowc (c));

+}

+

wc (args) {

- if (iswspace (wide_char))

+ if (iswspace (wide_char) || iswnbspace(wide_char))

goto mb_word_separator;

...

- if (isspace (to_uchar (p[-1])))

+ if (isspace (to_uchar (p[-1]))

+ || isnbspace (to_uchar (p[-1])))

+ goto word_separator;

}

...

Figure 8: wc New Function and Refactoring

In the buggy version, Curl incorrectly throws an error and never

initiates a valid http request. Figure 7 shows the patch, Peanut

resolves all the references in the binary, and sends a valid request.

We test the quilted binary using a specially crafted input and

the execution recreates the context that triggered the bug, and then

jumps to the patched code upon entering the modified function.

4.4 New Function Refactoring: wc

Peanut even supports changes that introduce substantial refactor-

ing across the entire code base. This includes adding new functions.

The new function is treated as new code, and the functions which

call the newly implemented function are replaced as well. The

quilted binary is tested by providing input from a specially crafted

file. The quilted binary acts the same as the updated version proving

it successfully integrates the patch into the old binary.

4.5 Increased Attack Surface

By quilting the binary with new code, we introduce a new attack

vector that an attacker could potentially exploit. As such it’s im-

portant in the quilting procedure to minimize the attack surface.

However since we only add the bare minimum code necessary to

create the quilted binary even if the update involved including new

versions of libraries our code only quilts the updated functions

and its dependencies. Table 2 shows the minute increased attack

surface. The maximum was measured at 14% and the minimum at

.003%. Egalito keeps the additional attack surface to a minimum.

Since Egalito raises the binary to an intermediate representation

Update Original

Size

(KB)

Quilt

Increase

(KB)

Pctg

Increase

(%)

curl [5] 663.4 .687 .104

curl [6] 663.5 9.6675 14.569

libpng [23] 942.2 .237 .025

wc [9] 222.0 5.941 2.675

yes [10] 148.5 10.669 7.184

ls [3] 623.5 7.497 1.202

mv [2] 613.5 4.303 .701

df [7] 423.3 5.971 1.41

bs [1] 295.1 5.648 1.914

wget [4] 8740 .303 .003

redis [8] 1086 .138 .013

Table 2: Quilting Overhead

Number of

Requests

Number of

Clients

Original

(s)

Quilted

(s)

Updated

(s)

100K 50 5.19 5.14 5.12

200K 100 10.43 10.44 10.42

Table 3: Quilted Performance

and then regenerates the binary, there are no additional jump in-

structions, trampolines, or extra pieces from the patched version of

the binary or its accompanying libraries. By using binary regenera-

tion instead of traditional binary rewriting mechanisms, even large

transformations introduce minimal overhead.

4.6 Side Effect Verification

The main advantage of quilting is that it prevents updates from

unintentionally introducing unwanted side effects. Developers can

test for most functionality related side effects, but side effects spe-

cific to the user environment like performance and scalability are

difficult to diagnose with deploying the new version or at least a

mock deployment. Developers can’t test for these types of problems.

To simulate this we conducted a case study using the redis web-

server. A version of redis [8] had a bug in which connecting via a

monitor thread, and sending a specific message caused the server

to crash. This is a critical level vulnerability that would need to be

patched immediately.

To simulate the patch first we quilted the binary in question and

ran the same patch quilting procedure. We then tested the patch’s

functionality with the predesigned test scenario to make sure that it

successfully integrated the patch the same way we did in the other

studies. We then ran Redis’ included benchmark commonly used to

test Redis’ performance on the original, quilted, and updated binary.

We found no evidence that quilting introduces any performance

overhead as shown in Table 3.

5 LIMITATIONS

Peanut depends on good practice in developer commits. If they

include extraneous code not related to the designated bug-fix in

the same commit, Peanut would automatically include this extra

information in the diffs. In other words, in order for Peanut to be

useful, developers need to make modular commits that distinguish

bug-fix commits from other commits containing enhancements and

other changes. Peanut also relies on having access to the symbols

in the build process. Of course these are stripped for deployment

but should be available in the developer environment.

Peanut has some approach limitations so it cannot accommodate

arbitrary code changes. The main approach limitation is in dealing

with data structure modifications. Peanut makes no attempt to

track data types, so quilting in a new data type with the current

implementation would be impossible.

The current Peanut implementation does not support changes to

macros. Macros are inlined to the code sections, so this information

would not be available in the binary. Attempting to find the loca-

tion of macros in a binary is impossible since this information is

lost in the developer’s build process. Therefore Egalito can’t apply

the appropriate transformations. Similarly in code that is highly

optimized, as would be expected in production level code, this could

cause a problem with inlined functions. Egalito would have no way

of finding the locations of the inlined functions.

We asked an independent team of three students to construct a

set of known C/Linux bugs that had already been fixed, 2016ś2019,

and to write appropriate test cases. Although we encouraged them

to include some security vulnerabilities, we placed no restrictions

on what bugs they could look for, so the collected bugs may not

be representative of bugs found in the wild that users would deem

critical to patch.

6 CONCLUSION AND FUTUREWORK

Through this work we showed that we are able to use binary patch

decomposition (BPD) in conjunction with binary quilting (BinQuilt)

to combine updated and older versions of a binary to create a variant

of the older binary that only includes the desired changes from the

updated version. Initial investigations with our Peanut prototype

indicate that we can apply this approach to real binaries based on

real updates and real build processes. We ran case studies across

multiple programs with a variety of update types and sizes. Our

case studies suggest that Peanut could accommodate production

updates without introducing side-effects, relative to the original

binary, beyond the designated patch. Further, Peanut’s leveraging

of Egalito’s binary regeneration avoids the performance overhead,

relative to the original binary, common in other approaches to

binary rewriting.

In the future we plan to conduct a more thorough evaluation of

our techniques, with more types of updates, in which we compare

to both the overhead introduced by other binary rewriting tools.

We have only tested with the minimal patch size for making an

update of limited scope, but there’s no reason our technique couldn’t

accommodate composite version updates of a significantly larger

scope, i.e., multiple independent patches and/or a series of bug-fixes

that work together. Given access to the proper dataset we would

like to test this with legacy binaries that are especially relevant and

hard to deal with.

ACKNOWLEDGMENTS

The Programming Systems Laboratory is supported in part by NSF

CNS-1563555, CCF-1815494 and CNS-1842456.

REFERENCES
[1] 2017. Running b2sum with ścheck option, and simply providing a string

"BLAKE2" . https://debbugs.gnu.org/cgi/bugreport.cgi?bug=28860.
[2] 2018. ’cp -n -u’ and ’mv -n -u’ now consistently ignore the -u option

. https://github.com/coreutils/coreutils/commit/\protect\discretionary{\char\
hyphenchar\font}{}{}7e244891b0c41bbf9f5b5917d1a71c183a8367ac.

[3] 2018. ls -aA shows . and .. in an empty directory; . https://debbugs.gnu.org/cgi/
bugreport.cgi?bug=30963.

[4] 2018. Simple fix stops creating the log when using -O and -q in the back-
ground . https://github.com/mirror/wget/commit/\protect\discretionary{\char\
hyphenchar\font}{}{}7ddcebd61e170fb03d361f82bf8f5550ee62a1ae.

[5] 2019. Curl String Parsing Bug. https://github.com/curl/curl/pull/3365.
[6] 2019. Curl String Parsing Bug. https://github.com/curl/curl/pull/3381.
[7] 2019. df coreutils library function. https://github.com/coreutils/coreutils/commit/

b04ce61958c.
[8] 2019. Redis Monitor Request Causes Crash. https://github.com/antirez/redis/

commit/e2c1f80b.
[9] 2019. wc Special Character Bug. https://github.com/coreutils/coreutils/commit/

a5202bd58531923e.
[10] 2019. yes coreutils library function. https://github.com/coreutils/coreutils/

commit/44af84263e.
[11] Martial Bourquin, Andy King, and Edward Robbins. 2013. BinSlayer: Accurate

Comparison of Binary Executables. In Proceedings of the 2nd ACM SIGPLAN
Program Protection and Reverse Engineering Workshop (Rome, Italy) (PPREW ’13).
Association for Computing Machinery, New York, NY, USA, Article 4, 10 pages.
https://doi.org/10.1145/2430553.2430557

[12] Agner Fog. 2019. Calling conventions for different C++ compilers and operating
systems. Technical University of Denmark. https://www.agner.org/optimize/
calling_conventions.pdf

[13] Debin Gao, Michael K. Reiter, and Dawn Song. 2008. BinHunt: Automatically
Finding Semantic Differences in Binary Programs. In Information and Communi-
cations Security, Liqun Chen, Mark D. Ryan, and Guilin Wang (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 238ś255.

[14] Github. [n.d.]. GitHub. https://github.com/. (Accessed on 07/14/2020).
[15] William H Hawkins, Jason D Hiser, Michele Co, Anh Nguyen-Tuong, and Jack W

Davidson. 2017. Zipr: Efficient static binary rewriting for security. In 2017 47th
Annual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN). IEEE, 559ś566.

[16] J Hiser, A Nguyen-Tuong, W Hawkins, and M McGill. [n.d.]. M. Co, and J. David-
son. Zipr++: Exceptional Binary Rewriting. In Proceedings of the 2017 Workshop
on Forming an Ecosystem Around Software Transformation. 9ś15.

[17] He Huang, Amr M. Youssef, and Mourad Debbabi. 2017. BinSequence: Fast,
Accurate and Scalable Binary Code Reuse Detection. In Proceedings of the 2017
ACM on Asia Conference on Computer and Communications Security (Abu Dhabi,
United Arab Emirates) (ASIA CCS ’17). Association for Computing Machinery,
New York, NY, USA, 155ś166. https://doi.org/10.1145/3052973.3052974

[18] H. Jeong, J. Baik, and K. Kang. 2017. Functional level hot-patching platform for
executable and linkable format binaries. In 2017 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). 489ś494.

[19] Steve Langasek. [n.d.]. Ubuntu Foundations Team - Weekly Newsletter. https:
//lists.ubuntu.com/archives/ubuntu-devel/2017-June/039816.html

[20] Jiang Ming, Meng Pan, and Debin Gao. 2013. iBinHunt: Binary Hunting with
Inter-procedural Control Flow. In Information Security and Cryptology ś ICISC
2012, Taekyoung Kwon, Mun-Kyu Lee, and Daesung Kwon (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 92ś109.

[21] Alfred Ng. 2018. How the Equifax hack happened, and what still needs to be
done. https://www.cnet.com/news/equifaxs-hack-one-year-later-a-look-back-
at-how-it-happened-and-whats-changed/

[22] A. Ramaswamy, S. Bratus, S. W. Smith, and M. E. Locasto. 2010. Katana: A Hot
Patching Framework for ELF Executables. In 2010 International Conference on
Availability, Reliability and Security. 507ś512.

[23] Red Hat Bugzilla ś Bug 1599943. 2019. libpng: Integer overflow and resultant
divide-by-zero. https://bugzilla.redhat.com/show_bug.cgi?id=1599943. CVE:
https://nvd.nist.gov/vuln/detail/CVE-2018-13785.

[24] Wang, Shi-Chao, Liu, Chu-Lei, Li, Yao, and Xu, Wei-Yang. 2017. SemDiff: Finding
Semtic Differences in Binary Programs based on Angr. ITM Web Conf. 12 (2017),
03029. https://doi.org/10.1051/itmconf/20171203029

[25] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P. Kemerlis.
2020. Egalito: Layout-Agnostic Binary Recompilation. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (Lausanne, Switzerland) (ASPLOS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 133ś147. https:
//doi.org/10.1145/3373376.3378470

[26] zynamics. [n.d.]. BinDiff. https://www.zynamics.com/bindiff.html. "Accessed:
7/9/20".

