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Abstract
In this paper, we present the design and implementation of

CIRCA, a logically centralized architecture and system for in-
terdomain routing that enables operators to offload BGP-style
route computation to the cloud while preserving the confi-
dentiality of proprietary information. To this end, our work
presents the first provably safe, live, and fully distributed con-
vergence detection algorithm for decentralized policy routing
and, somewhat surprisingly, shows that long MRAI timers
can likely be completely eliminated while significantly im-
proving convergence delays with logical centralization. Our
experiments with a Quagga-based CIRCA prototype and the
Internet’s AS topologies suggest that CIRCA can improve
interdomain routing convergence delays and transient route
inconsistencies by over an order of magnitude and offers non-
trivial incremental deployability benefits with modest changes
to widely deployed routing infrastructure.

1 Introduction

Logical centralization of control and management for enter-
prise networks has proven successful in recent years. How-
ever, this trend has minimally, if at all, affected interdomain
routing in the Internet that has seen little fundamental change
in over two decades of operation and continues to suffer from
long convergence delays, lack of control-data separation, poor
management knobs, lack of evolvability, etc.

Logical centralization or cloud-assisted interdomain route
computation holds the promise of alleviating these longstand-
ing problems but is not easy to accomplish. Unlike enter-
prise networks, a key stumbling block is the need to main-
tain the confidentiality of proprietary routing policies. Re-
cent research [2, 17] has attempted to attack this problem by
employing secure multiparty computation, but its inherently
computationally-expensive nature poses a scaling challenge,
so it has been demonstrated only at small scales with restric-
tive assumptions on the expressiveness of routing policies.
Cloud-assisted interdomain route computation has therefore
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Figure 1: CIRCA: northward root cause dispatch, cloud-
driven route computation, and southbound forwarding rules.

been limited to narrower contexts such as software-defined
exchange points [15, 16], engineering traffic across multiple
ASes owned by a single enterprise [18, 53], or compromising
on either or both of scale and policy confidentiality [26].

In this paper, we present the design and implementation of
CIRCA, the first logically centralized interdomain routing
control architecture and system enabling operators to offload
BGP-style route computation as-is to the cloud while preserv-
ing the confidentiality of proprietary policies. The CIRCA
service makes the following assurances to network opera-
tors: (1) forwarding entries computed by CIRCA will be
equivalent (as formalized in §3.4.1) to what their routers are
computing today; (2) CIRCA will quickly return forwarding
entries reflecting a converged state of the network circumvent-
ing BGP’s long tail of convergence delays (tens of seconds to
minutes); and (3) CIRCA does not require an AS to disclose
proprietary policy information to any third party except to the
extent that it can already be inferred by its eBGP peers.

The high-level design of the baseline CIRCA system, as il-
lustrated in Figure 1, is simple: each router speaking BGP (or
ground router) has a virtual router incarnate (or avatar) in the
CIRCA cloud. Upon detecting a root cause event, a ground
router dispatches it cloudward to its avatar; the virtual routers
in the cloud thereafter simply replay the same BGP protocol
as ground routers but in a significantly “fast-forwarded" man-
ner; and upon convergence, cloud routers dispatch modified
forwarding entries to their ground incarnates.

A natural question is why this simple, perhaps even seem-



ingly naive, high-level design can enable the cloud to compute
routes faster than the ground if it’s replaying the same proto-
col. The answer is threefold: (1) the cloud can easily afford
orders of magnitude more control bandwidth, e.g., tens or
even hundreds of Gbps of LAN bandwidth, compared to the
ground; (2) propagation delays in the cloud (< 1 ms or even
just a few microseconds [21, 33, 35, 55]) are several orders of
magnitude lower than the delay diameter of the Internet (≈
hundreds of ms); (3) the (cloud) control plane is physically
isolated from and can not interfere with the (ground) data
plane. Thus, the cloud has the luxury of doing away with
long route advertisement timers that in ground-BGP today are
believed necessary to mitigate the risk of super-exponential
message complexity [9, 28, 29, 36, 37] and conservatively set
to high values (e.g., 30s is a common vendor default).

The deceptively simple exposition above hides a number of
research questions that must be answered to translate the high-
level design to a deployable system in practice. Can the cloud
really compute stable routing outcomes an order of magni-
tude faster than the ground? Can (and how?) cloud routers
quickly detect that the distributed processing of a root event
has converged? Can CIRCA guarantee consistency of com-
puted routes and ensure that its computed routing outcomes
will match those of BGP despite component or network fail-
ures? Can CIRCA coexist with BGP and is it incrementally
deployable for incremental benefit?

Tackling the above questions and answering them in the
affirmative aided by an implemented prototype of CIRCA is
our primary contribution comprising the following parts:

1. Distributed convergence detection: Design and imple-
mentation of the first fully distributed BGP convergence
detector that is provably safe, i.e., no false positives, and
live, i.e., detection incurs a modest bounded delay (§3.3).

2. Quick end-to-end convergence: Large-scale prototype-
driven experiments showing that CIRCA can ensure
predictably quick convergence reducing BGP’s tail con-
vergence delays by over an order of magnitude, in part
by eliminating unnecessary long timers (§3.2, §4.1).

3. Route computation equivalence: A design that provably
ensures that its computed routing outcomes are equiv-
alent to those of any convergent (formalized in §3.4)
distributed policy-based ground routing protocol.

4. Incremental deployability: Design and evaluation of
mechanisms to deploy CIRCA co-existent (§3.5.1) with
BGP as well as in an incremental manner (§3.5.2).

2 Background and lineage

Logical centralization of network control and management,
including for interdomain routing, has a long scientific lineage.
We overview what prior work has accomplished on that front
to position how CIRCA builds upon that work.

In intradomain routing, a line of work seemingly starting
with calls for "routing as a service" [30] or "separating routing
from routers" followed by works such as RCP [4], 4D [52],
Ethane [5] etc. spurred what is now known as software-
defined networking (SDN), a term that commonly means
logical centralization of control and management for enter-
prise networks. Much follow-on SDN research as well as
widespread embrace by industry firmly attests to its benefits
such as cleaner control and data separation, ease of manage-
ment with a global view, hardware-software decoupling, etc.

Interdomain routing on the other hand, since BGP’s cre-
ation in the late 80s and progressive standardization through
the 90s, has remained largely untouched by the logical cen-
tralization trend as BGP4 continues to be the de facto interdo-
main routing protocol. Recent research however has begun to
explore extending SDN approaches to the interdomain con-
text [1, 41, 44, 54]. For example, SDX by Gupta et al. [16]
is a software-defined Internet exchange point (IXP) that en-
ables more sophisticated packet processing rules to engineer
interdomain traffic. Kotronis et al. [10, 24–27] also advocate
a logically centralized “multi-domain SDN" approach as an
alternative to BGP, introduce a publicly available (single-
node) Mininet-based emulation platform for experimenting
with hybrid BGP-SDN routing, and show modest improve-
ments in convergence delays because of centralization. Gupta
et al. [2, 17] advocate using secure multiparty computation
(SMPC) so as to combine the benefits of logical centralization
with confidentiality of proprietary routing policies, and argue
that SMPC may be computationally feasible for BGP with
some policy restrictions. Recent research has developed ap-
proaches for preserving the privacy of ISP policies at Internet
exchange points [6, 7, 14].

Consensus routing [20] advocates a consistency-first (in
contrast to the Internet’s longstanding allegiance to soft-state)
approach to interdomain routing. It works by periodically
capturing a consistent snapshot of global network state—e.g.,
by having a small number of say tier-1 ASes engage in a
consensus protocol to agree upon globally in-propagation
updates—so as to enable computation of so-called stable
forwarding tables that are guaranteed to be loop-free while
relying on transient routing heuristics in the forwarding plane
to re-route packets encountering blackholes. Consensus rout-
ing can be viewed as logically centralizing the snapshotting
of network state but continuing to rely on distributed BGP for
computation of the stable forwarding tables; the snapshots
simply slow down FIB changes making routers jump from
one set of consistent FIBs to another.

The above body of prior work informs the design of
CIRCA, a logically centralized, scalable, and fault-tolerant
architecture to offload interdomain route computation as-is
to the cloud without requiring ASes to reveal any additional
proprietary policy information while ensuring predictably
quick convergence delays, a combination of goals that to our
knowledge has not been achieved before.



3 CIRCA design and implementation

CIRCA is driven by the following key design goals.

1. Limited disclosure: CIRCA should not require ASes to
disclose proprietary policies or topology to any entity.

2. Quick convergence: CIRCA should ensure quick con-
vergence unlike BGP’s high tail latencies (§3.2).

3. High availability: CIRCA should ensure high availabil-
ity despite component or network failures (§3.4.2).

4. Route computation equivalence: CIRCA’s computed
routes should match those computed by BGP or any
desired decentralized and safe routing protocol (§3.4.1).

5. BGP interoperability: CIRCA should gracefully co-
exist with BGP and be incrementally deployable (§3.5).

3.1 Design overview
BGP route computation, even given centralized global topol-
ogy and policy information, is a computationally hard prob-
lem [13] unless restrictive assumptions are made, e.g., under
Gao-Rexford (GR) conditions, the complexity is linear in
the size of the network. To our knowledge, in the absence
of more restrictive assumptions than safety of routing poli-
cies, previously proposed approaches for BGP route com-
putation are not qualitatively more efficient than simulating
BGP’s path exploration process, i.e., some sequence of re-
ceive/import/adopt/export activations until convergence. Even
logically centralized approaches based on SMPC [17], that
in addition to GR constraints restrict policies to be next-hop-
based and routes to be uniquely determined by the source-
destination pair, compute BGP routes by simulating BGP’s
path exploration. Algebraic formulations of the problem can
potentially compute BGP routing outcomes more efficiently
than asynchronously simulating path exploration, e.g., via a
generalized Dijkstra-like algorithm [46] or iterative matrix
methods that synchronously simulate generalized Bellman-
Ford’s [45, 46] path exploration, but only under restrictive
assumptions that BGP in practice is not known to satisfy,
e.g., non-neighbor-based policies like “prefer customer but
disprefer routes containing AS X” are neither left-distributive
nor monotonic (also known as strictly increasing [8]), each
of which is known to be a sufficient condition for computing
destination-based forwarding routes efficiently.

CIRCA’s high-level design based on virtual routers replay-
ing BGP in the cloud is naturally dictated by two premises:
(1) we need to limit disclosure of proprietary policy informa-
tion to no more than what is shared between ASes in today’s
BGP (also referred to as ground-BGP); (2) even with cen-
trally disclosed policy information, without more restrictive
assumptions than just safety, we don’t know of a qualitatively
more efficient way to compute BGP’s routing outcomes other
than to simulate its path exploration. Accordingly, CIRCA

maps virtual router incarnates (or avatars) in the cloud to each
ground router. In what follows, we first describe unreplicated
CIRCA (deferring CIRCA’s replication mechanisms for en-
suring high availability amidst failures to §3.4.2) wherein
each ground router is one-one mapped to a cloud avatar and
the cloud avatars execute a protocol derived from the underly-
ing distributed ground routing protocol.

CIRCA operates incrementally in response to root cause
events, i.e., external events such as a node or link up/down
event, link cost change, or an operator-induced policy or con-
figuration change. CIRCA operates in three phases— (1)
detection and cloudward dispatch of a root event by a ground
router; (2) route computation by cloud routers; (3) adop-
tion of forwarding outcomes dispatched by cloud routers
groundward—a high-level design also shared by several prior
works [2, 4, 17, 26, 41].

3.1.1 CIRCA north-south protocol

The CIRCA north-south protocol consists of three phases.
Phase I: Upon detecting a root event, a ground router R:

1. Assigns a unique label E = [seqn,R] to the event, where
seqn is a sequence number incremented by exactly one
for each locally detected root cause event;

2. Appends 〈E, iface,etype,eval〉 to a local persistent log,
where iface identifies the interface affected by the event
and etype and eval are respectively the event type and
value, e.g., etype may denote a link cost change and eval
the value of the new link cost;

3. Sends the ground root cause (GRC) message 〈GRC,E,
iface,etype,eval〉 to its cloud avatar(s) v(R).

Phase II: CIRCA cloud routers then take these steps:

1. Upon receiving 〈GRC,E = [seqn,R], iface,etype,eval〉,
the cloud avatar v(R) initiates a distributed route com-
putation algorithm (in §3.3) for that event after it has
sequentially completed the execution for all root events
〈[k,R]〉 for k < seqn;

2. When a cloud router v(Q) impacted by E eventually
receives the termination notification (as guaranteed by
the liveness property in §3.3.2) for E, it

(a) appends the FIB entries updated as a result of E to
a local persistent log;

(b) dispatches the FIB entries to ground incarnate Q;

Phase III: A ground router Q receiving FIB entries for E:
1. Appends the FIB entries to a local persistent log;
2. Applies the FIB entries for E = [seqn,R] iff it has applied

all FIB entries for root events [k,R] for k < seqn;
The high-level protocol above can be optimized as follows.
Garbage collection: A ground router Q informs its cloud

avatar v(Q) to garbage collect its log entries for any root cause
event E for which Q has already applied (in step III.2 above)
the updated FIB entries. The ground router only persists O(1)



state per prefix. For each prefix p, it persistently maintains
only the FIB entries corresponding to the root event E that
it most recently applied in step III.2. §3.4 explains why this
preserves Route Computation Equivalence even amidst faults.

Concurrent execution: Step II.1 can be executed in parallel
for two or more root events while preserving key safety and
liveness properties (as explained in §3.3.3).

Virtual router consolidation: The one-one mapping of
ground to virtual routers in CIRCA can be optimized by
using a single, more complex route computation server per
AS that emulates the receipt/sending of eBGP updates from/to
adjacent ASes. Our focus on one-one router mapping in this
paper is driven by our goal to show a proof-of-concept design
and implementation that works at all and at scale, so we defer
approaches to optimize cloud resources to future work.

The rest of this section §3 describes how CIRCA achieves
its design goals starting with the first limited disclosure goal.

Limited disclosure: CIRCA’s threat model assumes that
ASes trust the cloud hosting provider to provide the physical
infrastructure in a non-curious manner, an assumption con-
sistent with standard IaaS cloud computing industry practice.
From a practical standpoint, there is a significant difference
between an AS trusting a cloud provider to not peek into its
virtual machines versus that AS explicitly submitting all of its
proprietary policy information to the cloud provider. Limiting
overt leakage of proprietary information further requires that
virtual routers belonging to a single AS be hosted within a
virtual LAN (VLAN) within the CIRCA cloud so that IGP,
iBGP, or other intradomain messages are physically confined
within the VLAN. §5 discusses state-of-the-art secure com-
puting techniques to extend CIRCA to work even with a
honest-but-curious cloud provider in the future.

3.2 MRAI: Unnecessary evil in the cloud
An important reason interdomain routing suffers from long
convergence delays is the presence of MRAI (min route ad-
vertisement interval) timers [3,28,31,36,43,49]. A nontrivial
body of prior work suggests that MRAI timers are a neces-
sary evil to tame BGP’s message complexity. Early work by
Labovitz et al. [28] suggests that without such timers, BGP’s
message complexity may be superexponential (or O(n!)). Al-
though the gadgets exemplifying the superexponential mes-
sage complexity in that work are somewhat contrived in that
their policy configuration does not satisfy Gao-Rexford (GR)
conditions that are believed to hold commonly in practice, sub-
sequent work [9] has shown that BGP’s message worst-case
complexity can be exponential even in GR topologies.

Our position is that MRAI timers even in ground-BGP to-
day are overly conservative and are set to high values (e.g., 30s
is a commonly recommended default value [31,50,51]) in part
because the relationship between MRAI timers, message com-
plexity, and overall convergence delay is poorly understood.
Classical work on this topic [12] suggests that convergence
delay exhibits a nonmonotonic relationship to MRAI timers,

i.e., there is a minima or a sweet spot setting for the timer
below which operators risk worsening convergence delay be-
cause of prohibitive message complexity and above which
the timers themselves are too conservative exacerbating delay.
There isn’t universal agreement on what value of the timer
is optimal; some have suggested that the common default of
30s is too high [12, 19, 31] while others have noted the risks
of heterogeneous timer values further exacerbating message
complexity [9], so conventional operational wisdom has been
to err on the conservative side.

3.2.1 Why the cloud is different

There are three critical differences between the cloud and
ground-BGP with implications for MRAI and other timers.

1. Control bandwidth: The CIRCA cloud can be easily
provisioned with 2-3 orders of magnitude more control
bandwidth (e.g., tens of Gbps) compared to typical con-
trol traffic provisioning in ground-BGP today.

2. Propagation delay: The propagation delay diameter of
the CIRCA cloud is 2-3 orders of magnitude less than
the hundreds of milliseconds in ground-BGP today.

3. Control-data isolation: Interference between control and
data is a non-concern in the CIRCA cloud, so it can
afford to be much more wasteful than ground-BGP.

Accordingly, we pick an aggressive point in the design
space for CIRCA, namely, no MRAI timers at all! The justifi-
cation for this design choice is as follows. First, MRAI timers,
when they help, intuitively work by limiting spurious path ex-
ploration by making each node wait long enough to hear from
its neighbors about their reaction to earlier routing messages.
However, these very timers can make nodes unnecessarily
wait for several MRAI rounds even when there is no possi-
bility of excessive spurious path exploration. Worse, some
(admittedly contrived) choices of heterogeneous timer values
even in GR settings can actually cause exponential message
complexity [9] even though overall convergence delay in GR
settings is determined by the speed of information propaga-
tion along the customer-provider chain and back. Eliminating
MRAI timers altogether propagates information as quickly as
possible while naturally slowing down node reaction times
because of message queuing delays in the rare cases that
message processing is indeed a bottleneck.

Second, message processing delays in commodity routers
as well as processing delays in well provisioned cloud envi-
ronments are an order of magnitude lower than the numbers
used in prior simulation-based work [12, 43]. Third, we hy-
pothesize that reasonable values of MRAI timer values when
useful are positively correlated with propagation delays, i.e.,
the higher the propagation delays, the higher the timer values
needed, all else being equal. This hypothesis is consistent
with (but not strictly implied by) the simple model in [37].

Our prototype-driven experiments in §4.1 validate the hy-
potheses above showing both that MRAI timers are unnec-



essary in reasonably provisioned cloud settings and that our
results do not qualitatively contradict the nonmonotonic be-
havior reported in previous works when compute provisioning
is artificially limited to unrealistically low levels.

3.3 Distributed convergence detection
The description thus far has side-stepped a critical question:
How do CIRCA cloud routers replaying a distributed proto-
col like BGP know when the processing of a root cause event
has converged? A convergence detector is necessary for a
cloud router to initiate transmission of the corresponding up-
dated FIB entries to its ground incarnate. The distributed BGP
protocol as executed by Internet routers today does not have
any such indicator of convergence (other than, trivially, the
absence of any routing updates for a sufficiently long time).

To appreciate why detecting convergence in CIRCA is not
easy, consider the strawman strategy of each virtual router
periodically, say once every τ seconds, reporting the most
recent time when it processed a message for a root cause
event e to a centralized monitor that declares convergence
when no router has processed any message for e in its most
recent reporting interval. For τ = 5s and a total of say 106

routers, this reporting traffic alone for each root event is 200K
pkts/s. A hierarchical convergence detector that employs a
per-AS detector with 50K ASes will still incur a reporting
traffic of 10K pkts/s per root event, which is prohibitively
expensive especially given that many root events may have
only a localized impact affecting the forwarding behavior of a
small number of ASes if at all. More importantly, a centralized
monitor will incur a convergence delay of at least τ seconds
per root event, not to mention poor fault tolerance. Finally,
a centralized monitor by design observes more information
than can be observed or easily inferred by any AS in BGP
today, thwarting CIRCA’s limited disclosure goal (§3.0).

We present a completely distributed convergence detector
that is provably safe, i.e., no false positives, and live, i.e., it
will detect convergence provably within at most 3× the actual
convergence delay—and in practice within a much smaller
factor (§4.2)—and the number of BGP messages as observed
by a (theoretical) global monitor. The distributed convergence
detection algorithm works in three phases as explained below.
For ease of exposition, we first assume failure-free execution
(deferring fault tolerance to §3.4). The algorithm is boot-
strapped with a set of path updates generated by simulating
the root event at the “root” cloud router receiving the corre-
sponding ground root cause message.

Figure 2 illustrates the three phases of the convergence de-
tection algorithm. In the first exploration phase, for each root
event e processed by a virtual router, the router maintains state
about the event by adding it to a set of unconverged events.
When a virtual router R processes a BGP message m related
to e and it induces no change to R’s FIB (and consequently no
new announcements to its neighbors), we say that message m
"fizzled" at R. For each fizzled message, R back-propagates

(a) Exploration (b) Back-propagation (c) Dissemination

Figure 2: 3-phase distributed convergence detection.

a fizzle indicator to its peer that previously sent it m thereby
initiating the second back-propagation phase. Each router lo-
cally keeps track of each message pertaining to e that it sends
to each neighbor and waits for the corresponding fizzle ac-
knowledgment to be back-propagated. When the router that
initiated the root cause event has received fizzle acknowl-
edgements for all messages it originated, it determines e to
have converged, which initiates the third dissemination phase
wherein, starting with the root router, each router forwards the
convergence indicator along each link previously traversed in
the exploration phase, at which point it drops all state related
to e for convergence detection.

3.3.1 Formal event-action protocol

In order to formally reason about the safety and liveness
properties of the distributed convergence detector, we codify
it in event-action format in Algorithm 1. The key notation is
as shown in Table 1. Where there is little room for confusion,
we drop the argument R implicitly fixing it to self at a router.

Algorithm 1 shows how a router R handles three distinct
events: (1) receipt of a root cause message 〈GRC,E . . .〉 from
its ground incarnate v(R) that initiates path exploration; (2)
receipt of a CBGP message from a peer cloud router; and (3)
receipt of a FIZZLE message from a peer cloud router.

The first event handler processes the received root cause
message by “simulating" the corresponding ground event,
which produces a set of resulting update messages announcing
or withdrawing a set of paths to affected prefixes, a set denoted
as paths(E). If the root event E does not change R’s FIB, then
routing has trivially converged (line 7). Else, for each changed
entry in R’s FIB causing a new update subject to its export
policy, it creates a unique timestamp as a two-tuple consisting
of a strictly increasing logical clock returned by now() and the
router’s identity. (This logical clock does not need to reflect
the happens-before relationship between events like Lamport
clocks for reasons that should be clear from the formal proofs
in §A.) The router stores each resulting update to its peers in
a map sent[E] and remembers the cause of each sent update



Algorithm 1 Distributed convergence detection (DCD) and
route computation at cloud router v(R)

1: event RECV(〈GRC,E, iface,etype,eval〉,R): . upon receipt of
root cause message from ground router R

2: paths(E)← sim(〈GRC,E, iface,etype,eval〉)
3: FIB0← FIB
4: for each prefix set p in paths(E) do
5: FIB← BGPImport(FIB,〈CBGP,E, p,paths(E)[p]〉)
6: if FIB = FIB0 then
7: converged(E)← true; exit
8: else
9: ts← [now(),R]

10: for each r: BGPExport(FIB0,FIB) do
11: ts1← [now(),R]
12: sent[E][ts] ∪= [r.peer,r.prefixes, ts1]
13: cause[ts1]← 〈GRC,E, ts,v(R)〉
14: send(〈CBGP,E,r.prefixes,r.asPath, ts1〉, r.peer)
15:
16: event RECV(〈CBGP,E, p,asPath, ts〉,N) . upon receipt of

CBGP message for prefixes p from cloud peer N
17: FIB0← FIB
18: FIB← BGPImport(FIB, [CBGP,E, p,asPath])
19: if FIB = FIB0 then
20: send(〈FIZZLE,E, ts〉,N)
21: else
22: for each r: BGPExport(FIB0,FIB) do
23: ts1← [now(),R]
24: sent[E][ts] ∪= [r.peer,r.prefixes, ts1]
25: cause[ts1]← 〈CBGP,E, ts,N〉
26: send(〈CBGP,E,r.prefixes,r.asPath, ts1〉, r.peer)
27:
28: event RECV(〈FIZZLE,E, ts〉,N) . upon receipt of a fizzle

message from cloud peer N
29: ts0 = cause−1(ts).ts
30: fizzled[E][ts0] ∪= sent[E][ts0][ts] . for dissemination phase
31: sent[E][ts0] −= sent[E][ts0][ts]
32: if sent[E] = {}∧ cause−1(ts) = 〈GRC,E, . . .〉 then
33: converged(E)← true; exit . begin dissemination phase
34: else if sent[E][ts0] = {} then
35: send(〈FIZZLE,E, ts0〉,cause−1(ts).peer])

CBGP Message type of BGP messages ex-
changed by cloud routers

GRC Message type of root cause messages
sent by a ground router

v(R) Cloud incarnate of ground router R
paths(E) Paths affected by E, a unique root cause

label, to one or more prefixes
FIB(R) Forwarding table of router R
send(m, N)/recv(m,N)) send/receive message m to/from peer N
BGPImport(F,m,R) New FIB resulting from processing

message m at router R with FIB F
BGPExport(F1,F2,R) Announce/withdraw messages by R, fil-

tered by its export policy, upon a FIB
change from F1 to F2

Table 1: Notation used by Algorithm 1.

as the original GRC message in a cause map indexed by the
timestamp ts of the sent update. By definition of now(), each
sent update has a unique timestamp.

The second event handler, the common-case action invoked
at a cloud router beyond the root router, is similar to the first
but with two important differences. First, if a received update
〈CBGP,E, p,asPath, ts〉 from a peer does not change its FIB,
it responds with the corresponding 〈FIZZLE,E, ts〉. Second,
if it does change its FIB, it remembers the cause of each
resulting export-policy-filtered update as the incoming update.

The third event handler purges entries from the sent[E] map
upon receipt of the corresponding fizzle messages (removing
the message with timestamp ts from the set sent[E][ts0] in line
31). If the sent set caused by an update is emptied at a non-
root router, it back-propagates a fizzle to the peer that sent the
incoming causal update (line 35). When an incoming fizzle
message empties the sent[E] map at the root router (line 33),
it declares the distributed processing of event E as converged,
and initiates the third dissemination phase (deferred to §A).

We need to formally prove the correctness property that
when a root router thinks routing has converged, that is indeed
the case; and the liveness property that the above protocol
will eventually terminate under realistic conditions.

3.3.2 Safety, liveness, and efficiency

The formal proofs of all claims herein are deferred to §A.

Theorem 3.1. SAFETY: If converged(E) is true at the root
cloud router that received the GRC, then no further CBGP
message for E will be received by any cloud router.

Theorem 3.2. LIVENESS: Algorithm 1 eventually terminates,
i.e., converged(E) is set at the root router, if BGP is safe1 and
all cloud routers are available for sufficiently long.

The safety and liveness proofs rely on a construction called
the directed message graph produced by any execution in-
stance of Algorithm 1, as illustrated in Figure 3, wherein each
vertex corresponds to a message—either the original GRC or a
CBGP message—and there is a directed edge from a message
m1 to another message m2 if m1 caused m2, i.e., m2 was sent
in lines 14 or 26 in response to the receipt of m1 in lines 1 or
16 respectively. We say that m1→ m2 (read as m1 happened
before m2) if there exists a directed path from m1 to m2 in
the graph. It is straightforward to show (Lemma A.1) that
the directed message graph is a directed tree, i.e., it is acyclic
and each vertex has exactly one incoming edge. The proof
of safety relies on showing that if m1→ m2, then m1 fizzles
only after m2 has previously fizzled (Lemma A.3) and when
converged(E) is true at the root router, no CBGP messages for
E are under propagation anywhere (Lemma A.4). The proof
of liveness relies on showing that, with safe BGP policies,
every CBGP message eventually receives a matching FIZZLE
(Lemma A.5) as well as on Lemma A.3 and on the assumption

1“BGP is safe" means that it is guaranteed to converge to a stable route
configuration [13] and is unrelated to safety in the theorem just above.
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Figure 3: (a) Routing topology: root cause is the failure of
link 4-6, arrows are from customer to provider, and no arrows
means a peer relationship. (b) Potential message DAG evolu-
tion: an execution instance of Algorithm 1 produces a prefix
of the shown directed tree where dashed-greyed (yellow) cir-
cles may or may not be a fizzling message, dashed (yellow)
ones are fizzling, and solid ones are non-fizzling messages.

that a router records all state changes in a local persistent log
before sending messages based on the changes.

For concision, we defer a codification of Algorithm 1’s
dissemination phase to §A.3. This phase does not impact
safety or liveness as defined above but is needed to show the
stronger liveness property that the algorithm terminates for
all impacted cloud routers (not just the root).

Theorem 3.3. EFFICIENCY: The root router (Any router) in
Algorithm 1 detects convergence within at most 2∆ (3∆) time
and 2M (3M) messages where ∆ and M are respectively the
actual convergence delay and number of messages incurred
by the distributed route computation in the cloud.

Although a 3× delay overhead may seem high and it may
cursorily appear possible to reduce that overhead with sim-
ple optimizations, our attempts at doing so while preserving
provable safety and liveness have been elusive. Fortunately,
our experiments (§4.1) show that (1) convergence delays in
the cloud are significantly smaller than those in the ground,
so a 3× overhead in the cloud is still a big net win; and (2)
the overhead is much smaller than 3× because messages in
the first exploration phase can contain a large number (even
thousands) of prefixes, but messages in the other two phases
are like small acknowledgments.

3.3.3 Concurrent event processing

The discussion above implicitly focused on sequentially pro-
cessing one root event at a time. However, we can not afford
the luxury of a centralized monitor or other mechanisms to en-
sure sequential processing of root events for the same reason
that convergence detection had to be distributed in the first

place. With multiple concurrent root events being processed
by different cloud routers, Algorithm 1 in conjunction with
the high-level end-to-end protocol in §3.1.1 has a problem:
the FIBs dispatched by a cloud router in step II.2.b may be
inconsistent as they may reflect the incomplete processing
of one or more root events being concurrently processed in
the system, which in turn could result in transient loops or
blackholes in the data plane at ground routers (as can hap-
pen in ground-BGP today even with just a single root event).
However, the safety and liveness properties above as well as
Route Computation Equivalence as formalized in the next
subsection still hold, so our CIRCA implementation simply
processes concurrent root cause events in parallel. A more
detailed discussion of the pros and cons of concurrent event
processing while preserving route consistency in the ground
data plane is deferred to a technical report [38].

3.4 Route Computation Equivalence despite
link or router failures

Informally, this section shows that any decentralized policy
routing (or “ground") protocol, including but not necessarily
limited to BGP, satisfying a naturally desirable consistency
property (ECC, as formalized below) can offload its route
computation to CIRCA with the guarantee that the CIRCA-
equipped system will eventually achieve the same routing
outcomes as the unmodified ground protocol despite failures,
a property referred to as Route Computation Equivalence.
Unlike the safety and liveness properties shown for CIRCA’s
cloud control plane, the results in this section subsume the
data plane or end-to-end forwarding behavior on the ground.

Network state model. We model the ground network as a
state machine with root cause events effecting state transitions.
The state of the network encompasses the (up/down) state of
all links and routers as well as any configuration information
(link costs, operator-specified policies at a router, etc.) that
potentially impacts routing outcomes. Let S0 denote the initial
state of a network and [e1, . . . ,ek] denote a sequence of root
cause events such that each event ei transitions the network
from state Si−1 to state Si. The state of the network after an
event or a sequence of events is denoted using the operator ’|’
as in S1 = S0|e1 or Sk = S0|[e1, . . . ,ek].

Definition 1. EVENTUALLY CONSISTENT CONVERGENCE
(ECC): If no root cause events occur for a sufficiently long
period, forwarding behavior should converge to reflect the
state of the network just after the most recent root cause event.

We posit eventually consistent convergence as defined
above as an intrinsically desirable property for any practi-
cal routing protocol. ECC as defined is rather weak because
“eventual" allows routes to be inconsistent with global net-
work state for arbitrarily long, but BGP today does satisfy
this property provided routing policies are safe (or conver-



gent) and every event is eventually detected and acted upon
by incident routers immediately impacted by it.

3.4.1 Unreplicated CIRCA ensures RCE

We next formally define Route Computation Equivalence.
Let D(S) represent any distributed route computation func-

tion that, given network state S, returns a set of possible rout-
ing outcomes, i.e., a set {GFIB1,GFIB2, . . .} wherein each
element represents global forwarding behavior as captured
by the union of the FIBs of all routers in the network. The
reason D(S) is a set of size greater than one is to incorpo-
rate non-determinism as BGP even with safe policies in gen-
eral can have multiple stable routing configurations, e.g., the
DISAGREE gadget [13] converges to one of two possible
stable routing outcomes depending on node reaction times.
Let GFIB(t) denote the forwarding routes adopted by ground
routers at time t. We would like to show that if a distributed
route computation process satisfies ECC, CIRCA preserves
those ECC routing outcomes. Formally,

Definition 2. ROUTE COMPUTATION EQUIVALENCE (RCE):
Given an initial network state S0 and a finite sequence of
root case events [e1, . . . ,en], a cloud-assisted routing proto-
col is said to preserve equivalence with respect to a dis-
tributed route computation function D(S) if it ensures that
limt→∞ GFIB(t) ∈ D(Sn) where Sn = S0|[e1, . . . ,en].

Next, we show that a single-datacenter (or unreplicated)
pure CIRCA deployment ensures RCE despite intermittent
failures (proof deferred to Appendix B), where pure means all
ground routers have been upgraded to rely only on CIRCA.
Theorem 3.4. If for a sufficiently long period—(i) all ground
routers can reach a CIRCA cloud replica and vice versa; and
(ii) all cloud routers are available and can communicate in a
timely manner—a pure CIRCA system ensures Route Com-
putation Equivalence with any distributed route computation
function that satisfies Eventually Consistent Convergence.

3.4.2 Replicated CIRCA ensures RCE

To see why Theorem 3.4 holds even in a replicated CIRCA
deployment without any replica coordination protocol, we
simply observe that each CIRCA replica independently en-
sures RCE, i.e., the FIBs it computes reflect the most recent
state of the network provided it eventually receives all root
cause event reports (in any order). If each ground router is
responsible for relaying each root event to all of its cloud
avatars, no replica coordination protocol between CIRCA
replica sites is necessary. CIRCA cloud routers may option-
ally relay root events to its siblings on other replica sites as
an optimization, but this is not necessary for ensuring Route
Computation Equivalence. An analogous observation, namely
that no sophisticated replica coordination protocol is needed
for safety, has been long known for a single-domain route
computation service (e.g., RCP [4]), but not for interdomain
routing. Furthermore, the technical reasons why they hold

in the CIRCA architecture based on processing root cause
events consistently are very different from RCP that relied
on an assumption of consistent views of the ground network
despite partitions across replicated route servers.

Overhead of faults. CIRCA’s simple design maintains
RCE despite arbitrary failure patterns but failures, specifically
of cloud routers or link failures inducing ground-cloud un-
reachability, have two costs: (1) growing log of unprocessed
root events at ground routers, and (2) transient forwarding
loops or blackholes. As detailed in the techreport [38], the for-
mer is bounded by the size of the total configuration state at a
router and the latter can be alleviated (but not eliminated) by
replicating CIRCA datacenters in a pure CIRCA deployment
or by relying on BGP co-existence mechanisms below.

Conveniently, ground router failures are a non-issue be-
cause of the fate sharing property that it is the only router
stalled by its failure; neighboring ground routers will detect
and process its failure as a normal root cause event.

3.5 Co-existence & incremental deployability

Co-existence refers to the ability of ground routers to leverage
the CIRCA cloud while continuing to rely on ground-BGP as
a fallback or an optimization under the (possibly impractical)
assumption that all ground routers have been upgraded to
be CIRCA-capable. Incremental deployability refers to the
ability to gainfully deploy CIRCA despite upgrading only a
subset of ground routers to be CIRCA-capable. (As defined,
a deployment can not be both co-existent and incremental.)

3.5.1 Co-existence with ground-BGP

CIRCA’s support for co-existence enables ground routers to
get the best of both worlds, i.e., adopt forwarding outcomes
from whichever plane—ground or cloud—converges earlier,
thereby also implicitly relying on ground-BGP alone as a
fallback when the cloud is unreachable. To this end, ground-
BGP needs to be extended so as to tag each message with
the corresponding root cause event label, and ground-BGP
routers need to relay the tag in any incoming message by
inserting it into any outgoing messages caused by it.

A ground router R uses the root event label E = [seqn,R]
in a ground-BGP message as follows. If R has already re-
ceived ∆FIBEntries(E) for E from the cloud, it rejects any
further ground-BGP messages tagged with E from impacting
its FIB, otherwise it continues processing ground-BGP mes-
sages as usual through its decision engine with one difference:
it marks any changes to its FIB as a result of E as such and
keeps a copy of the original entry for the corresponding prefix,
which essentially allows R to undo the effect of any ground-
BGP messages tagged with E. When R eventually receives
∆FIBEntries(E) from the cloud, irrespective of whether or
not ground-BGP has already converged at R (necessarily un-
beknownst to it), it installs ∆FIBEntries(E) anyway undoing
the effect of any ground-BGP messages pertaining to E.



Co-existence further requires ground routers to maintain a
route information base (RIB), or the set of available routes,
unlike universal CIRCA (wherein every router is CIRCA-
capable) that only required ground routers to maintain a FIB
(or the set of adopted routes). Maintaining a RIB plus a FIB
is no different from ground-BGP today, and requires ground
routers to continue processing messages tagged with E so as
to update its RIB (but not its FIB) even after it has received
the corresponding ∆FIBEntries(E) from its cloud incarnate.
Maintaining a RIB in co-existent CIRCA also enables ground
routers to employ fast reroute or backup routing options dur-
ing the ground or cloud convergence period.

3.5.2 Incremental deployability

Incremental deployment means that some ground routers may
be completely CIRCA-unaware, so such legacy routers can
not even parse BGP messages with root cause labels. In such
scenarios, the benefits of CIRCA would be limited to root
cause events that originate within and whose exploration fiz-
zles entirely within a contiguous island of routers all of which
have been upgraded to be CIRCA-capable. For events that
entirely fizzle within the contiguous upgraded island, the pro-
tocol is identical to the co-existent scenario (§3.5.1). If an
event spills out of this island, it is recognized as such by any
CIRCA cloud router at the island’s boundary. When a cloud
router detects a spill-over, it immediately aborts the explo-
ration by back-propagating an ABORT message (instead of a
FIZZLE), enabling the root router to conclude that the CIRCA
cloud can not compute the outcome of that event after all.

CIRCA needs an additional mechanism in order to pre-
serve RCE in incremental deployment scenarios, in partic-
ular, to ensure that cloud routers do not diverge from their
ground counterparts. To this end, each boundary router in the
CIRCA cloud, i.e., any router whose ground incarnate has at
least one neighbor that has not been upgraded to be CIRCA-
capable, establishes receive-only ground-BGP sessions with
those (ground) routers, wherein a receive-only session is one
that only receives, but never sends, any announcements. Note
that, notwithstanding this additional peering requirement, be-
cause of the non-deterministic nature of ground-BGP, it is
possible for some events to (not) fizzle within the upgraded
island in the cloud even though they might have not fizzled
(fizzled) within the corresponding island on the ground. §B
formally shows why RCE is nevertheless preserved under
incremental CIRCA deployment scenarios.

3.6 CIRCA implementation
We implemented a Quagga-based prototype of CIRCA in-
cluding the complete north-south protocol and the distributed
convergence detection algorithm as described in roughly
2,430 lines of code. We have not implemented co-existence
or incremental deployability mechanisms (§3.5) but evaluate
their benefits via simulations based on real AS topologies.

subtype version router ID
sequence number

timestamp
iface etype eval size

variable length for eval

BGP default update message body

length  type 

8	bytes

CIRCA	related	
fields

marker (16 bytes)
0 4 82 6

Figure 4: Header and body of a CIRCA BGP packet

Figure 4 shows the format of header and body of a CIRCA
packet. The header is just the BGP header as also implemented
in Quagga. The new fields are shown in gray background and
are as follows. The subtype identifies the internal type of
a CIRCA packet and include message types such as GRC,
FIZZLE, and CONVERGED used in the convergence detection
protocol. The router ID and sequence number two-tuple
uniquely identify a root cause event E in Alg.1; timestamp
is a unique ID for each message in Alg.1; and iface, etype,
and eval are as described in §3.1.1. The rest of the packet is
just the body of a BGP update packet with path attributes and
network layer reachability information.

4 Evaluation
In this section, we conduct a prototype- and measurement-
driven evaluation of these questions: (1) Does CIRCA help
significantly drive down convergence delays by being “care-
free" about message complexity? (2) Does CIRCA help im-
prove end-to-end convergence delays including (a) the over-
head of distributed convergence detection and (b) north-south
communication delays? (3) Does CIRCA yield incremental
benefit in incremental deployment scenarios?

All prototype-driven experiments are conducted on an Em-
ulab LAN testbed of 150 physical machines each with 8 cores.
All interfaces on used physical machines are connected to
gigabit ports on HP ProCurve switches 5412zl series. We use
three experimental-net switches (procurve3-procurve5), each
with approximately 240 ports. A fourth switch (procurve1)
acts as the center of a “hub and spoke" topology for the ex-
perimental network. The link speed between each pair of ma-
chines is 1Gbps and that of each virtual interface is 10Mbps.

4.1 Impact of MRAI timers

4.1.1 Single-router AS setup

In order to evaluate the convergence delay vs. message com-
plexity tradeoff in the CIRCA cloud, we conduct a prototype-
driven evaluation on the Emulab testbed using different realis-
tic Internet topologies extracted from 2018 CAIDA AS-level
topology gathered from RouteViews BGP tables [42] and
varying MRAI timer values. Our topology includes 60,006
ASes and 261,340 links with inferred relationships between
linked ASes [11]. Because of our limited physical resources



Number of routers in topology 20 60 180 540 1200

Average degree of routers 4 8 13 19 29

Average number of prefixes 225 296 180 155 106

All unique prefixes 4.5k 17.8k 32k 82.7k 125.3k

Table 2: Properties of used topologies.

(150 physical machines with 1200 cores), we extract contigu-
ous subgraphs of the AS topology of varying sizes from 20
to a maximum of 1200 ASes. For extracting a subgraph of
n ASes from the CAIDA data set, we first randomly pick an
AS and perform a breadth-first search until the number of
selected nodes reaches n. We increase the network size by
only adding new nodes to the smaller subgraphs. The average
degree of nodes and the number of prefixes belonging to each
AS in our extracted topologies are shown in Table 2.

Our experiments retain Quagga’s so-called “burst" MRAI
timer implementation where all updates to a given peer are
held until the timer expires, at which time all queued updates
are announced. Quagga applies the MRAI timer only on up-
dates, not on withdrawals, a behavior we retain. The published
official BGP4 protocol specification RFC 4271 [39] suggests
that route withdrawal messages are also to be limited by the
MRAI timer; a change from earlier version (RFC 4098) where
withdrawals could be sent immediately [40].

We emulate four different root cause events in our experi-
ment; node up, node down, link up and link down. For each
network size and MRAI value, we first assign the routers in
the network to physical machines randomly and set the same
MRAI timer on all routers and then wait for a long enough
duration until routes to all prefixes at all routers stabilize. At
this point, we randomly pick a router in the topology and
trigger a random root cause event, and repeat this process 30
times for each topology size and MRAI value. We log each
BGP message and post-process log files from all routers at
the end of each run to compute the convergence delay.

Figure 5 shows the average convergence delay of 30 simu-
lated root cause events using different MRAI values. In com-
puting the convergence delay of each root event, we do not
count the time it takes for the root router to detect the event
because this delay (≈ one to few seconds) will be incurred
by ground routers but not CIRCA cloud routers. We consider
the time when the last immediately impacted incident router
detects the event as the beginning of the convergence period.

A couple observations are noteworthy. First, the absolute
values of the convergence delay with zero MRAI timers are
small. Convergence delay increases as expected with the topol-
ogy size and number of affected prefixes of root router and
the highest (average) value observed is 2.3 seconds with 1200
ASes. We conduct a smaller-scale experiment with multiple
routers per AS using realistic intradomain topologies (de-
ferred to a techreport [38]). Unsurprisingly, the qualitative
trend of increasing convergence delays with increasing iBGP
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Figure 5: Average convergence delay of BGP across all root
events with different MRAI timers on Emulab.

MRAI values persists. Second, convergence delay monotoni-
cally increases with the MRAI timer value and a zero timer
yields the lowest convergence delay. This observation is in
contrast to an established body of prior research [9,12,28,43]
suggesting a non-monotonic relationship between MRAI
timer values and convergence delays and the existence of a
minima for convergence delay at an MRAI value greater than
zero, and that lower or zero MRAI values can significantly
exacerbate convergence delays.

There is no contradiction however with prior findings. Pre-
vious work has been largely based on simulations and toy
topologies (e.g., [12, 43]) and assumed unrealistically high
values of message processing delays, e.g., random delay from
zero to 1 second for each message in [12] and a uniformly
distributed delay between 1 and 30 milliseconds for message
processing [43]. There is no fundamental reason for message
processing delays to be that high on modern processors and
we find that they are at best tens of microseconds in Quagga
(after we systematically disabled unnecessary timers).

4.1.2 Reconciling prior findings

As a sanity check, to verify that with artificially inflated mes-
sage processing delays, we can reproduce the nonmonotonic-
ity observed in prior work, we reduce the number of physical
machines in our Emulab setup from 150 to 50 machines and re-
run the experiment with the largest topology size (1200). With
this setup, each 8-core machine now has almost 24 Quagga
instances running on it compared to roughly eighth Quagga
instances per machine (or one Quagga instance per core) in
the earlier setup. Quagga is single-threaded software, so a
Quagga instance can not leverage other cores on a physical
machine even if they are idle.

Figure 6 shows that the nonmonotonic behavior is repro-
ducible with more compute stress. However, it is important to
clarify that this behavior is not solely because of the modest
3× decrease in resource provisioning. Because Quagga is a
single-threaded software, an MRAI timer of 0 causes it to
spin in a busy wait consuming 100% CPU utilization on each
core even with one core per Quagga instance, a problem that
exacerbates with 3-4 Quagga instances per core. Without this
implementation artifact of wasteful busy waiting, we were
unable to reproduce the nonmonotonic behavior observed in
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Figure 6: Non-monotonic trend of convergence delay vs.
MRAI timer value with the 1200-AS topology.

prior work. Our observations therefore suggest that, with mod-
ern processing fabrics in routers, it may be worth revisiting
whether conservatively set high MRAI values are appropriate
even in ground-BGP today.

4.1.3 Extrapolating our findings to 60K ASes

Can even larger topologies going all the way up to 60K ASes
result in prohibitively high message complexity exacerbating
convergence delays? We think it unlikely for several reasons.

First, most root events are unlikely to impact a very large
number of ASes unless a prefix is rendered altogether unreach-
able [36]. Second, even if an event impacts all ASes, with
realistic Gao-Rexford policies, although pathological cases
of exponential message complexity are theoretically possible,
they require contrived topologies and unrealistic assumptions
about relative speeds of routers to manifest in practice [22].
Even so, it may be possible to manage resource more effec-
tively, e.g., we show in an experiment (deferred to a techre-
port [38]) that there is room to improve the core utilization
by 30× in our testbed with multi-threading and careful map-
ping of virtual routers to cores. Third, even if many routers
get affected by some root cause events, it is unlikely that the
FIB entries (as opposed to just RIB entries) on most of the
routers will change. Fourth, if message complexity does be-
come prohibitive, with ultra-low LAN propagation delays in
the CIRCA cloud, queued messages can be batch-processed
(with no intervening exports) so as to provide a self-clocking
mechanism to slow down announcements similar in spirit
to MRAI timers but without relying on conservative, static
values. This idea is similar to the proposed adaptive or dy-
namic MRAI values wherein the MRAI value is increased if
there is more "unfinished work" in the queue and decreased if
not [32, 43].

4.2 End-to-end convergence delay

In this section, we evaluate end-to-end convergence delay
including the overhead of distributed convergence detection
and north-south communication delays for a root cause event.
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Figure 7: Difference between actual convergence delay in
cloud, convergence detection delay using our algorithm, and
ground convergence delay.

4.2.1 Convergence detection overhead

First, we evaluate the overhead introduced by the distributed
convergence detection algorithm (Algorithm 1) to detect con-
vergence after the protocol actually converges in cloud. As
before, we estimate the ground-truth convergence delay by
processing router logs and compare it to the time reported by
our algorithm and repeat each root event injection 20 times.

We conduct this experiment with 20, 60, 180, and 540 ASes
respectively in the ground and cloud setups with 20 randomly
simulated root cause events in the ground setup in isolation.
On ground, we set MRAI 2 and 4 seconds. Each ground router
has a connection with its avatar in the cloud and both advertise
the same list of prefixes in the network. We consider three
different root cause event types in the ground network; node
down, link up and link down. We have a single router AS
setup for this experiment. The average degree of nodes in our
topology and the number of prefixes belonging to each AS
are shown in Table 2.

Figure 7 shows the average of the detected convergence
time and the ground-truth convergence delay in cloud and also
on ground for all root cause events for different topology sizes.
Per design, we might expect the root router to take roughly 2×
the time to detect and for the last router to take up to 3× time,
but the observed overhead is much smaller. The reason for this
fortuitous discrepancy is that messages in the first exploration
phase usually contain a large number (even thousands) of
prefixes, which increases processing and transmission times
in that phase, but not in the other two phases.

4.2.2 End-to-end delay in getting new FIB entries

In this experiment, we evaluate the end-to-end delay for ob-
taining new FIB entries from the cloud.

We assume the ground routers in an island with different
sizes have been upgraded to CIRCA. We run the ground
instance of the routers and their avatars in a LAN (our Em-
ulab CIRCA testbed). While we can find the convergence
detection time of each router using our implemented CIRCA
system, for measuring ground and cloud communication de-
lay, we can not use the delay between ground routers and their
avatars in the LAN as real Internet delay. We can estimate the
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Figure 8: CDF on the end-to-end convergence delay for
routers in different topology sizes

delay from Internet routers to their avatars by pinging routers
in target ASes at the ground from their avatars at the cloud.
The prefixes of each AS on the Internet are identifiable from
the Routeviews data set [42]. For five original prefixes of our
target ASes, we generate an IP address for each prefix by
adding 100 to the end of the prefix, e.g., 10.10.8.100 for the
prefix 10.10.8.0/24. We ping target IP addresses three times
and get the average ping delay from that AS to our data center.
For the roughly 20% of IP addresses for which we do not get
any result, we assume 100 ms as the one-way delay.

We conduct this experiment for varying topology sizes
with 20 randomly simulated root cause events on the ground
in isolation. We consider 20, 60,180, and 540 ASes on the
ground and in the cloud.

Figure 8 shows the end-to-end delay of getting the first
entry in the FIB table to ground routers in an island with
different sizes after simulating the root cause event on the
ground. The end-to-end delay is the sum of the delay in send-
ing event data to the cloud (approximated crudely as the ping
delay), detecting the stable state of the network by each router,
and receiving the new FIB entries from the cloud (ping delay)
across all root cause events and routers affected by our root
cause events. In small topologies, most of the routers (80%)
get the FIB entry across all root cause events in less than 400
ms. However, for our biggest topology size, 540 nodes, we
have 1.5 seconds for around 80% of routers. As explained in
section 4.1.3, most of the delay is because of the delay in the
first phase of our convergence detection algorithm and could
be further optimized.

4.3 Incremental deployment of CIRCA
We evaluate the fraction of root cause events that fizzle en-
tirely within an island of upgraded single-router ASes chosen
as a subset of the Internet’s AS topology. We sequentially sim-
ulate 20 randomly chosen root cause events originating within
each upgraded island. We consider different approaches for
selecting the upgraded routers: (1) tier-1 that first “upgrades"
the contiguous ASes that do not have any provider and then
their customers, and so on; (2) random that picks ASes in
the network randomly (possibly in a non-contiguous man-
ner); and (3) chain that picks a random contiguous chain of
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Figure 9: CDF on fraction of root cause events fizzled inside
the island of upgraded routers using different approach in an
island of 1,000 (1k) and 2,000 (2k) ASes

customer-provider ASes. We do not consider stub ASes in
our experiment as candidate ASes for upgrading.

Figure 9 shows the fraction of root cause events that fiz-
zle entirely within upgraded islands of different sizes with
different approaches. For example, for covering 40% of all
root cause events, we need to upgrade roughly 80% of routers
with the chain or tier-1 approaches.

5 Discussion: Security, privacy, open issues

Our first stab at a practical interdomain-routing-as-a-service
system leaves open questions that merit further discussion.

Any new system inevitably introduces new vulnerabilities.
Our high-level goal in this work was to limit misbehavior
to what is already possible in BGP’s control plane, and to
limit information disclosure explicitly by design, however
CIRCA itself introduces new security vulnerabilities as well
as side-channel information leakage as discussed below.

Side channel leakage. First, CIRCA allows a rogue AS to
exploit rapid convergence as a probing mechanism to infer
policies of other ASes by willfully tampering its announce-
ments and observing how others react, an attack also possible
in “slow motion" in ground-BGP, and mechanisms similar to
route flap damping may be necessary in the CIRCA cloud
if such “fast-forwarded" probing attacks were to become a
credible threat. FIZZLE messages expose a new side channel
allowing an attacker to use the time between a CBGP message
and its corresponding FIZZLE to infer more information than
is explicitly revealed by ground-BGP. Note that, given that
every CBGP is guaranteed to eventually elicit a corresponding
FIZZLE, the information leaked by this side channel is limited
to the convergence delay. Third, if a single provider owns
the entire network infrastructure in the CIRCA cloud, it can
monitor control traffic patterns (despite encryption) to derive
more information than is realistically possible in ground-BGP
today. We defer further analyses of and defenses against these
and other information leakage attacks to future work.

Security vulnerabilities. CIRCA’s design allows BGP in
the distributed cloud protocol to be drop-in replaced by S-
BGP [23] (or other related security extensions like soBGP,
BGPSec, etc.) while qualitatively preserving its convergence



delay benefits as well as safety, liveness, and route computa-
tion equivalence guarantees provided the secured variant of
BGP is guaranteed to produce routing outcomes equivalent
to its unsecured version. CIRCA largely continues to be vul-
nerable to protocol manipulation attacks [47] against which
cryptographic mechanisms as in S-BGP alone cannot pro-
tect, however known manipulation attacks based on abusing
MRAI timers allowing an off-path adversary to potentially
permanently disconnect good ASes despite the existence of
good policy-compliant paths between them are ineffective in
CIRCA because of its avoidance of MRAI timers.

CIRCA’s liveness guarantee (§3.3.2) relies on the safety
of BGP policies, which potentially allows a rogue AS to
change its policies (in a possibly self-defeating manner) sim-
ply to stall the CIRCA control plane. Although the rogue
AS could mount this attack even in ground-BGP today, an
ameliorating factor on the ground is that routers will con-
tinue to update their FIBs and forward traffic throughout the
never-ending convergence period, potentially over loops or
blackholes. In the CIRCA cloud in contrast, any root cause
event—necessarily a policy change event (as opposed to a
link/node down/up event)—that results in a safety violation
will never converge, so ground routers will never receive the
updated FIBs corresponding to that particular event. How-
ever, there are two alleviating factors in CIRCA. First, ground
routers can fall back on ground BGP with CIRCA’s support
for BGP co-existence for that root event. Second, other root
events can proceed unaffected with CIRCA’s default “care-
less" concurrent event processing approach. These factors
suggest that CIRCA-enabled BGP will be no worse than BGP
in the presence of safety-violating policy attacks.

Non-convergent path exploration can be cleanly limited by
augmenting the CIRCA cloud protocol with a TTL (time-to-
live) mechanism that aborts (or force-fizzles) path exploration
along any path in the directed message tree after a predefined
maximum number of hops. A second design choice is to
augment the cloud protocol with a TTL that upon expiration
causes a cloud router to dispatch its current FIB to its ground
avatar, reset the TTL to its maximum value, and resume the
(never-ending) path exploration phase for that root event, a
design that in effect induces ground routers to jump from
one set of potentially inconsistent FIBs to another in a never-
ending manner (similar to BGP). Such adaptations will not
preserve RCE as defined because RCE is not well defined in
the absence of ECC that will not hold under unsafe or non-
convergent BGP policies, however the second design choice
in practice comes close to emulating BGP behavior in non-
convergent scenarios. We defer a more detailed design and
analysis of CIRCA with unsafe BGP policies to future work.

Honest-but-curious threat model. CIRCA as described
herein trusts each (replicated) cloud provider to provide and
maintain the physical infrastructure in a non-curious manner,
but its design can be extended to support a honest-but-curious
cloud provider. One option is to employ emerging secure

computing platforms [34] to prevent the entity controlling the
physical machine from snooping on protected customer data
within the machine, an approach that does however implicitly
involve the manufacturer of the secure computing processor
(e.g, Intel with SGX). To prevent a cloud provider controlling
the OS on the machine from using the pattern of memory
accesses from leaking information, further techniques such as
Oblivious RAM [48] will be required. A quirkier alternative is
to organize each replicated CIRCA location similar in spirit
to a global exchange point with a “bring-your-own-hardware"
model in conjunction with physical security mechanisms, a
design wherein the CIRCA cloud itself is federated obviating
a trusted infrastructure provider.

Security and robustness benefits. Our hypothesis is that
the long-term potential benefits of CIRCA are likely to out-
weigh the impact of new vulnerabilities it introduces. First,
CIRCA provides a clean slate enabling early adopters to em-
ploy from the get go secure BGP mechanisms that have seen
two decades of research and standardization work but little
deployment in practice. Second, with willing AS participants,
it is intrinsically easier to monitor select portions of control
traffic in the CIRCA cloud compared to ground-BGP today
in order to detect misbehavior such as protocol manipulation
attacks. Third, CIRCA enables new opportunities such as
augmenting the CIRCA cloud with mechanisms for “what-
if" analysis allowing operators to ascertain whether an action
will have the intended effect before performing that action.

6 Conclusions

In this paper, we presented the design, formal analysis, im-
plementation, and prototype-driven evaluation of CIRCA,
a logically centralized architecture for interdomain routing
control. Although logical centralization of network control is
a widely embraced direction in recent years in intradomain
networks, attempts to extend that vision to Internet-wide in-
terdomain routing have been limited to on-paper designs or
small-scale evaluations. To our knowledge, this is the first
work to present a full-fledged design and implementation of
an interdomain routing control platform. Our underlying tech-
nical contributions include a novel distributed convergence
detection algorithm; demonstrating the potential for signifi-
cantly reducing BGP’s tail latencies; formally ensuring route
computation equivalence with a broad class of BGP-like pro-
tocols, and designing mechanisms for enabling incremental
deployment and coexistence with BGP.
Acknowledgements: This material is based upon work sup-
ported by the National Science Foundation under grant CNS-
1900866. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Sci-
ence Foundation.
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A Algorithm 1: Safety and liveness proofs

In this section, we formally prove the safety and liveness
properties satisfied by Algorithm 1. The proofs rely on a
construction called the directed message graph produced by
any execution instance of Algorithm 1 and defined as follows.

Definition 3. DIRECTED MESSAGE GRAPH: The directed
message graph of an instance of Algorithm 1 is a directed
graph G = (V ,E) such that each vertex in V denotes a sent
message (either the original GRC or a CBGP message) and E
has a directed edge from a message m1 to another message m2
if m1 caused m2, i.e., m2 was sent in lines 14 or 26 respectively
in response to the receipt of m1 in lines 16 or 1.

We say that m1→ m2 (or m1 happened before m2) if there
is a directed path from message m1 to m2 in the graph.

Lemma A.1. The directed message graph produced by any
execution of Algorithm 1 is a directed tree.

Proof. Acyclicity follows from the observation that each mes-
sage sent by Algorithm 1 is unique, as identified by the unique
two-tuple timestamp assigned in lines 11 or 23, thus the di-
rected message graph is a directed acyclic graph (DAG). That
DAG is also a tree because each message is caused by at most
one other message: a CBGP message is caused by either a
unique CBGP message (line 13) or the original GRC (line 25)
and the original GRC being the root of the DAG is not caused
by any other message.

In the proofs below, we will use tree(m) denote the sub-
tree rooted at m in the directed message tree produced by an
instance of Algorithm 1 (which is well-defined because of
Lemma A.1 just above).

A.1 Proof of safety
We introduce the following lemmas in order to prove safety
(Theorem 3.1).

Lemma A.2. If a router receives a FIZZLE for a CBGP mes-
sage m1 that it sent, then tree(m1) is finite.

Proof. Suppose the execution of Algorithm 1 started at time 0
and the router in the lemma’s premise received the FIZZLE for
m1 at some (finite) time t1. Further assume that the time since
a router sends a FIZZLE until the corresponding neighboring
router receives it is lower bounded by a constant time c > 0
(as would be the case in any real implementation of Algorithm
1). To show that tree(m1) is finite, we show that every path
rooted at m1 is finite as follows.

Consider the set caused(m1) of the immediate children
of m1, which is the set of messages sent by the recipient
of m1 in either the for loop on either line 10 (if m1 were
a GRC message) or line 22 (if m1 were a CBGP message).
By inspection of Algorithm 1, a FIZZLE is sent only at two
places, line 20 and line 35. In the former case (line 20), the
causal message m1 did not spawn any further child messages
at the recipient of m1, so caused(m1) is empty implying that
tree(m1) is of unit size.

In the latter case (line 35), the recipient of m1 must have pre-
viously remembered the set of caused messages caused(m1)
in its local map (the sent[E][ts(m1)] map in lines 12 or 24)
and subsequently sent a FIZZLE for m1 back to its sender
when the sent map got emptied at the recipient (line 34), i.e.,
the recipient of m1 received a FIZZLE for every message in
caused(m1). By assumption, the recipient of m1 must have
received a FIZZLE for every message in caused(m1) by time
no later than t− c.

Let causedk(m1) recursively denote the set of messages
caused by causedk−1(m1) for k > 1. By repeating the above
argument, all messages in causedk(m1) must have received
a corresponding FIZZLE from their respective recipients by
time t− kc. By assumption, the algorithm began execution at
time 0, so the depth of tree(m1) is at most t/c.

Lemma A.3. A router receives a FIZZLE for a CBGP mes-
sage m1 it sent only if for every message m2 (sent by any
router) such that m1→ m2, the sender of m2 had previously
received a matching FIZZLE from the recipient of m2.

Proof. The proof is by induction on the depth of the subtree
tree(m1) rooted at m1, which by Lemma A.2 is finite.

Consider a topological sort of tree(m1) with the root m1 at
level 0 and all the messages in causedk(m1) at level k > 0. Let
the depth or maximum level be d (that is well defined because
of Lemma A.2). The lemma’s claim is trivially true for a level
d message as it did not cause any further messages. Suppose
that the claim is true for messages at all levels in [i,d] (both
inclusive) for some 1 < i < d. Consider a non-leaf message
m at level i− 1 sent by a router for some root event E. By
line 35, the recipient router can issue a FIZZLE for m only if
its sent[E] is empty, i.e., only if it has received a matching
FIZZLE for every message in caused(m), which completes
the inductive step for level i, proving the lemma.



Lemma A.4. When converged(E) is set to true at the root
router, sent[E] is empty at every router.

Proof. There are two cases to consider.
Case 1: converged(E) is set upon receipt of a GRC message
In this case, the root router will terminate before sending

any CBGP message. No router will send any further CBGP
messages because a CBGP message can only be sent in re-
sponse to the receipt of a CBGP or GRC message.

Case 2: converged(E) is set upon receipt of a FIZZLE.
By inspection of code, this case can happen only if the

router receiving the FIZZLE is the router that received the root
cause GRC message. converged(E) is set at the root router only
when its sent[E] map is empty (line 7). By inspection (line 31),
an entry in sent[E] is removed only if the matching FIZZLE is
received. Thus, the root router must have received a matching
FIZZLE for each message it sent including all the level 1
messages immediately caused by the root GRC message. By
Lemma A.3, every sent message for E (at any router) must
have received a matching FIZZLE. By line 31, an entry in
sent[E] is removed if the matching FIZZLE is received. So, if
every sent message for E has received a matching FIZZLE,
sent[E] must be empty at all routers, proving the claim.

We complete the proof of safety as follows.
Theorem 3.1. SAFETY: If converged(E) is true at the root

cloud router that received the GRC, then no further CBGP
message for E will be received by any cloud router.

Proof. By Lemma A.4 above, sent[E] is empty at every router
at this point, so there is no in-propagation CBGP message for
E as every sent message at any router has already received the
corresponding FIZZLE. The root router that received the GRC
message terminates immediately after setting converged(E),
so it will not send any further CBGP messages for E. A CBGP
message can be sent by a non-root router (line 26) only upon
receiving an in-propagation CBGP message, so no non-root
router will send any further CBGP messages either.

Technical note. If we assume safe BGP policies, the oner-
ousness in Lemma A.2 would be unnecessary as the directed
message tree would be bounded by definition. However, the
proof of CIRCA’s safety (unlike the proof of its liveness im-
mediately below) does not require the safety of the underlying
BGP policies, so we chose the more onerous formal route to
make that independence clear.

A.2 Proof of liveness
The liveness proofs below implicitly assume that routers in the
CIRCA cloud either do not fail or employ a persistent write-
ahead log to record all local state changes before sending
messages based on those changes. (Unlike liveness, neither
failures nor the availability of a persistent log impacts safety.)

Lemma A.5. If BGP policies are safe, every sent CBGP
message eventually receives a matching FIZZLE if all cloud
routers are available for a sufficiently long duration.

Proof. The proof of this claim is by induction and is similar
in spirit to Lemma A.3. The assumed safety of BGP policies
by definition bounds the size of the directed message tree.
Consider a topological sort as before partitioning the tree into
levels where level k nodes are the messages in causedk(GRC)
where we have used GRC as a shorthand for the original GRC
message that initiated Algorithm 1 at the root router. Let d
denote the depth of the tree.

The claim is true for level d messages because of lines 19–
26: a router receiving a CBGP message must either cause a
new CBGP (the else block starting line 21) or issue a FIZZLE
for the received CBGP (line 20). Level d messages do not
cause any further CBGP messages, so routers receiving them
will issue a corresponding FIZZLE.

The inductive step is as follows. Suppose the claim holds
for levels i to d for 1 < i < d. Consider a level i−1 message
m with timestamp ts received by a router that causes it to
send the set caused(m) of level i messages. By the inductive
assumption, each level i message m1 eventually receives a
matching FIZZLE, and each such FIZZLE removes the corre-
sponding entry from sent[E][ts1] at the router that received m1
where ts1 is the timestamp of m1. Thus, when the recipient
of m has received matching FIZZLEs for all level i messages
caused by the incoming level i−1 message m, its sent[E][ts]
map becomes empty triggering the matching FIZZLE for m,
which completes the inductive step, proving the lemma.

Theorem 3.2. LIVENESS: Algorithm 1 eventually termi-
nates if the underlying BGP policies are safe2 and all cloud
routers are available for a sufficiently long duration.
Proof. To prove that Algorithm 1 terminates, i.e.,
converged(E) is set at the root router, we consider
two cases, the first of which as in the safety proof is trivial.

Case 1: No CBGP messages are sent.
In this case, the algorithm trivially terminates in line 7.
Case 1: CBGP messages are sent.
The proof of the theorem follows by observing that, by

Lemma A.5, the root router must eventually receive a match-
ing FIZZLE for all (level 1) CBGP messages caused by the
root GRC (in line 26). At this point, its sent[E] map must be
empty for the following reason: Lemma A.3 implies that any
level 2 or higher CBGP message sent by any router must have
already fizzled, so any level 2 or higher CBGP sent by the
root router must have also already fizzled and consequently
already removed from its sent[E] map. By line 32, an empty
sent[E] map causes Algorithm 1 to terminate.

Note that although the proofs above did not explicitly in-
voke the “all cloud routers are available for a sufficiently

2A reminder that “safe" here means that a stable route configuration
exists [13] and is unrelated to safety in Theorem 3.1



long duration” assumption, they implicitly relied on that in
conjunction with a persistent write-ahead log in all claims
with the word “eventually” in the proofs above.

A.3 Proof of efficiency
Algorithm 1 omitted a formal description of the third dissem-
ination phase for a concise exposition of the key safety and
liveness properties. For completeness, we codify the dissemi-
nation phase in event-action format as well. The root router
that received the GRC message for event E, instead of exit-
ing when converged(E) becomes true (on line 33), initiates
the dissemination phase by sending to itself the COMMIT
message 〈COMMIT,E, ts〉 where ts is the timestamp of the
original GRC message as assigned on line 9 in Algorithm 1.
The event handler for a received commit message is below.

Dissemination phase of Algorithm 1

1: event RECV(〈COMMIT,E, ts〉,N) . upon receipt of a commit
message from cloud router N at cloud router v(R)

2: p← all affected prefixes in fizzled[E][ts]
3: send(〈FBGP,E, p,FIB(p)〉, R) . southbound FIB dispatch
4: for each [N1, p1, ts1] : fizzled[E][ts] do
5: send(〈COMMIT,E, ts1〉,N1)

6: fizzled[E][ts]← /0

7: if fizzled[E] = /0 then exit

THEOREM 3.3. EFFICIENCY: The root router (Any router) in
Algorithm 1 detects convergence within at most 2∆ (3∆) time
and 2M (3M) messages where ∆ and M are respectively the
actual convergence delay and number of messages incurred
by the underlying distributed route computation protocol.

Proof. The convergence indicating COMMIT messages dis-
seminated in Algorithm 1’s third phase by design follow the
exact same paths as the CBGP messages in the directed mes-
sage tree in the first (exploration) phase. This claim follows
from the observation that when converged(E) is set at the root
router, Lemma A.4 implies that every entry ever previously
added to the sent[E] map (in lines 12 or 24) has already been
removed, and by inspection of lines 31 and 30, every entry
removed from the sent[E] map is added to the fizzled[E] map.

Assuming safety of the underlying BGP policies, every
CBGP message eventually begets a matching FIZZLE in the
reverse direction in the second (back-propagation) phase and
a matching COMMIT in the same direction in the third (dis-
semination) phase, thus the number of messages in each phase
is identical. The “actual convergence delay and number of
messages incurred by the underlying distributed route compu-
tation protocol” are defined as those of the first phase alone.
The root router detects convergence at the end of the second
phase when converged(E) becomes true. Each router detects
convergence when its fizzled[E] map gets emptied, which nec-
essarily happens for every router in the third phase by an
inductive argument similar to that used in Lemma A.5.

Technical notes. The efficiency proof conservatively as-
sumes that the second and third phases incur at most as much
delay as the first phase. In a practical implementation, this
assumption is more than true in that the first phase is likely
to incur much more delay than the other two phases. The
reason is that the first phase CBGP messages may carry a
large number (hundreds or thousands) of prefixes resulting
in large transfer sizes at each hop but the second and third
phase messages are small control messages as they just need
to convey the root cause event identifier and timestamp.

The dissemination phase as strictly codified above may re-
sult in any given router dispatching southward portions of the
modified FIB entries for a single root cause event in multiple
bursts (via line 3) in the third phase. It is straightforward to
modify the protocol so as to either dispatch the entire set of
modified FIB entries as a single message just before exit (on
line 7) instead or send a termination marker southward just
before exiting so that the ground incarnate can apply all mod-
ified FIB entries atomically. This modification may reduce
transient inconsistencies in the ground forwarding plane, es-
pecially if cloud routers intermittently fail and pre-computed
backup routing options are available to ground routers.

B Route computation equivalence

THEOREM 3.4. ROUTE COMPUTATION EQUIVALENCE:
If for a sufficiently long period—(i) all ground routers can
reach a CIRCA cloud datacenter and vice versa; and (ii) all
cloud routers are available and can communicate in a timely
manner—a pure CIRCA system ensures Route Computation
Equivalence with any distributed route computation function
that satisfies Eventually Consistent Convergence.

Proof. Let D(S) denote any distributed route computation
function. Suppose the initial network state is S0 and a
sequence of root cause events [e1, . . . ,en] (but no further
events) occurs. Consider the following mutually exclu-
sive and exhaustive set of event sequences: {[e11,e12, . . .],
[e21,e22, . . .], . . . , [em1,em2, . . .]} where ei j denotes an event at
router i with (local) sequence number j and m denotes the
total number of routers, i.e., each sequence in this set is an
ordered subset of events in the original event sequence all of
which were detected by the same router in that local order.

The theorem follows from the following claims: (1)
CIRCA eventually processes all root events; (2) CIRCA
processes root events in an order consistent with the local
order at ground routers; (3) processing the root events in any
global order consistent with local orders results in the same fi-
nal routing outcomes. The first two claims are straightforward:
the first follows from the assumption of sufficiently long peri-
ods of cloud-ground reachability and cloud router availability;
the second follows from line II.1 in the north-south protocol.

The last of the above claims is the non-intuitive one and
needs a proof. The proof surprisingly follows from the as-



sumption that the ground routing protocol ensures Eventually
Consistent Convergence. Consider any reordering of the F =
[ f1, . . . , fn] of the original event sequence E = [e1, . . . ,en] that
preserves local order. We claim that S0|F = S0|E , i.e., the
network arrives at the same final state given any local-order-
preserving reordering3 of an event sequence.

To see why, suppose events only consisted of link up and
link down events for a given link. A link event will be detected
and reported by one or both of the incident ground routers, say
A and B. No matter how many times the link goes up or down
in a given sequence of events, in any local-order-preserving
reordering of that sequence, both A and B will agree on the
final state of the link. Note that the claim is not true in general
for a non-local-order-preserving reordering, for example, if
link A−B went down and then came back up, but the last
event was reported by A and reported as a link down event,
the final state of the network (and by consequence routing
outcomes) will be different.

The complete proof follows from showing the third claim,
namely that any sequentially consistent reordering of events
produces the same final outcome, in a manner similar to above
for other root cause events including node up/down events,
link cost changes, as well as combinations of such events.

We conjecture that RCE given ECC as above holds for more
general policy or other configuration changes at routers. It is
straightforward to see that any set of configuration changes
across distributed routers will preserve RCE if the final state is
the same given any sequentially consistent reordering of those
changes. However, it is unclear to us if this property always
holds or to what extent it holds in practice. For example, if the
value of a router configuration parameter is determined based
on the value of another parameter at a different router, the final
network configuration state may depend on the precise total
order of all events, i.e., it is sensitive to different reorderings
even if they are sequentially consistent.

B.1 Practical considerations for RCE
The high-level CIRCA design may require or benefit from
some adaptations in practice as summarized below in order
to preserve route computation equivalence. A more detailed
investigation of these is deferred to future work.

IGP-awareness: A root event such as a link cost change or,
more generally, any intradomain root event that potentially

3Or a sequentially consistent ordering in distributed computing parlance.

affects interdomain routes at any router needs to be conveyed
somehow to that router. In an intradomain routing protocol
such as OSPF, link-state advertisements (LSA) accomplish
that purpose. There are two natural design alternatives in
CIRCA to accomplish the same: (1) piggypack the root cause
event label in LSAs similar to CIRCA’s CBGP messages;
(2) use iBGP to disseminate the root event network-wide
within the domain. The latter approach has the benefit of be-
ing largely decoupled from the intradomain routing protocol
and works well for intradomain routing protocols that are
global by design like link-state routing, but not so well for
decentralized protocols like distance-vector routing wherein a
router by design does not know the final outcome of the route
computation until the decentralized computation completes.
In practice, “full-mesh-iBGP-as-LSA” suffices to maintain
route computation equivalence for any shortest path routing
protocol or, more generally, any intradomain routing protocol
that lends itself to a global implementation, i.e., one where
an individual router can immediately compute its final in-
tradomain routing outcome for any given change to global
(intradomain) network state.

Root cause event grammar: Although the variable-length
description 〈etype,eval〉 (refer §3.1.1 and Figure 4) is in prin-
ciple sufficiently general to allow CIRCA to represent arbi-
trary changes to router configuration state, and parsing it is
a purely intradomain concern, there may be value in mini-
mally standardizing this representation across different router
vendors for the sake of a reusable implementation. For exam-
ple, the unix utility diff is a naive way to represent changes
to router configuration files in a platform-agnostic manner.
A more systematic vendor-specific or -neutral grammar for
representing root cause events is conceivable.

Domain consolidation: Consolidating route computation
for routers in the same domain by employing a single well-
provisioned router server (similar in spirit to RCP [4]) instead
of one-one mapping ground routers to virtual routers is likely
to improve resource efficiency and thereby reduce the pro-
visioning cost of route servers. The consolidated approach
blurs the distinction between the abstract “single-router-AS”
model and ASes in practice, arguably making it easier for
operators to monitor and understand routing dynamics within
their networks. Maintaining route computation equivalence
requires that the consolidated server is guaranteed to com-
putes a routing outcome that could have been computed by
the correspondning ground protocol.
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