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Abstract

Multiple fairness constraints have been proposed in the literature, motivated by a range of concerns

about how demographic groups might be treated unfairly by machine learning classifiers. In this

work we consider a different motivation; learning from biased training data. We posit several ways

in which training data may be biased, including having a more noisy or negatively biased labeling

process on members of a disadvantaged group, or a decreased prevalence of positive or negative

examples from the disadvantaged group, or both. Given such biased training data, Empirical Risk

Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal

accuracy on the true data distribution. We examine the ability of fairness-constrained ERM to

correct this problem. In particular, we find that the Equal Opportunity fairness constraint [14]

combined with ERM will provably recover the Bayes optimal classifier under a range of bias models.

We also consider other recovery methods including re-weighting the training data, Equalized Odds,

and Demographic Parity, and Calibration. These theoretical results provide additional motivation

for considering fairness interventions even if an actor cares primarily about accuracy.
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1 Introduction

Machine learning (typically supervised learning) systems are automating decisions that affect

individuals in sensitive and high stakes domains such as credit scoring [7] and bail assignment

[2, 12]. This trend toward greater automation of decisions has produced concerns that

learned models may reflect and amplify existing social bias or disparities in the training

data. Examples of possible bias in learning systems include the Pro-Publica investigation of

COMPAS (an actuarial risk instrument) [2], accuracy disparities in computer vision systems

[5], and gender bias in word vectors [4].

In order to address observed disparities in learning systems, an approach that has

developed into a significant body of work is to add demographic constraints to the learning

problem that encode criteria that a fair classifier ought to satisfy.
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Multiple constraints have been proposed in the literature [14, 11], each encoding a different

type of unfairness one might be concerned about, and there has been substantial work on

understanding their relationships to each other, including incompatibilities between the

fairness requirements [8, 6, 16, 20].

In this work, we take a different angle on the question of fairness. Rather than argue

whether or not these demographic constraints encode intrinsically desirable properties of

a classifier, we instead consider their ability to help a learning algorithm to recover from

biased training data and to produce a more accurate classifier.

In particular, adding a constraint (such as a fairness constraint) to an optimization

problem (such as ERM) would typically result in a lower quality solution. However, if the

objective being optimized is skewed (e.g., because training data is corrupted or not drawn

from the correct distribution) then such constraints might actually help prevent the optimizer

from being led astray, and yield a higher quality solution when accuracy is measured on the

true distribution.

More specifically, we consider a binary classification setting in which data points corres-

pond to individuals, some of whom are members of an advantaged Group A and the rest

of whom are members of a disadvantaged Group B. We want to make a decision such as

deciding whether to offer a candidate a loan or admission to college. We have access to

labeled training data consisting of (x, y) pairs where x is some set of features corresponding

to an individual and y is a label we want to predict for new individuals.

The concern is that the training data is potentially biased against Group B in that the

training data systematically misrepresents the true distribution over features and labels in

Group B, while the training data for Group A is drawn from the true distribution for Group

A. We consider several natural ways this might occur. One way is that members of the

disadvantaged group might show up in the training data at a lower rate than their true

prevalence in the population, and worse, this rate might depend on their true label.

For instance, if the positive examples of Group B appear at a much lower rate in the

training data than the negative examples of Group B (which might occur for cultural reasons

or due to other options available to them), then ERM might learn a rule that classifies all or

most members of Group B as negative.

A second form of bias in the training data we consider is bias in the labeling process.

Human labelers might have inherent biases causing some positive members of Group B in

the training data to be mislabeled as negative, which again could cause unconstrained ERM

to be more pessimistic than it should be. Alternatively, both processes might occur together.

We examine the ability of fairness constraints to help an ERM learning method recover from

these problems.

1.1 Summary of Results

Our main result is that ERM subject to the Equal Opportunity fairness constraint [14]

recovers the true Bayes optimal hypothesis under a wide range of bias models, making it an

attractive choice even for decision makers whose overall concern is purely about accuracy on

the true data distribution.

In particular, we assume that under the true data distribution, the Bayes optimal classifiers

h∗

A and h∗

B classify the same fraction p of their respective populations as positive1, h∗

A and

h∗

B have the same error rate η on their respective populations, and that these errors are

uniformly distributed.

1 p = PDA
(h∗

A(x) = 1) = PDB
(h∗

B(x) = 1). We will allow the classifiers to make decisions based on group
membership or alternatively assume we have sufficiently rich data to implicitly infer the group attribute.
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However, during the training process we do not have access to the true distribution. We

only have access to a biased distribution in a way that implicates the distinct social groups

and causes the classifier to be overly pessimistic on individuals from Group B.

We prove that, subject to the above conditions on h∗

A and h∗

B, even with substantially

corrupted training data either due to the under-representation of positive examples in Group

B or a substantial fraction of positive examples in Group B mislabeled as negative, or both,

the Equality of Opportunity fairness constraint will enable ERM to learn the Bayes optimal

classifier h∗ = (h∗

A, h∗

B), subject to a pair of inequalities ensuring that the labels are not too

noisy and Group A has large mass.

Expressed another way, this means that the lowest error classifier on the biased data

satisfying Equality of Opportunity is the Bayes optimal classifier on the un-corrupted data.

These results provide additional motivation for considering fairness interventions, and in

particular Equality of Opportunity, even if one cares primarily about accuracy.

Other related fairness notions such as Equalized Odds, Demographic Parity, and Calibra-

tion do not succeed in recovering the Bayes optimal classifier under such broad conditions. In

fact, we show that given data subject to Under-Representation Bias, Calibration can actually

amplify the effects of the bias, and so can be worse than doing nothing and instead learning

with plain ERM (see Section 3.1).

Our results are in the infinite sample limit and we suppress issues of sample complexity2

in order to focus on the core phenomenon of the data source being unreliable.

1.2 Related Work

This paper is directly motivated by a model of implicit bias in ranking [17]. In that paper,

the training data for a hiring process is systematically corrupted against minority candidates

and a method to correct this bias increases both the quality of the accepted candidate and

the fraction of hired minority candidates. However, that fairness intervention, the Rooney

Rule, does not immediately translate to a general learning setting.

Our results avoid triggering the known impossibility results between high accuracy and

satisfying fairness criteria [6, 16] by assuming we have equal base rates across groups. This

assumption may not be realistic in all settings, however there are settings where bias concerns

arise and there is empirical evidence that base rates are equivalent across the relevant

demographic groups, e.g. highly differential arrest rates for some alleged crimes that have

similar occurrence rates across groups [19, 21].

Within the fairness literature there are several approaches similar to ours. In particular,

our concern with positive examples not appearing in the training data is similar in effect

to a selective labels problem [18]. [9] uses data augmentation to experimentally improve

generalization under selective label bias.

[13, 22] also consider the training and test data distribution gap we experience in our

model and posit differing interpretations of fairness constraints under different worldviews.

While we do not explicitly use the terminology in these papers, we believe our view of the

gap between the true distribution and the training time distribution is aligned with Friedler

et al’s concept of the gap between the construct space and the observed space.

2 Our notion of sample complexity is typical. Let S be the biased training data-set and ERMH(S) = ĥ.

Given ε, δ > 0, m(ε, δ) samples ensures with probability greater than 1 − δ that LD(ĥ) ≤ LD(h∗) + ε.

FORC 2020
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Our second bias model, Labeling Bias, is similar to [15]. In that paper, the bias phe-

nomenon is that a biased labeler makes poor decisions on the disadvantaged group and

intervenes with a reweighting technique, one that is more complex than our Re-Weighting

intervention. However, that paper does not consider the interaction of biased labels with

different groups appearing in the data at different rates as a function of their labels.

2 Model

In this section we describe our learning model, how bias enters the data-set, and the fairness

interventions we consider.

We assume the data lies in some instance space X, such as X = R
d. There are two

demographic groups in the population, Group A and Group B. Their proportions in the

population are given by P (x ∈ A) = 1 − r and P (x ∈ B) = r for r ∈ (0, 1). x ∈ A can be

read as individual x in demographic Group A. Group B is the disadvantaged group that

suffers from the effects of the bias model.

Assume there is a special coordinate of the feature vector x that denotes group membership.

The data distribution is given by D, and is a pair distributions (DA,DB), with DA determining

how x ∈ A is distributed and DB determining how x ∈ B is distributed.

2.1 True Label Generation

Now we describe how the true labels for individuals are generated. Assume there exists a

pair of Bayes optimal classifiers h∗ = (h∗

A, h∗

B) with h∗

A, h∗

B ∈ H : X → {0, 1}.

We assume that the Bayes optimal classifier h∗

B for Group B may be different from the

Bayes optimal classifier h∗

A for Group A. If h∗

A was also optimal for Group B, then we can just

learn h∗ for both Groups A and B using data only from Group A and biased data concerns

fade away. Thus we are learning a pair of classifiers, one for each demographic group.

When generating samples, first we draw a data-point x. With probability 1 − r, x ∼ DA

(and thus x ∈ A) and with probability r, x ∼ DB (so x ∈ B).

Once we have drawn a data-point x, we model the true labels as being produced as

follows; evaluate h∗(x), using the classifier corresponding to the demographic group of x. If

x ∈ A, then h∗(x) = h∗

A(x). If x ∈ B, then h∗(x) = h∗

B(x). However, we assume that h∗ is

not perfect and independently with probability η, the true label of x does not correspond to

the prediction h∗(x).

y = y(x) =

{

¬ h∗(x) with probability η

h∗(x) w.p. 1 − η

The labels y after this flipping process are the true labels of the training data.3 We assume

that p = P (h∗

A(x) = 1|x ∈ A) = P (h∗

B(x) = 1|x ∈ B). This combined with the assumption

that η is the same for classifiers from both groups implies that the two groups have equal

base rates (fraction of positive samples) i.e p(1 − η) + (1 − p)η (un-normalized).

We denote this label model as (x, y) ∼ PD,r(h∗, η) for a pair of classifiers h∗ = (h∗

A, h∗

B)

with h∗

A, h∗

B ∈ H where H : X → {0, 1} is some hypothesis class with finite VC dimension.

3 Note this label model is equivalent to the Random Classification Noise model [1]. However the key
interpretative difference is that in RCN, h∗(x) is the correct label and those that get flipped are noise,
but in our case the y are the true labels and h∗ is merely the Bayes optimal classifier given the observed
features.
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2.2 Biased Training Data

Now we consider how bias enters the data-set. Consider the example of hiring where the main

failure mode will be a classifier that is too negative on the disadvantaged group. We explore

several different bias models to capture potential ways the data-set could become biased.

The first bias model we call Under-Representation Bias. In this model, the positive

examples from Group B are under-represented in the training data. Specifically, the biased

training data is drawn as follows:

1. m examples are sampled from the distribution D. Thus each x ∼ D.

2. The label y for each x is generated according to the label process from Section 2.1 with

hypothesis h∗ = (h∗

A, h∗

B) and η.

3. For each pair (x, y), if x ∈ B and y = 1, then the data-point (x, y) is discarded from our

training set independently with probability 1 − β.

Thus we see fewer positive examples from Group B in our training data. β is the probability

a positive example from Group B stays in the training data and 1 > β > 0.

If η = 0, then the positive and negative regions of h∗ are strictly disjoint, so if we draw

sufficiently many examples, with high probability, we will see enough positive examples in

the positive domain of h∗ to find a low empirical error classifier that is equivalent to h∗.4

In contrast for non-zero η, our label model interacting with the bias model can induce a

problematic phenomenon that fools the ERM classifier. For non-zero η there is error even

for the Bayes optimal classifier h∗ and thus in the region classified as positive by the Bayes

optimal classifier h∗ there are positive examples mixed with negative examples. The fraction

of negative examples is amplified by the bias process.

If β is sufficiently small, there could in fact be more negative examples of Group B than

positive examples in the positive region of h∗

B . If this occurs, then the bias model will snap

the unconstrained ERM optimal hypothesis (optimal on the biased data) to classifying all

individuals from Group B as negatives. This can be observed in Figure 1.

Under-Representation Bias is related to selective labels in [18] since we are learning on a

filtered distribution where the filtering process is correlated with the group label. Our model

is functionally equivalent to over-representing the negatives of the in the training data, an

empirical phenomenon observed in [21].

2.3 Alternative Bias Model: Labeling Bias

We now consider a bias model that captures the notion of implicit bias, which we call

Labeling Bias. In particular, a possible source of bias in machine learning is the label

generating process, especially in applications where the sensitive attribute can be inferred by

the labeler, consciously or unconsciously. For example, training data for an automated resume

scoring system could be based upon the historical scores of resumes created by a biased

hiring manager or a committee of experts. This source of labels could then systematically

score individuals from Group B as having lower resume scores, an observation noted in

randomized real world investigations [3].

Formally, the labeling bias model is:

1. m examples are sampled from the distribution D. Thus each x ∼ D.

2. The labels y for each x are generated according to the label process from Section 2.1 with

hypothesis h∗ = (h∗

A, h∗

B) and η.

3. For each pair (x, y), if x ∈ B and y = 1, then independently with probability ν, the label

of this point is flipped to negative.

4 We would learn with ERM and Uniform Convergence, using the fact that H has finite VC-dimension.

FORC 2020
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(a) Un-Corrupted Data (b) Corrupted Data:
Under-Representation Bias

Figure 1 The schematic on the left displays data points with p = 1/2, h∗

B as a hyperplane, and

η = 1/3. The schematic on the right displays data drawn from the same distribution subject to the

Under-Representation Bias with βP OS = 1/3. Now there are more negative examples than positive

examples above the hyperplane so the lowest error hypothesis classifies all examples on the right as

negative.

This process is one-sided, so true positives become negatives in the biased training data, so

apparent negatives becomes over-represented. We are making a conceptual distinction that

the true labels (Step 2) are those generated by the original label model and these examples

that get flipped by the bias process (Step 3) are not really negative, instead they are just

mislabeled.

As ν increases, more and more of the individuals in the minority group appear negative

in the training data. Once the number of positive samples is smaller than the number of

negative samples above the decision surface h∗

B, then the optimal unconstrained classifier

(according to the biased data) is to simply classify all those points as negative.

2.4 Under-Representation Bias and Labeling Bias

We now consider a more general model that combines Under-Representation Bias and

Labeling Bias, and moreover we allow either positives or negatives of Group B (or both)

to be under-represented. Specifically, we now have three parameters: βP OS , βNEG, and ν.

Given m examples drawn from PD,r(h∗, η), we discard each positive example of Group B

with probability 1 − βP OS and discard each negative example of Group B with probability

1 − βNEG to model the Under-Representation Bias. Next, each positive example of Group

B is mislabeled as negative with probability ν to model the Labeling Bias. Note that the

under-representation comes first: βP OS and βNEG represent the probability of true positive

and true negative examples from Group B staying in the data-set, respectively, regardless of

whether they have been mislabeled by the agent’s labelers.

2.5 Fairness Interventions

Now we introduce several fairness interventions and define a notion of successful recovery

from the biased training distribution.

We consider multiple fairness constraints to examine whether the criteria have differ-

ent behavior in different bias regimes. The fairness constraints we focus on are Equal

Opportunity, Equalized Odds, Demographic Parity, and Calibration.
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I Definition 1. Classifier h satisfies Equal Opportunity on data distribution D [14] if

P(x,y)∼D(h(x) = 1|y = 1, x ∈ A) = P(x,y)∼D(h(x) = 1|y = 1, x ∈ B) (1)

This requires that the true positive rate in Group B is the same as the true positive rate in

Group A.

Equalized Odds is a similar notion, also introduced in [14]. In addition to requiring

Line 1, Equalized Odds also requires that the false positive rates are equal across both groups.

Equivalently, we can define Equalized Odds as h ⊥ A|Y , meaning that h is independent of

the sensitive attribute, conditioned on the true label Y . We also consider Demographic

Parity := P (h(x) = 1|x ∈ A) = P (h(x) = 1|x ∈ B) [11]. For each of these criteria, the

overall training procedure is solving a constrained ERM problem.5

An alternative intervention we study data Re-Weighting, where we change the training

data distribution to correct for the bias process and then do ERM on the new distribution.

The overall gist of how the training data becomes biased in our models is that the positive

samples from Group B are under-represented in the training data so we can intervene by

up-weighting the observed fraction of positives in the training data from Group B to match

the fraction of positives from the Group A training data.

In the training process we only have access to samples from the training distribution and

thus when using a fairness criterion to select among models we check the requirement on the

biased training data.

The last fairness intervention we consider is Calibration. Calibration [12, 10, 6, 20]

requires that when interpreted as probabilities, the same score communicates the same

information for individuals from different demographic groups. Specifically, in the bucket

of individuals receiving score s, the same fraction in both demographic groups is in fact

truly positive. We focus on Calibration for the case of our binary classifier where there are

only two scores, e.g. the scores 0 and 1, so in order for classifier h = (hA, hB) to satisfy

Calibration, the following equalities must hold. 6

Px∼DA
(y = 1|hA(x) = 1) = Px∼DB

(y = 1|hB(x) = 1)

Px∼DA
(y = 1|hA(x) = 0) = Px∼DB

(y = 1|hB(x) = 0)

While the other fairness criteria are vigorously debated, Calibration is less contested as

an important desiderata of machine learning models. Calibration has been used to defend the

epistemic validity of risk prediction instruments [12, 10] and it is claimed that mis-calibrated

classifiers may have serious harms and induce undesirable behavior when scores are used by

a human actor [20].

Observe that in our model of label generation, the Bayes optimal classifier on the true

distribution is the h∗ used to generate the labels initially, regardless of the values of η and r.

Thus our goal for the learning process is to recover the original optimal classifier h∗, subject to

training data from a range of bias models and the true label process with (x, y) ∼ PD,r(h∗, η).

A more effective learning method would recover h∗ in a wider range of the model parameters

(the parameters that characterize the bias process and the true label process). Accordingly

we define Strong-Recovery(r, η):

I Definition 2. A Fairness Intervention in bias model B satisfies Strong-Recovery(r0, η0)

if for all η ∈ [0, η0) and all 0 < r < r0, when given data corrupted by bias model B, the

training procedure recovers the Bayes optimal classifier h∗, given sufficient samples, for all

βP OS , βNEG ∈ (0, 1], ν ∈ [0, 1), and p ∈ (0, 1].

5 We do not consider methods for efficiently solving the constrained ERM problem.
6 If one of the conditioned on events never occurs, such as a classifier that never classifies anyone from

Group B as positive, we treat the associated equality as satisfied.

FORC 2020
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3 Recovery Behavior Across Bias Models

There are two failure modes for learning a fairness constrained classifier that we will need

to be concerned with. First, the Bayes optimal hypothesis may not satisfy the fairness

constraint evaluated on the biased data. Second, within the set of hypotheses satisfying the

fairness constraint, another hypothesis (with higher error on the true distribution) may have

lower error than the Bayes optimal classifier h∗ on the biased data. We now describe how

the multiple fairness interventions provably avoid or fail to avoid these pitfalls in increasingly

complex bias models. We defer formal proofs to Section 4.

3.1 Under-Representation Bias

Equal Opportunity and Equalized Odds both perform well in this bias model and avoid both

failure modes, subject to an identical constraint on the bias and demographic parameters.

First, from the definition of the Under-Representation Bias model, observe that h∗ satisfies

both fairness notions on the biased data, so the first failure mode does not occur.

Second, Equal Opportunity intuitively prevents the failure mode where a hypothesis is

produced that appears better than h∗ on the biased data, such as classifying all examples

from Group B as negative, by forcing the two classifiers to classify the same fraction of

positive examples as positive. So, if we classify all the examples from Group B as negative,

we have to do the same with Group A, inducing large error on the training data from the

majority Group A. In particular, so long as the fraction r of total data from Group B is

not too large and η is not too close to 1/2, this will not be a worthwhile trade-off for ERM

(saying negative on all samples will not have lower perceived error on the biased data than h∗)

and so it will not produce this outcome.

A formal proof of correctness is given in Section 4.1. Specifically, we prove that Equal

Opportunity strongly recovers from Under-Representation Bias so long as

(1 − r)(1 − 2η) + r((1 − η)β − η) > 0 (2)

Note that this is true for all η < 1/3 and r ∈ (0, 1/2), so we have that Equal Opportunity

satisfies Strong-Recovery(1/2,1/3) from Under-Representation Bias. Alternatively, we see

that if r = 1/4 then the inequality simplifies to at least 3/4(1 − 2η) − η/4 = 3/4 − (7/4)η so

we have Strong-Recovery(1/4, 3/7). Equalized Odds also recovers in this bias model with the

same conditions as Equal Opportunity.

In contrast, Demographic Parity fails to recover h∗ even if η = 0. If p = 1/2, η = 0, and

β = 1/2 and we originally had n samples, then the Bayes optimal classifier does not satisfy

Demographic Parity on the biased data since the fraction of samples that will be labelled

positive is 1
3 6= 1

2 .

Similarly, if we let η 6= 0, β < 1, then in order to match the fraction of positive classifica-

tions made by h∗

A, hB is forced to classify a larger region of the input spaces as positive than

h∗

B would in the absence of biased data and so we do not recover h∗

B .

Another way to intervene in the Under-Representation Bias model would just be to

re-weight the training data to account for the under-sampling of positives from Group B. If

we really know positives from Group B are under-represented, we can change our objective

function min
∑m

i=1 I(h(x) 6= y) by changing each indicator function such that minimizing

the sum of indicators measures the loss on the true distribution and not the loss on the

biased training distribution.
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3.2 Labeling Bias

In Section 4, we prove that Equal Opportunity constrained ERM on data biased by the

Labeling Bias model also finds the Bayes optimal classifier, under similar parameter conditions

to the previous bias model.

Interestingly, in contrast to Under-Representation Bias, Labeling Bias cannot be corrected

by Equalized Odds. The problem is the first failure mode. For example, consider η = 0 but

where ν 6= 0. The Bayes optimal classifier h∗

A for Group A has false positive rate of 0 and true

positive rate of 1. However, since ν > 0, there is no classifier for Group B that achieves both

of these rates simultaneously. In particular, the only way to classify the negative individuals

in the positive region as negative is for the classifier to decrease its true positive rate from 1.

Therefore, Equalized Odds rules out usage of h∗

A. This violation holds for η 6= 0 as well.

In contrast, h∗ does satisfy Equal Opportunity on the biased data, and given the conditions

in Theorem 3, it will be the lowest error such classifier on the biased data.

Demographic Parity experiences similar limitations as in the Under-Representation

Bias model.

The Re-Weighting intervention is to change the weighting of observed positives in the

training data for Group B so that we have the same fraction of positives in Group B as in

Group A. Define pA,1 := the fraction of positive individuals in Group A and pB,1 := the

observed fraction of positives in B in the biased data. pA,0 and pB,0 refer to the observed

fraction of negative individuals in Group A and Group B in the biased data.

We need a re-weighting factor Z such that:

pA,1

pA,0
=

ZpB,1

pB,0

pA,1

1 − pA,1
=

ZpA,1(1 − ν)

pA,0 + pA,1ν
=

ZpA,1(1 − ν)

1 − pA,1 + pA,1ν

Z =
1 − pA,1(1 − ν)

(1 − ν)(1 − pA,1)

We prove in Section 4.2 that this correction factor will lead to the positive region of h∗

B having

a higher weight of positive examples than negative examples and simultaneously the negative

region of h∗

B having a higher weight of negative examples than positive examples. This

causes ERM to learn the optimal hypothesis h∗. We can infer the value of ν by comparing

the fraction of positives in Group A and Group B.

In summary, Equal Opportunity and the Re-Weighting Interventions recover well in this

bias model (Labeling Bias) while Equalized Odds and Demographic Parity are inadequate.

3.3 Under-Representation Bias and Labeling Bias

In this most general model that combines the two previous models, Re-Weighting the data

is now no longer sufficient to recover the true classifier. For example, consider the case

where η = 0 and p = 1/4, ν = 1/2 and βNEG = 1/3 and βP OS = 1. If there were n points

originally from group B, then in expectation 3n/4 were negative and n/4 were positive. After

the bias process, in expectation there are n/4 negatives on the negative side of h∗, and on

the positive side of h∗ we have n/8 correctly labelled positives and what appear to be n/8

negative samples.

The Re-Weighting intervention will not do anything in expectation because the overall

fractions are still correct; we have n/2 total points with one quarter of them labeled positive.

ERM is now indifferent between h∗ and labeling all samples from Group B as negative. If

we just slightly increase the parameter ν and reduce βP OS then in expectation ERM will

strictly prefer labeling all the samples negatively.
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While the Re-Weighting method fails, we prove that Equal Opportunity-constrained

ERM recovers the Bayes optimal classifier h∗ as long as we satisfy a condition ensuring that

Group A has sufficient mass and the signal is not too noisy. As with the previous model,

Demographic Parity and Equalized Odds are not satisfied by h∗ on minimally biased data

and so they will not recover the Bayes optimal classifier.

4 Main Results

We now present our main theorem formally. Define the biased error of a classifier h as its

error rate computed on the biased distribution.

I Theorem 3. Assume true labels are generated by PD,r(h∗, η) corrupted by both Under-

Representation bias and Labeling bias with parameters βP OS , βNEG, ν, and assume that

(1 − r)(1 − 2η)+r((1 − η)βP OS(1 − 2ν) − ηβNEG) > 0 (3)

and

(1 − r)(1 − 2η)+r((1 − η)βNEG − (1 − 2ν)βP OSη) > 0 (4)

Then h∗ = (h∗

A, h∗

B) is the lowest biased error classifier satisfying Equality of Oppor-

tunity on the biased training distribution and thus h∗ is recovered by Equal Opportunity

constrained ERM.

Note βP OS , βNEG ∈ (0, 1], ν ∈ [0, 1), η ∈ [0, 1/2), r ∈ (0, 1) and p ∈ (0, 1]. Condition 3

refers to Equation 3 and Equation 4.

This case contains our other results as special cases and in the next section we prove

our main theorem in this bias model. Note that if Equation 3 is not satisfied then the

all-negative hypothesis will have the lowest biased error among hypotheses satisfying Equal

Opportunity on the biased training distribution. Similarly, if Equation 4 is not satisfied then

the all-positive hypothesis will have the lowest biased error among hypotheses satisfying Equal

Opportunity on the biased training distribution. Thus Theorem 3 is tight. To give a feel for

the formula in Theorem 3, note that the case of small r is good for our intervention, because

the advantaged Group A is large enough to pull the classification of the disadvantaged Group

B in the right direction. For example, if r ≤ 1
3 then the bounds are satisfied for all η < 1

4

(and if r ≤ 1
4 then the bounds are satisfied for all η < 1

3 ) for any under-representation biases

βP OS , βNEG > 0 and any labeling bias ν < 1.

Thus, Equal Opportunity Strongly Recovers with (1/4, 1/3) and (1/3, 1/4) in the Under-

Representation and Labeling Bias model.

Table 1 Summary of recovery behavior of multiple fairness interventions in bias models.

Intervention Under-

Representation

Labeling Bias Both

Equal

Opportunity-

ERM

Yes: (1 − r)(1 − 2η) +

r((1 − η)β − η) > 0

Yes: (1 − r)(1 − 2η) +

r((1 − η)(1 − 2ν) −

η) > 0

Yes: Using Condition

3

Equalized

Odds

Yes: (1 − r)(1 − 2η) +

r((1 − η)β − η) > 0

No No

Re-weighting

Class B:

Yes Yes No
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Table 1 summarizes the results in the three core interventions and the three core bias

models. Demographic Parity is omitted from the table since it cannot recover under the bias

models when η = 0 and thus is inadequate. The contents of each square indicate if recovery

is possible in a bias model with an intervention and what constraints need to be satisfied

for recovery.

4.1 Proof of Main Theorem

In this section we present the proof of the main result, Theorem 3. We want to show that

the lowest biased error classifier satisfying Equal Opportunity on the biased data is h∗, given

Condition 3.

The first step of the proof is to show that h∗ satisfies Equal Opportunity on the biased

training data. Note: the lemmas and claims here are all in the Under-Representation Bias

combined with Labeling Bias Model, the most general bias model.

I Lemma 4. h∗ = (h∗

A, h∗

B) satisfies Equal Opportunity on the biased data distribution.

Proof. First, let’s consider the easiest case with η = 0, βP OS = βNEG = 1, and ν = 0. Recall

that h∗ is the pair of classifiers used to generate the labels. When η = 0, h∗ is a perfect

classifier for both groups so Equal Opportunity is trivially satisfied. Now, let’s consider

arbitrary 0 ≤ η < 1/2. Recall that p = PrDA
(h∗

A(x) = 1|x ∈ A) = PrDB
(h∗

B(x) = 1|x ∈ B).

By our assumption that Group A and Group B have equal values of p and η we have

Pr(h∗

A(x) = 1|Y = 1, x ∈ A) =
p(1 − η)

p(1 − η) + (1 − p)η
= Pr(h∗

B(x) = 1|Y = 1, x ∈ B)

Next consider when we have both Under-Representation Bias and Labeling Bias. Recall

that βP OS , βNEG > 0 is the probability that a positive or negative sample from Group B is

not filtered out of the training data while ν < 1 is the probability a positive label is flipped

and this flipping occurs after the filtering process. Then,

{True Positive Rate on Group A} := Pr(h∗

A(x) = 1|Y = 1, x ∈ A) =

p(1 − η)

p(1 − η) + (1 − p)η
=

p(1 − η)βP OS(1 − ν)

p(1 − η)βP OS(1 − ν) + (1 − p)ηβP OS(1 − ν)

= Pr(h∗

B(x) = 1|Y = 1, x ∈ B) := {True Positive Rate on Group B}

so Equal Opportunity is still satisfied.

In words, the bias model removes or flips positive points from Group B independent of

their location relative to the optimal hypothesis class. Thus positive points throughout the

input space are are equally likely to be removed, so the overall probability of true positives

being classified as positives is not changed. J

Now we describe how a candidate classifier hB differs from h∗

B. We can describe the

difference between the classifiers by noting the regions in the input space that each classifier

gives a specific label. This gives rise to four regions of interest with probability mass as

follows:

p1B = P1B(hB) := Px∈DB
(h∗

B(x) = 1 ∧ hB(x) = 0)

p2B = P2B(hB) := Px∈DB
(h∗

B(x) = 0 ∧ hB(x) = 1)

p − p1B = Px∈DB
(h∗

B(x) = 1 ∧ hB(x) = 1)

1 − p − p2B = Px∈DB
(h∗

B(x) = 0 ∧ hB(x) = 0)
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These probabilities are made with reference to the regions in input space before the bias

process. p1B and p2B are functions of hB to make explicit that there may be multiple

hypotheses with different functional forms that could allocate the same amount of probability

mass to parts of the input space where h∗

B and hB agree on labeling as positive and negative

respectively. The partition of probability mass into these regions is easiest to visualize for

hyperplanes but will hold with other hypothesis classes. p1A and p2A are defined similarly

with respect to h∗

A and DA. A schematic with hyper-planes is given in Figure 3. To show

Figure 3 Differences between hB and h∗

B measured with probabilities in the true data distribution

(before the effects of the bias model).

that h∗ has the lowest error on the true distribution, we first show how given any pair of

classifiers hA and hB , which jointly satisfy Equal Opportunity (Equal Opportunity) on the

biased distribution, we can transform {hA, hB} into a pair of classifiers still satisfying Equal

Opportunity with at most one non-zero parameter from {p1B , p2B}, and at most one non-zero

parameter from {p1A, p2A}, while also not increasing biased error.

The final step of our proof argues that out of the family of all hypotheses with (1) at most

one non-zero parameter for the hypothesis on Group A, (2) at most one non-zero parameter

for the hypothesis on Group B, (3) and jointly satisfying Equal Opportunity on the biased

data, h∗ has the lowest biased error.

These steps combined imply that h∗ is the lowest biased error hypothesis that satisfies

Equal Opportunity.

I Lemma 5. Given classifiers hA and hB which satisfy Equal Opportunity on the biased

data, there exist classifiers h
′

A and h
′

B (not necessarily in H) satisfying

1. At most one of {P1A(h
′

A), P2A(h
′

A)} is non-zero and at most one of {P1B(h
′

B), P2B(h
′

B)}

is non-zero.

2. (h
′

A, h
′

B) has error at most that of (hA, hB) on the biased distribution.

3. h
′

A and h
′

B satisfy Equal Opportunity.

Proof. We want to exhibit a pair of classifiers with lower biased error that zeros out one of

the parameters. We do this by modifying each classifier separately, while keeping the true

positive rate on the biased data fixed to ensure we satisfy Equal Opportunity.

First, consider Group A and suppose that P1A(hA), P2A(hA) > 0 since otherwise we do

not need to modify hA. Imagine holding the true positive rate of hA constant and shrinking

p2A towards zero. As we shrink p2A, we must shrink p1A towards zero in order hold the true

positive rate fixed (and thus satisfy Equal Opportunity).
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The un-normalized7 True Positive Rate (constrained by Equal Opportunity) is (p −

p1A)(1 − η) + p2Aη = p(1 − η) − p1A(1 − η) + p2Aη = (p − p1B)(1 − η) + p2Bη. Since the

p(1 − η) term is independent of the classifier hA, keeping the true positive rate constant is

equivalent to keeping C := −p1A(1 − η) + p2Aη constant.

Define f(∆) = ∆ η
1−η

. If C ≤ 0 then we can shrink p2A to 0 and reduce p1A by f(p2A),

keeping C constant. If C ≥ 0 we can instead shrink p1A to 0 and reduce p2A by f−1(p1A).

Observe for Group A this process will clearly reduce training error since we are decreasing

both p1A and p2A and the error on group A is monotone increasing (and linear) with respect

to p1A + p2A.

We then separately do this same shrinking process for group B. Now we show the biased

error decreases for Group B. For a given amount ∆ by which we shrink p2B, the overall

biased error change for Group B is ∆[ηβP OS(1−ν)−(1−η)βNEG −ηβP OSν]+f(∆)[ηβNEG +

(1 − η)βP OSν − (1 − η)βP OS(1 − ν)], and simplifies to become

= ∆ηβP OS(1 − ν) − f(∆)(1 − η)βP OS(1 − ν)

+ ∆(−(1 − η)βNEG − ηβP OSν) + f(∆)(ηβNEG + (1 − η)βP OSν)

The first two terms vanish because of f(∆) = ∆ η
1−η

.

= ∆(−(1 − η)βNEG − ηβP OSν) + f(∆)(ηβNEG + (1 − η)βP OSν)

= ∆(−(1 − η)βNEG − ηβP OSν) + ∆
η2

1 − η
βNEG + ∆ηβP OSν

= ∆(
η2

1 − η
βNEG − (1 − η)βNEG) < 0

Since this term is negative, we have shown that this modification process decreases error on

the biased training data for both Group A and Group B while keeping the true positive rate

fixed. h
′

A and h
′

B are then any functions satisfying these p’s (e.g. p1A, p2A etc). J

I Lemma 6. If hA and hB satisfy the Equal Opportunity constraint and each classifier has

at most one non-zero parameter, then p1B = p1A and p2B = p2A.

Proof. Recall that the Equal Opportunity constraint requires that these expressions be

equal.

(p − p1A)(1 − η) + p2Aη = (p − p1B)(1 − η) + p2B

p2Aη − p1A(1 − η) = p2Bη − p1A(1 − η)

Then the theorem follows from inspecting the second equality. J

This lemma makes explicit that when the classifiers each have only one non-zero parameter

and satisfy Equal Opportunity, then the non-zero parameter corresponds to the same region.

I Lemma 7. Of hypotheses satisfying (p1A = p1B and p2A = p2B = 0) or (p1A = p1B = 0

and p2A = p2B), if these inequalities hold:

(1 − r)(1 − 2η)+r((1 − η)βP OS(1 − 2ν) − ηβNEG) > 0

and

(1 − r)(1 − 2η)+r((1 − η)βNEG − ηβP OS(1 − 2ν)) > 0

then the lowest biased error classifier satisfying Equal Opportunity on the biased data is

h∗ = (h∗

A, h∗

B).

7 The normalization factor for these rates for Group A and Group B is the same so this term can be
cancelled.
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Proof. First, we sketch the proof informally. Consider three cases which depend on how the

bias process affects the unconstrained optimum for Group B on the biased data. In the first

case, in the biased data distribution, the region X+ := {x s.t. h∗

B(x) = 1} has more positive

than negative samples in expectation and the region X− := {x s.t. h∗

B(x) = 0} has more

negative than positive samples in expectation. In the second case, there are more positive

than negative samples throughout the entire input space in the biased distribution. In the

third and final case, there are more negative than positive samples throughout the input

space in the biased distribution.

In these three cases, the optimal hypothesis is exactly one of {h∗

B , h1
B , h0

B}, respectively.

The second two hypotheses mean labelling all inputs as positive and labelling all inputs as

negative, respectively. These three hypotheses correspond to hypotheses with at most one

non-zero parameter.

For instance, h1
B occurs when p2B = 1 − p and p1B = 0. Each of the three hypotheses

occur when the one non-zero parameter attains a location on the boundary of its range of

values. When p2B is allowed to be non-zero, if instead p2B = 0 (and thus it also must be

that p1B = 0), the hypothesis is equivalent to h∗

B . A similar relationship holds for h0 and p1.

In order to show the theorem, we prove that if h∗ has lower biased error than h1 = (h1
A, h1

B)

and h0 = (h0
A, h0

B) on the biased data distribution, then h∗ has the lowest error among all

hypotheses with at most one non-zero parameter and satisfying Equal Opportunity.

To see this, consider hA and hB with the same non-zero parameter equal to ∆. Then the

error of hA is a linear function of ∆. Similarly, the error of hB is a linear function of ∆. The

overall error of h = (hA, hB) is a weighted combination of the error of h∗ and the error of h0

or h1, so the overall error of h is thus linear in ∆, so the optimal hypothesis parametrized

by ∆ must occur on the boundaries of the region of ∆, so the optimal hypothesis is one of

{h∗, h0, h1}. We then show that the inequalities we assume in the theorem enforce that h∗

has strictly lower error than h0 or h1. Formally, we enumerate the possible events:

Type Sign of h∗ Label in Biased Data Un-Normalized Probability of Event

A + + R1 = (1 − r)p(1 − η)

A + - R2 = (1 − r)pη

A - + R3 = (1 − r)(1 − p)η

A - - R4 = (1 − r)(1 − p)(1 − η)

B + + R5 = rp(1 − η)βP OS(1 − ν)

B + - R6 = rp[(1 − η)βP OSν + ηβNEG]

B - + R7 = r(1 − p)(ηβP OS)(1 − ν)

B - - R8 = r(1 − p)[(1 − η)βNEG + ηβP OSν]

The probabilities on the far right hand side are not normalized. First we show that the

err(h∗) < err(h1). err(h∗) = R2 + R3 + R6 + R7 and err(h1) = R2 + R4 + R6 + R8, thus

err(h∗) < err(h1) if and only if R3 + R7 < R4 + R8 or thus if

(1 − r)(1 − p)η + r(1 − p)(ηβP OS)(1 − ν)

< (1 − r)(1 − p)(1 − η) + r(1 − p)[(1 − η)βNEG + ηβP OSν]

Equivalently,

0 < (1 − r)(1 − 2η) + r[(1 − η)βNEG − ηβP OS(1 − 2ν)] (5)

Now we consider h∗ compared to h0. Then err(h0) = R1 + R3 + R5 + R7 Then err(h∗) <

err(h0) if and only if R2 + R6 < R1 + R5.

(1 − r)pη + rp[(1 − η)βP OSν + ηβNEG] < (1 − r)p(1 − η) + rp(1 − η)βP OS(1 − ν)
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Equivalently,

0 < (1 − r)(1 − 2η) + r((1 − η)βP OS(1 − 2ν) − ηβNEG) (6)

Thus we have shown that the error of h∗ is less than the error of of h1 and h0 if and only if

both Lines 5 and 6 are true, which we assume in our theorem.

Now we show that we error of h = (hA, hB) is linear in ∆. There are two cases depending

on what parameter of h is non-zero.

Let h be a hypothesis such that P1A(hA) = p1B = ∆ and P2A(hA) = p2B = 0 and

∆ ∈ [0, p].

err(h) = R1
∆

p
+ R2

p − ∆

p
+ R3 + R5

∆

p
+ R6

p − ∆

p
+ R7

=
∆

p
err(h0) +

p − ∆

p
err(h∗)

On the other case let P1A(hA) = p1B = 0 and P2A(hA) = p2B = ∆ and ∆ ∈ [0, 1 − p].

err(h) = R2 +
1 − p − ∆

1 − p
R3 +

∆

1 − p
R4 + R6 +

1 − p − ∆

1 − p
R7 +

∆

1 − p
R8

=
∆

1 − p
err(h1) +

1 − p − ∆

1 − p
err(h∗)

Thus the error of h is linear in ∆ and boundary values for ∆ correspond to the hypotheses

in {h∗, h0, h1}. These two arguments show that:

1. Any single parameter h is a weighted sum of (h∗ and h0 ) or is a weighted sum of (h∗

and h1) and so is linear in ∆. The boundary values of ∆ correspond to {h∗, h0, h1}.

2. Since the optimal value of a linear function occurs on the boundaries of its range, the

optimal Equal Opportunity classifier with at most one non-zero parameter is one of

{h∗, h0, h1}.

3. The inequalities in the theorem statement enforce that h∗ has lower biased error than

either h0 or h1, so h∗ has the lowest biased error of any single parameter hypothesis

satisfying Equal Opportunity. J

If the conditions in the Theorem do not hold, then h∗ will not have lower error than h0

and h1.

4.2 Verification Re-Weighting Recovers from Labeling Bias

The way we intervene by Reweighting is we multiply the loss term for mis-classifying positive

examples in Group B by a factor Z such that the weighted fraction of positive examples in

biased data for Group B is the same as the overall fraction of positive examples in Group A.

The goal of this reweighting is to ensure that the ratio of positive to negative samples

in the positive region of h∗

B is greater than 1 while the ratio is less than 1 in the negative

region of h∗

B . Thus the re-weighted probabilities need to simultaneously satisfy:

P (y = 1|h∗

B(x) = 1)

P (y = 0|h∗

B(x) = 1)
=

Z[(1 − η)(1 − ν)]

(η + (1 − η)ν)
> 1

P (y = 1|h∗

B(x) = 0)

P (y = |h∗

B(x) = 0)
=

Z[η(1 − ν)]

((1 − η) + ην)
< 1
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The two constraints are equivalent to requiring that:

η + (1 − η)ν

(1 − η)(1 − ν)
< Z <

1 − η + ην

η(1 − ν)
(7)

Recall from Section 3.2 that Z =
1−PA,1(1−ν)

(1−ν)(1−PA,1)

First we show the right hand inequality.

1 − pA,1(1 − ν)

(1 − ν)(1 − pA,1)
<

1 − η + ην

η(1 − ν)

0 <
1 − η + ην

η
−

1 − pA,1(1 − ν)

(1 − pA,1)

Observe that both terms are linear in ν. When ν = 0, the inequality becomes 1−η
η

−
1−pA,1

1−pA,1

=
1−η

η
−1 > 0. In our bias model ν ∈ [0, 1), but if ν = 1, the inequality becomes 1

η
− 1

1−pA,1

> 0.

Thus Equation 7 holds if both 1−η
η

− 1 > 0 and 1
η

− 1
1−pA,1

> 0.
1−η

η
− 1 > 0 is clearly true because 0 < η < 1/2.

To see that 1
η

− 1
1−pA,1

> 0, note that this is equivalent to η < 1 − pA,1, where the

right-hand-side is the overall fraction of negative examples in A. This is clearly true because

the positive region of h∗

A has exactly an η fraction of negatives, and the negative region of

h∗

A has a 1 − η > η fraction of negatives.

Now we show the left hand inequality in Equation 7.

η + (1 − η)ν

(1 − η)(1 − ν)
<

1 − PA,1(1 − ν)

(1 − ν)(1 − PA,1)

η + (1 − η)ν

(1 − η)
<

1 − PA,1(1 − ν)

1 − PA,1

0 <
1 − PA,1(1 − ν)

(1 − PA,1)
−

η + (1 − η)ν

(1 − η)
(8)

We follow a similar linearity argument to above. For ν = 1, Equation 8 becomes 1
1−pA,1

−
1

1−η
> 0. This holds if 1 − pA,1 < 1 − η ⇐⇒ η < pA,1. This is clearly true because the

negative region of h∗

A has exactly an η fraction of positives, and the positive region of h∗

A has

a 1 − η > η fraction of positives. For ν = 0, Equation 8 becomes 1 − η
1−η

> 0 which holds

since 0 < η < 1/2.

5 Calibration Results

I Theorem 8. Assume the training data is corrupted by Under-Representation Bias with

parameter β < 1. For any such β, h∗ does not satisfy Calibration on the biased data and

thus Calibration constrained ERM will return a hypothesis that has strictly worse true error

than the true error of h∗. This occurs even when (1 − η)β > η, i.e. in the bias regime such

that plain ERM on the biased data would recover h∗.

Moreover, if bias is such that (1 − η)β < η and thus ERM on the biased data will not

recover h∗, then the unique ERM solution that satisfies Calibration on the biased data is a

trivial classifier, meaning that all individuals from Group A receive one label (the positive

label) and all individuals from Group B receive the opposite label.
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Proof. Recall that Calibration of hypothesis h = (hA, hB) requires that both Eq. 9 and 10

hold simultaneously.

Px∼DA
(y = 1|hA(x) = 1) = Px∼DB

(y = 1|hB(x) = 1) (9)

Px∼DA
(y = 1|hA(x) = 0) = Px∼DB

(y = 1|hB(x) = 0) (10)

We assume that if one of the terms is vacuous in the Calibration constraints , then that

constraint is still satisfied. In other words, if one bin is non-empty for one group while the

corresponding bin for the other group is empty, we assume that bin satisfies Calibration.

Due to the effects of the bias model positive samples from Group B appear in the training

data with lowered frequency and so the equalities in Equations 9 and 10 become:

Px∼A(y = 1|h∗

A(x) = 1) > Px∼B(y = 1|h∗

B(x) = 1) (11)

Px∼A(y = 1|h∗

A(x) = 0) > Px∼B(y = 1|h∗

B(x) = 0) (12)

Thus h∗ = (h∗

A, h∗

B) violates calibration for any β < 1 and any other hypothesis satisfying

calibration will have strictly greater error on the true data distribution. Intuitively, for h

to be Calibrated it will need to reduce the left-hand side of Equation 11 because it cannot

increase the right-hand side and will have to increase the right-hand side of Equation 12

because it cannot decrease the left-hand side. As a result, its true error will be strictly larger

than that of h∗.

Now, consider (1 − η)β < η. In this case, plain ERM will not recover h∗. With this

amount of bias, then:

Px∼A(y = 1|h∗

A(x) = 1) > Px∼A(y = 1|h∗

A(x) = 0)

> Px∼B(y = 1|h∗

B(x) = 1) > Px∼B(y = 1|h∗

B(x) = 10)

Satisfying Calibration with non-trivial classifiers requires achieving an equality with one side

being a non-negative combination of the first two probabilities, and the other side being a

non-negative combination of the second two probabilities. Since these inequalities are all

strict, this is clearly not possible, so the only way to satisfy calibration is to use a trivial

classifier that assigns all of Group A to one label, and all of Group B to the other label.8 J

6 Conclusion

In this paper we have shown that Equal Opportunity constrained ERM will recover from

several forms of training data bias, including Under-Representation Bias (where positive

and/or negative examples of the disadvantaged group show up in the training data at a

lower rate than their true prevalence in the population) and Labeling Bias (where each

positive example from the disadvantaged group is mislabeled as negative with probability

ν ∈ (0, 1)), in a clean model where the Bayes optimal classifiers h∗

A, h∗

B satisfy most fairness

constraints on the true distribution and the errors of h∗

A, h∗

B are uniformly distributed. The

high-level message of this paper is that fairness interventions need not be in competition

with accuracy and may improve classification accuracy if training data is unrepresentative or

biased; however these results will be connected to the true data distributions and features of

8 Which trivial classifier is selected by ERM will depend on p and r. If 1 − r > r and p > 1/2, then Group
A will be all positive and Group B all negative. While if 1 − r > r and p < 1/2, then then Group A
will be all positive and Group B all negative.
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the biased data-generation process. It would be interesting to consider other ways in which

training data could be biased, and other assumptions on the optimal classifiers, to determine

what kinds of interventions might be most appropriate for different biased-data scenarios.
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