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—— Abstract

Multiple fairness constraints have been proposed in the literature, motivated by a range of concerns
about how demographic groups might be treated unfairly by machine learning classifiers. In this
work we consider a different motivation; learning from biased training data. We posit several ways
in which training data may be biased, including having a more noisy or negatively biased labeling
process on members of a disadvantaged group, or a decreased prevalence of positive or negative
examples from the disadvantaged group, or both. Given such biased training data, Empirical Risk
Minimization (ERM) may produce a classifier that not only is biased but also has suboptimal
accuracy on the true data distribution. We examine the ability of fairness-constrained ERM to
correct this problem. In particular, we find that the Equal Opportunity fairness constraint [14]
combined with ERM will provably recover the Bayes optimal classifier under a range of bias models.
We also consider other recovery methods including re-weighting the training data, Equalized Odds,
and Demographic Parity, and Calibration. These theoretical results provide additional motivation
for considering fairness interventions even if an actor cares primarily about accuracy.
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1 Introduction

Machine learning (typically supervised learning) systems are automating decisions that affect
individuals in sensitive and high stakes domains such as credit scoring [7] and bail assignment
[2, 12]. This trend toward greater automation of decisions has produced concerns that
learned models may reflect and amplify existing social bias or disparities in the training
data. Examples of possible bias in learning systems include the Pro-Publica investigation of
COMPAS (an actuarial risk instrument) [2], accuracy disparities in computer vision systems
[5], and gender bias in word vectors [4].

In order to address observed disparities in learning systems, an approach that has
developed into a significant body of work is to add demographic constraints to the learning
problem that encode criteria that a fair classifier ought to satisfy.
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Multiple constraints have been proposed in the literature [14, 11], each encoding a different
type of unfairness one might be concerned about, and there has been substantial work on
understanding their relationships to each other, including incompatibilities between the
fairness requirements [8, 6, 16, 20].

In this work, we take a different angle on the question of fairness. Rather than argue
whether or not these demographic constraints encode intrinsically desirable properties of
a classifier, we instead consider their ability to help a learning algorithm to recover from
biased training data and to produce a more accurate classifier.

In particular, adding a constraint (such as a fairness constraint) to an optimization
problem (such as ERM) would typically result in a lower quality solution. However, if the
objective being optimized is skewed (e.g., because training data is corrupted or not drawn
from the correct distribution) then such constraints might actually help prevent the optimizer
from being led astray, and yield a higher quality solution when accuracy is measured on the
true distribution.

More specifically, we consider a binary classification setting in which data points corres-
pond to individuals, some of whom are members of an advantaged Group A and the rest
of whom are members of a disadvantaged Group B. We want to make a decision such as
deciding whether to offer a candidate a loan or admission to college. We have access to
labeled training data consisting of (z,y) pairs where x is some set of features corresponding
to an individual and y is a label we want to predict for new individuals.

The concern is that the training data is potentially biased against Group B in that the
training data systematically misrepresents the true distribution over features and labels in
Group B, while the training data for Group A is drawn from the true distribution for Group
A. We consider several natural ways this might occur. One way is that members of the
disadvantaged group might show up in the training data at a lower rate than their true
prevalence in the population, and worse, this rate might depend on their true label.

For instance, if the positive examples of Group B appear at a much lower rate in the
training data than the negative examples of Group B (which might occur for cultural reasons
or due to other options available to them), then ERM might learn a rule that classifies all or
most members of Group B as negative.

A second form of bias in the training data we consider is bias in the labeling process.
Human labelers might have inherent biases causing some positive members of Group B in
the training data to be mislabeled as negative, which again could cause unconstrained ERM
to be more pessimistic than it should be. Alternatively, both processes might occur together.
We examine the ability of fairness constraints to help an ERM learning method recover from
these problems.

1.1 Summary of Results

Our main result is that ERM subject to the Equal Opportunity fairness constraint [14]
recovers the true Bayes optimal hypothesis under a wide range of bias models, making it an
attractive choice even for decision makers whose overall concern is purely about accuracy on
the true data distribution.

In particular, we assume that under the true data distribution, the Bayes optimal classifiers
h* and h% classify the same fraction p of their respective populations as positivel, h% and
h have the same error rate n on their respective populations, and that these errors are
uniformly distributed.

Lp=Pp, (hy(x) =1) = Pp,(h(z) = 1). We will allow the classifiers to make decisions based on group
membership or alternatively assume we have sufficiently rich data to implicitly infer the group attribute.
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However, during the training process we do not have access to the true distribution. We
only have access to a biased distribution in a way that implicates the distinct social groups
and causes the classifier to be overly pessimistic on individuals from Group B.

We prove that, subject to the above conditions on A% and h}, even with substantially
corrupted training data either due to the under-representation of positive examples in Group
B or a substantial fraction of positive examples in Group B mislabeled as negative, or both,
the Equality of Opportunity fairness constraint will enable ERM to learn the Bayes optimal
classifier h* = (h%, h%;), subject to a pair of inequalities ensuring that the labels are not too
noisy and Group A has large mass.

Expressed another way, this means that the lowest error classifier on the biased data
satisfying Fquality of Opportunity is the Bayes optimal classifier on the un-corrupted data.
These results provide additional motivation for considering fairness interventions, and in
particular Equality of Opportunity, even if one cares primarily about accuracy.

Other related fairness notions such as Equalized Odds, Demographic Parity, and Calibra-
tion do not succeed in recovering the Bayes optimal classifier under such broad conditions. In
fact, we show that given data subject to Under-Representation Bias, Calibration can actually
amplify the effects of the bias, and so can be worse than doing nothing and instead learning
with plain ERM (see Section 3.1).

Our results are in the infinite sample limit and we suppress issues of sample complexity?
in order to focus on the core phenomenon of the data source being unreliable.

1.2 Related Work

This paper is directly motivated by a model of implicit bias in ranking [17]. In that paper,
the training data for a hiring process is systematically corrupted against minority candidates
and a method to correct this bias increases both the quality of the accepted candidate and
the fraction of hired minority candidates. However, that fairness intervention, the Rooney
Rule, does not immediately translate to a general learning setting.

Our results avoid triggering the known impossibility results between high accuracy and
satisfying fairness criteria [6, 16] by assuming we have equal base rates across groups. This
assumption may not be realistic in all settings, however there are settings where bias concerns
arise and there is empirical evidence that base rates are equivalent across the relevant
demographic groups, e.g. highly differential arrest rates for some alleged crimes that have
similar occurrence rates across groups [19, 21].

Within the fairness literature there are several approaches similar to ours. In particular,
our concern with positive examples not appearing in the training data is similar in effect
to a selective labels problem [18]. [9] uses data augmentation to experimentally improve
generalization under selective label bias.

[13, 22] also consider the training and test data distribution gap we experience in our
model and posit differing interpretations of fairness constraints under different worldviews.
While we do not explicitly use the terminology in these papers, we believe our view of the
gap between the true distribution and the training time distribution is aligned with Friedler
et al’s concept of the gap between the construct space and the observed space.

2 Qur notion of sample complexity is typical. Let S be the biased training data-set and ERMs((S) = h.
Given €,8 > 0, m(e, §) samples ensures with probability greater than 1 — § that L (h) < L (B*) + €.
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Our second bias model, Labeling Bias, is similar to [15]. In that paper, the bias phe-
nomenon is that a biased labeler makes poor decisions on the disadvantaged group and
intervenes with a reweighting technique, one that is more complex than our Re-Weighting
intervention. However, that paper does not consider the interaction of biased labels with
different groups appearing in the data at different rates as a function of their labels.

2 Model

In this section we describe our learning model, how bias enters the data-set, and the fairness
interventions we consider.

We assume the data lies in some instance space X, such as X = R?. There are two
demographic groups in the population, Group A and Group B. Their proportions in the
population are given by P(z € A) =1 —r and P(x € B) =r for r € (0,1). € A can be
read as individual x in demographic Group A. Group B is the disadvantaged group that
suffers from the effects of the bias model.

Assume there is a special coordinate of the feature vector = that denotes group membership.
The data distribution is given by D, and is a pair distributions (D 4, Dg), with D 4 determining
how z € A is distributed and Dy determining how x € B is distributed.

2.1 True Label Generation

Now we describe how the true labels for individuals are generated. Assume there exists a
pair of Bayes optimal classifiers h* = (h%, h};) with h%, hl; € H : X — {0,1}.

We assume that the Bayes optimal classifier h}; for Group B may be different from the
Bayes optimal classifier h¥% for Group A. If by was also optimal for Group B, then we can just
learn h* for both Groups A and B using data only from Group A and biased data concerns
fade away. Thus we are learning a pair of classifiers, one for each demographic group.

When generating samples, first we draw a data-point x. With probability 1 —r, x ~ D 4
(and thus z € A) and with probability r, x ~ Dp (so z € B).

Once we have drawn a data-point z, we model the true labels as being produced as
follows; evaluate h*(x), using the classifier corresponding to the demographic group of z. If
x € A, then h*(z) = hy(x). If z € B, then h*(z) = hj;(x). However, we assume that h* is
not perfect and independently with probability 5, the true label of x does not correspond to
the prediction h*(x).

- h*(x) with probability n
y=ylz) =
h*(x) wp. 1-—ng

The labels y after this flipping process are the true labels of the training data.? We assume
that p = P(h%(z) = 1|z € A) = P(h%(z) = 1|z € B). This combined with the assumption
that 7 is the same for classifiers from both groups implies that the two groups have equal
base rates (fraction of positive samples) i.e p(1 — ) + (1 — p)n (un-normalized).

We denote this label model as (z,y) ~ Pp (h*,n) for a pair of classifiers h* = (h%, h};)
with h%, h € H where H : X — {0, 1} is some hypothesis class with finite VC dimension.

3 Note this label model is equivalent to the Random Classification Noise model [1]. However the key
interpretative difference is that in RCN, h*(x) is the correct label and those that get flipped are noise,
but in our case the y are the true labels and h* is merely the Bayes optimal classifier given the observed
features.
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2.2 Biased Training Data

Now we consider how bias enters the data-set. Consider the example of hiring where the main
failure mode will be a classifier that is too negative on the disadvantaged group. We explore
several different bias models to capture potential ways the data-set could become biased.

The first bias model we call Under-Representation Bias. In this model, the positive
examples from Group B are under-represented in the training data. Specifically, the biased
training data is drawn as follows:

1. m examples are sampled from the distribution D. Thus each z ~ D.
2. The label y for each x is generated according to the label process from Section 2.1 with

hypothesis h* = (h%, h};) and 7.

3. For each pair (z,y), if z € B and y = 1, then the data-point (z,y) is discarded from our

training set independently with probability 1 — 3.

Thus we see fewer positive examples from Group B in our training data. [ is the probability
a positive example from Group B stays in the training data and 1 > > 0.

If 7 = 0, then the positive and negative regions of h* are strictly disjoint, so if we draw
sufficiently many examples, with high probability, we will see enough positive examples in
the positive domain of h* to find a low empirical error classifier that is equivalent to h*.*

In contrast for non-zero n, our label model interacting with the bias model can induce a
problematic phenomenon that fools the ERM classifier. For non-zero 7 there is error even
for the Bayes optimal classifier h* and thus in the region classified as positive by the Bayes
optimal classifier h* there are positive examples mixed with negative examples. The fraction
of negative examples is amplified by the bias process.

If S is sufficiently small, there could in fact be more negative examples of Group B than
positive examples in the positive region of h%. If this occurs, then the bias model will snap
the unconstrained ERM optimal hypothesis (optimal on the biased data) to classifying all
individuals from Group B as negatives. This can be observed in Figure 1.

Under-Representation Bias is related to selective labels in [18] since we are learning on a
filtered distribution where the filtering process is correlated with the group label. Our model
is functionally equivalent to over-representing the negatives of the in the training data, an
empirical phenomenon observed in [21].

2.3 Alternative Bias Model: Labeling Bias

We now consider a bias model that captures the notion of implicit bias, which we call
Labeling Bias. In particular, a possible source of bias in machine learning is the label
generating process, especially in applications where the sensitive attribute can be inferred by
the labeler, consciously or unconsciously. For example, training data for an automated resume
scoring system could be based upon the historical scores of resumes created by a biased
hiring manager or a committee of experts. This source of labels could then systematically
score individuals from Group B as having lower resume scores, an observation noted in
randomized real world investigations [3].
Formally, the labeling bias model is:
1. m examples are sampled from the distribution D. Thus each z ~ D.
2. The labels y for each x are generated according to the label process from Section 2.1 with
hypothesis h* = (h%, h%;) and 7.
3. For each pair (z,y), if + € B and y = 1, then independently with probability v, the label
of this point is flipped to negative.

4 We would learn with ERM and Uniform Convergence, using the fact that H has finite VC-dimension.
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(a) Un-Corrupted Data (b) Corrupted Data:
Under-Representation Bias

Figure 1 The schematic on the left displays data points with p = 1/2, h; as a hyperplane, and
n = 1/3. The schematic on the right displays data drawn from the same distribution subject to the
Under-Representation Bias with Spos = 1/3. Now there are more negative examples than positive
examples above the hyperplane so the lowest error hypothesis classifies all examples on the right as
negative.

This process is one-sided, so true positives become negatives in the biased training data, so
apparent negatives becomes over-represented. We are making a conceptual distinction that
the true labels (Step 2) are those generated by the original label model and these examples
that get flipped by the bias process (Step 3) are not really negative, instead they are just
mislabeled.

As v increases, more and more of the individuals in the minority group appear negative
in the training data. Once the number of positive samples is smaller than the number of
negative samples above the decision surface h7j, then the optimal unconstrained classifier
(according to the biased data) is to simply classify all those points as negative.

2.4 Under-Representation Bias and Labeling Bias

We now consider a more general model that combines Under-Representation Bias and
Labeling Bias, and moreover we allow either positives or negatives of Group B (or both)
to be under-represented. Specifically, we now have three parameters: Bpos, SnEG, and v.
Given m examples drawn from Py -(h*,n), we discard each positive example of Group B
with probability 1 — Spos and discard each negative example of Group B with probability
1 — ByEc to model the Under-Representation Bias. Next, each positive example of Group
B is mislabeled as negative with probability v to model the Labeling Bias. Note that the
under-representation comes first: Spog and By gq represent the probability of true positive
and true negative examples from Group B staying in the data-set, respectively, regardless of
whether they have been mislabeled by the agent’s labelers.

2.5 Fairness Interventions

Now we introduce several fairness interventions and define a notion of successful recovery
from the biased training distribution.

We consider multiple fairness constraints to examine whether the criteria have differ-
ent behavior in different bias regimes. The fairness constraints we focus on are Equal
Opportunity, Equalized Odds, Demographic Parity, and Calibration.
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» Definition 1. Classifier h satisfies Equal Opportunity on data distribution D [1]] if
P(ac,y)w@(h(x) = 1|y =1lz¢€ A) = P(ac,y)N’D(h(x) = 1|y =1lze B) (1)

This requires that the true positive rate in Group B is the same as the true positive rate in
Group A.
Equalized Odds is a similar notion, also introduced in [14]. In addition to requiring

Line 1, Equalized Odds also requires that the false positive rates are equal across both groups.

Equivalently, we can define Equalized Odds as h L A]Y, meaning that h is independent of
the sensitive attribute, conditioned on the true label Y. We also consider Demographic
Parity := P(h(z) = 1|z € A) = P(h(z) = 1|z € B) [11]. For each of these criteria, the
overall training procedure is solving a constrained ERM problem.?

An alternative intervention we study data Re-Weighting, where we change the training

data distribution to correct for the bias process and then do ERM on the new distribution.

The overall gist of how the training data becomes biased in our models is that the positive
samples from Group B are under-represented in the training data so we can intervene by
up-weighting the observed fraction of positives in the training data from Group B to match
the fraction of positives from the Group A training data.

In the training process we only have access to samples from the training distribution and
thus when using a fairness criterion to select among models we check the requirement on the
biased training data.

The last fairness intervention we consider is Calibration. Calibration [12, 10, 6, 20]
requires that when interpreted as probabilities, the same score communicates the same
information for individuals from different demographic groups. Specifically, in the bucket
of individuals receiving score s, the same fraction in both demographic groups is in fact
truly positive. We focus on Calibration for the case of our binary classifier where there are
only two scores, e.g. the scores 0 and 1, so in order for classifier h = (ha,hp) to satisfy
Calibration, the following equalities must hold. 6

Pro,(y=1ha(z) =1) = P, (y = 1|hp(z) = 1)
Pip,(y = 1ha(z) = 0) = Prupy(y = 1|hp(z) = 0)

While the other fairness criteria are vigorously debated, Calibration is less contested as
an important desiderata of machine learning models. Calibration has been used to defend the
epistemic validity of risk prediction instruments [12, 10] and it is claimed that mis-calibrated
classifiers may have serious harms and induce undesirable behavior when scores are used by
a human actor [20].

Observe that in our model of label generation, the Bayes optimal classifier on the true

distribution is the h* used to generate the labels initially, regardless of the values of  and r.

Thus our goal for the learning process is to recover the original optimal classifier h*, subject to
training data from a range of bias models and the true label process with (x,y) ~ Pp -(h*,n).
A more effective learning method would recover A* in a wider range of the model parameters
(the parameters that characterize the bias process and the true label process). Accordingly
we define Strong-Recovery(r,7):

» Definition 2. A Fairness Intervention in bias model B satisfies Strong-Recovery(rg,no)
if for allm € [0,m9) and all 0 < r < ro, when given data corrupted by bias model B, the
training procedure recovers the Bayes optimal classifier h*, given sufficient samples, for all
Bros, Bnec € (0,1], v €10,1), and p € (0,1].

5 We do not consider methods for efficiently solving the constrained ERM problem.
5 1If one of the conditioned on events never occurs, such as a classifier that never classifies anyone from
Group B as positive, we treat the associated equality as satisfied.
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3 Recovery Behavior Across Bias Models

There are two failure modes for learning a fairness constrained classifier that we will need
to be concerned with. First, the Bayes optimal hypothesis may not satisfy the fairness
constraint evaluated on the biased data. Second, within the set of hypotheses satisfying the
fairness constraint, another hypothesis (with higher error on the true distribution) may have
lower error than the Bayes optimal classifier h* on the biased data. We now describe how
the multiple fairness interventions provably avoid or fail to avoid these pitfalls in increasingly
complex bias models. We defer formal proofs to Section 4.

3.1 Under-Representation Bias

Equal Opportunity and Equalized Odds both perform well in this bias model and avoid both
failure modes, subject to an identical constraint on the bias and demographic parameters.

First, from the definition of the Under-Representation Bias model, observe that h* satisfies
both fairness notions on the biased data, so the first failure mode does not occur.

Second, Equal Opportunity intuitively prevents the failure mode where a hypothesis is
produced that appears better than h* on the biased data, such as classifying all examples
from Group B as negative, by forcing the two classifiers to classify the same fraction of
positive examples as positive. So, if we classify all the examples from Group B as negative,
we have to do the same with Group A, inducing large error on the training data from the
majority Group A. In particular, so long as the fraction r of total data from Group B is
not too large and 7 is not too close to 1/2, this will not be a worthwhile trade-off for ERM
(saying negative on all samples will not have lower perceived error on the biased data than h*)
and so it will not produce this outcome.

A formal proof of correctness is given in Section 4.1. Specifically, we prove that Equal
Opportunity strongly recovers from Under-Representation Bias so long as

(1=r)A=2n)+r((L=npB—n)>0 (2)

Note that this is true for all n < 1/3 and r € (0,1/2), so we have that Equal Opportunity
satisfies Strong-Recovery(1/2,1/3) from Under-Representation Bias. Alternatively, we see
that if » = 1/4 then the inequality simplifies to at least 3/4(1 — 2n) —n/4 =3/4 — (7/4)n so
we have Strong-Recovery(1/4,3/7). Equalized Odds also recovers in this bias model with the
same conditions as Equal Opportunity.

In contrast, Demographic Parity fails to recover h* even if n = 0. If p = 1/2, n =0, and
B =1/2 and we originally had n samples, then the Bayes optimal classifier does not satisfy
Demographic Parity on the biased data since the fraction of samples that will be labelled
positive is % #* %

Similarly, if we let 7 # 0, 8 < 1, then in order to match the fraction of positive classifica-
tions made by h¥, hp is forced to classify a larger region of the input spaces as positive than
h; would in the absence of biased data and so we do not recover h};.

Another way to intervene in the Under-Representation Bias model would just be to
re-weight the training data to account for the under-sampling of positives from Group B. If
we really know positives from Group B are under-represented, we can change our objective
function min >, I(h(z) # y) by changing each indicator function such that minimizing
the sum of indicators measures the loss on the true distribution and not the loss on the
biased training distribution.
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Figure 2 This figure indicates the parameter region such that Equal Opportunity Constrained

ERM recovers h* under the Under-Representation Bias Model and is a visualization of Equation
2. r =1/3 and p = 1/2. We label each pair (7, 8) with blue if it satisfies the inequality and red
otherwise. This plot shows how smaller n means we can recover from lower 3. Blue means h*
is recovered. The dashed black line indicates the boundary between recovering h* and failing to

recover h*.

Define Bt = {x € B s.t. y = 1}. Then let,
% hz)#1 and =z € BT
I'(h(z),y) =40 h(z)=1 and =z Bt
I(h(x) #£y) otherwise
Then we use this new indicator in the objective function. This new loss function is an
unbiased estimator of the true unbiased risk, so uniform convergence on this estimator will
suffice to learn h*. We can infer the value of £ from the data for Group A if we know the
data from Group B is corrupted by this bias model. One concern with re-weighting in general

is that the functional form of the correction is tied to the exact bias model.
As we show in Section 5, Calibration has strange results in this bias model. Specifically,

when the bias is such that ERM fails to recover h* (i.e when (1 — )8 < n), then the
Calibration constraint can only be satisfied by a trivial classifier that assigns all of Group
A to one label and all of Group B to the alternative label. For typical parameters, this
will result in Group B being given the negative label and Group A will be assigned as all
positive. This will not recover h* and is in fact substantially worse than merely using ERM.
Un-constrained ERM would learn badly on Group B but would recover h% for Group A.
When the bias regime is such that (1 — )8 > 7, plain ERM recovers h*, while enforcing
Calibration will lead to excess true error on both demographic groups over the true error of
h*. In particular, satisfying Calibration on the biased data requires intentionally classifying
some negative input space from Group A as positive and classifying some positive input space
from Group B as negative. These results suggest that Calibration is an actively harmful
intervention (for both groups) in our model, when compared to plain ERM, across all model

parameters.
0Odds, Equal Opportunity, and Re-Weighting recover h* under a range of parameters. However,

In summary, for the Under-Representation Bias model, the fairness interventions Equalized
Demographic Parity is inadequate even for n = 0 and will not recover A* for non-vacuous

bias parameters.
FORC 2020
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3.2 Labeling Bias

In Section 4, we prove that Equal Opportunity constrained ERM on data biased by the
Labeling Bias model also finds the Bayes optimal classifier, under similar parameter conditions
to the previous bias model.

Interestingly, in contrast to Under-Representation Bias, Labeling Bias cannot be corrected
by FEqualized Odds. The problem is the first failure mode. For example, consider n = 0 but
where v # 0. The Bayes optimal classifier 2% for Group A has false positive rate of 0 and true
positive rate of 1. However, since v > 0, there is no classifier for Group B that achieves both
of these rates simultaneously. In particular, the only way to classify the negative individuals
in the positive region as negative is for the classifier to decrease its true positive rate from 1.
Therefore, Equalized Odds rules out usage of h*. This violation holds for n # 0 as well.

In contrast, h* does satisfy Equal Opportunity on the biased data, and given the conditions
in Theorem 3, it will be the lowest error such classifier on the biased data.

Demographic Parity experiences similar limitations as in the Under-Representation
Bias model.

The Re-Weighting intervention is to change the weighting of observed positives in the
training data for Group B so that we have the same fraction of positives in Group B as in
Group A. Define py ;1 := the fraction of positive individuals in Group A and pp ; := the
observed fraction of positives in B in the biased data. p4 o and pp o refer to the observed
fraction of negative individuals in Group A and Group B in the biased data.

We need a re-weighting factor Z such that:

PA _ ZPB,1
PA0 PB,o
par _ Zpaa(l—v)  Zpaa(1—v)
1—=pas  pao+pav  1—pai+paqv
1-— 1—v
g 1=paadl-v)

(1 =v)(1=pay)

We prove in Section 4.2 that this correction factor will lead to the positive region of h}; having
a higher weight of positive examples than negative examples and simultaneously the negative
region of h}; having a higher weight of negative examples than positive examples. This
causes ERM to learn the optimal hypothesis h*. We can infer the value of v by comparing
the fraction of positives in Group A and Group B.

In summary, Equal Opportunity and the Re-Weighting Interventions recover well in this
bias model (Labeling Bias) while Equalized Odds and Demographic Parity are inadequate.

3.3 Under-Representation Bias and Labeling Bias

In this most general model that combines the two previous models, Re-Weighting the data
is now no longer sufficient to recover the true classifier. For example, consider the case
where n =0 and p=1/4, v = 1/2 and Bygc = 1/3 and Spos = 1. If there were n points
originally from group B, then in expectation 3n/4 were negative and n/4 were positive. After
the bias process, in expectation there are n/4 negatives on the negative side of h*, and on
the positive side of h* we have n/8 correctly labelled positives and what appear to be n/8
negative samples.

The Re-Weighting intervention will not do anything in expectation because the overall
fractions are still correct; we have n/2 total points with one quarter of them labeled positive.
ERM is now indifferent between h* and labeling all samples from Group B as negative. If
we just slightly increase the parameter v and reduce Bpog then in expectation ERM will
strictly prefer labeling all the samples negatively.
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While the Re-Weighting method fails, we prove that Equal Opportunity-constrained
ERM recovers the Bayes optimal classifier h* as long as we satisfy a condition ensuring that
Group A has sufficient mass and the signal is not too noisy. As with the previous model,
Demographic Parity and Equalized Odds are not satisfied by h* on minimally biased data
and so they will not recover the Bayes optimal classifier.

4 Main Results

We now present our main theorem formally. Define the biased error of a classifier h as its
error rate computed on the biased distribution.

» Theorem 3. Assume true labels are generated by Pp ,.(h*,n) corrupted by both Under-
Representation bias and Labeling bias with parameters Bpos, BNEG,V, and assume that

(1 —7)(1—=2n)+r((1 —n)Bpos(1 —2v) —nBneg) >0 (3)
and
(1 —=7)(1=2n)+r((1 —=n)Bnec — (1 —2v)Bposn) >0 (4)

Then h* = (h%,h}) is the lowest biased error classifier satisfying Equality of Oppor-
tunity on the biased training distribution and thus h* is recovered by Equal Opportunity
constrained ERM.

Note Bpos, Bnec € (0,1], v €[0,1), n€10,1/2), r € (0,1) and p € (0,1]. Condition 3
refers to Equation 8 and Equation 4.

This case contains our other results as special cases and in the next section we prove
our main theorem in this bias model. Note that if Equation 3 is not satisfied then the
all-negative hypothesis will have the lowest biased error among hypotheses satisfying Equal
Opportunity on the biased training distribution. Similarly, if Equation 4 is not satisfied then
the all-positive hypothesis will have the lowest biased error among hypotheses satisfying Equal
Opportunity on the biased training distribution. Thus Theorem 3 is tight. To give a feel for
the formula in Theorem 3, note that the case of small r is good for our intervention, because
the advantaged Group A is large enough to pull the classification of the disadvantaged Group
B in the right direction. For example, if r < % then the bounds are satisfied for all n < %
(and if r < i then the bounds are satisfied for all n < %) for any under-representation biases
Bpros,Bnec > 0 and any labeling bias v < 1.

Thus, Equal Opportunity Strongly Recovers with (1/4,1/3) and (1/3,1/4) in the Under-
Representation and Labeling Bias model.

Table 1 Summary of recovery behavior of multiple fairness interventions in bias models.

Intervention Under- Labeling Bias Both
Representation
Equal Yes: (1—r)(1—2n)+ | Yes: (1—r)(1—2n)+ | Yes: Using Condition
Opportunity- | 7((1—n)8—mn) >0 r(1—-n)1—-2v) — |3
ERM n) >0
Equalized Yes: (1—7)(1—2n)+ | No No
Odds r(1—m)B—n)>0
Re-weighting | Yes Yes No
Class B:
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Table 1 summarizes the results in the three core interventions and the three core bias
models. Demographic Parity is omitted from the table since it cannot recover under the bias
models when n = 0 and thus is inadequate. The contents of each square indicate if recovery
is possible in a bias model with an intervention and what constraints need to be satisfied
for recovery.

4.1 Proof of Main Theorem

In this section we present the proof of the main result, Theorem 3. We want to show that
the lowest biased error classifier satisfying Equal Opportunity on the biased data is h*, given
Condition 3.

The first step of the proof is to show that h* satisfies Equal Opportunity on the biased
training data. Note: the lemmas and claims here are all in the Under-Representation Bias
combined with Labeling Bias Model, the most general bias model.

» Lemma 4. h* = (h*, hl;) satisfies Equal Opportunity on the biased data distribution.

Proof. First, let’s consider the easiest case with 7 = 0, 8pos = Bnvec = 1, and v = 0. Recall
that A* is the pair of classifiers used to generate the labels. When 1 = 0, h* is a perfect
classifier for both groups so Equal Opportunity is trivially satisfied. Now, let’s consider
arbitrary 0 < n < 1/2. Recall that p = Pro, (h%(z) = 1|z € A) = Pro,(hi(x) = 1|z € B).
By our assumption that Group A and Group B have equal values of p and 1 we have

p(1—mn)
p(L—n)+ (1 —pn

Next consider when we have both Under-Representation Bias and Labeling Bias. Recall
that Bpos, BNEc > 0 is the probability that a positive or negative sample from Group B is
not filtered out of the training data while v < 1 is the probability a positive label is flipped
and this flipping occurs after the filtering process. Then,

Pr(hj(z)=1Y =1,z € A) = =Pr(hp(z)=1Y =1,z € B)

{True Positive Rate on Group A} :=Pr(h%(z) =1|Y =1,z € A) =
p(1 =) _ p(1 —n)Bpos(l —v)

pA=m)+Q-pm p-n)Bros(l—v)+(1-pmBros(l—v)

= Pr(hp(x) = 1Y =1,z € B) := {True Positive Rate on Group B}

so Equal Opportunity is still satisfied.

In words, the bias model removes or flips positive points from Group B independent of
their location relative to the optimal hypothesis class. Thus positive points throughout the
input space are are equally likely to be removed, so the overall probability of true positives
being classified as positives is not changed. |

Now we describe how a candidate classifier hp differs from h}. We can describe the
difference between the classifiers by noting the regions in the input space that each classifier
gives a specific label. This gives rise to four regions of interest with probability mass as
follows:

pig = Pip(hp) := Pocpy (hp(x) =1 A hp(z) =0)
p2p = Pap(hp) = Pocpy(hp(z) =0A hp(z) =1)
p—pi = Preny(hp(x) =1Ahp(z) =1)
1=p—p2p = Pren,(hp(x) =0A hp(x) =0)
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These probabilities are made with reference to the regions in input space before the bias
process. pip and pop are functions of hp to make explicit that there may be multiple
hypotheses with different functional forms that could allocate the same amount of probability
mass to parts of the input space where h}; and hp agree on labeling as positive and negative
respectively. The partition of probability mass into these regions is easiest to visualize for
hyperplanes but will hold with other hypothesis classes. p14 and ps4 are defined similarly
with respect to b’y and D 4. A schematic with hyper-planes is given in Figure 3. To show

Figure 3 Differences between hp and h% measured with probabilities in the true data distribution
(before the effects of the bias model).

that h* has the lowest error on the true distribution, we first show how given any pair of
classifiers hy and hp, which jointly satisfy Equal Opportunity (Equal Opportunity) on the
biased distribution, we can transform {h4,hp} into a pair of classifiers still satisfying Equal
Opportunity with at most one non-zero parameter from {pl B, D2 B}, and at most one non-zero
parameter from {p;4,pa2a}, while also not increasing biased error.

The final step of our proof argues that out of the family of all hypotheses with (1) at most
one non-zero parameter for the hypothesis on Group A, (2) at most one non-zero parameter
for the hypothesis on Group B, (3) and jointly satisfying Equal Opportunity on the biased
data, h* has the lowest biased error.

These steps combined imply that A* is the lowest biased error hypothesis that satisfies
Equal Opportunity.

» Lemma 5. Gliven classifiers ha and hp which satisfy Equal Opportunity on the biased

data, there exist classifiers h;‘ and hlB (not necessarily in H) satisfying

1. At most one of {Pya(hy), Paa(h'y)} is non-zero and at most one of {Pip(hp), Pap(hp)}
18 non-zero.

2. (hy,h'y) has error at most that of (ha,hg) on the biased distribution.

3. h:4 and hlB satisfy Equal Opportunity.

Proof. We want to exhibit a pair of classifiers with lower biased error that zeros out one of
the parameters. We do this by modifying each classifier separately, while keeping the true
positive rate on the biased data fixed to ensure we satisfy Equal Opportunity.

First, consider Group A and suppose that Pja(ha), Poa(ha) > 0 since otherwise we do
not need to modify h4. Imagine holding the true positive rate of h4 constant and shrinking
poa towards zero. As we shrink ps 4, we must shrink p;4 towards zero in order hold the true
positive rate fixed (and thus satisfy Equal Opportunity).
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The un-normalized” True Positive Rate (constrained by Equal Opportunity) is (p —
p1a)(L —n) +p2an = p(1 —n) —pra(l —n) + p2an = (p — p1p)(1 — 1) + p2p7. Since the
p(1 —n) term is independent of the classifier h 4, keeping the true positive rate constant is
equivalent to keeping C := —p14(1 — 7)) + p2an constant.

Define f(A) = Aﬁ. If C < 0 then we can shrink pa4 to 0 and reduce p14 by f(p2a),
keeping C constant. If C' > 0 we can instead shrink p;4 to 0 and reduce paa by f~1(p1a)-

Observe for Group A this process will clearly reduce training error since we are decreasing
both p14 and pe24 and the error on group A is monotone increasing (and linear) with respect
to p1a + p24a.

We then separately do this same shrinking process for group B. Now we show the biased
error decreases for Group B. For a given amount A by which we shrink pop, the overall
biased error change for Group B is A[nfpos(1—v)—(1—n)Bnec —nBposv]+ f(A)[nBNec+
(1 =n)Bposv — (1 —n)Bpos(l — v)], and simplifies to become

= AnBpros(1 —v) — f(A)(1 —n)Bros(l —v)
+ A(=(1 =n)Bnec — nBrosv) + f(A)nBNEc + (1 —n)Brosv)

The first two terms vanish because of f(A) = AL

= A(—(1 —=n)Bnec —nBrosv) + f(A)(nBnec + (1 —n)Brosv)

2
= A(=(1—n)Bnec —nBrosv) + A%BNEG + Anfposv

2

= A(l — nﬂNEG - (1 =n)Bnec) <0

Since this term is negative, we have shown that this modification process decreases error on
the biased training data for both Group A and Group B while keeping the true positive rate
fixed. h, and h;3 are then any functions satisfying these p’s (e.g. p1a,p2a etc). <

» Lemma 6. If ha and hp satisfy the Equal Opportunity constraint and each classifier has
at most one non-zero parameter, then p1g = p1a and pag = paa.

Proof. Recall that the Equal Opportunity constraint requires that these expressions be
equal.

(p—p1a)(1 =n) +p2an = (p—p1B)(1 = 1) + P2
p2an — pra(l —n) = p2pn — pra(l —n)
Then the theorem follows from inspecting the second equality. <

This lemma makes explicit that when the classifiers each have only one non-zero parameter
and satisfy Equal Opportunity, then the non-zero parameter corresponds to the same region.

» Lemma 7. Of hypotheses satisfying (p1a = p1p and poa = pap = 0) or (p1a =pip =0
and paa = pap), if these inequalities hold:

(1 =7)(1=2n)+r((1 =n)Bros(l —2v) —=nBNec) >0
and

(1 —=7)(1=2n)+r((1 =n)BNvec —nBros(1 —2v)) >0

then the lowest biased error classifier satisfying Equal Opportunity on the biased data is
h* = (W4, hp).

7 The normalization factor for these rates for Group A and Group B is the same so this term can be
cancelled.
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Proof. First, we sketch the proof informally. Consider three cases which depend on how the
bias process affects the unconstrained optimum for Group B on the biased data. In the first
case, in the biased data distribution, the region X+ := {z s.t. hi3(z) = 1} has more positive
than negative samples in expectation and the region X~ := {z s.t. hj;(z) = 0} has more
negative than positive samples in expectation. In the second case, there are more positive
than negative samples throughout the entire input space in the biased distribution. In the
third and final case, there are more negative than positive samples throughout the input
space in the biased distribution.

In these three cases, the optimal hypothesis is exactly one of {h%;, hl, h%}, respectively.
The second two hypotheses mean labelling all inputs as positive and labelling all inputs as
negative, respectively. These three hypotheses correspond to hypotheses with at most one
non-zero parameter.

For instance, hl occurs when pap = 1 — p and p1p = 0. Each of the three hypotheses
occur when the one non-zero parameter attains a location on the boundary of its range of
values. When pyp is allowed to be non-zero, if instead pap = 0 (and thus it also must be

that p;p = 0), the hypothesis is equivalent to h%. A similar relationship holds for h° and p;.

In order to show the theorem, we prove that if A* has lower biased error than h' = (hY, hl)
and hY = (hY, h%) on the biased data distribution, then h* has the lowest error among all
hypotheses with at most one non-zero parameter and satisfying Equal Opportunity.

To see this, consider h4 and hp with the same non-zero parameter equal to A. Then the
error of hy is a linear function of A. Similarly, the error of hp is a linear function of A. The
overall error of h = (ha, hp) is a weighted combination of the error of h* and the error of h°
or h', so the overall error of h is thus linear in A, so the optimal hypothesis parametrized
by A must occur on the boundaries of the region of A, so the optimal hypothesis is one of
{h*,h° h'}. We then show that the inequalities we assume in the theorem enforce that h*
has strictly lower error than h° or h'. Formally, we enumerate the possible events:

Type | Sign of h* | Label in Biased Data | Un-Normalized Probability of Event
A + + Ry =(1—r)p(l—n)

A + - Ry =(1—-r)pn

A - + Rs=(1-r)1-p)n

A - - Ri=(1-r)1-p)(1-n)

B + + Rs =rp(1 —n)Bros(1 —v)

B + - R = rp[(1 — n)Brosv + nBNEc]

B - + Rz =r(1 —p)(nBros)(1 —v)

B - - Rs =r(1—p)[(1 —n)BnEec +nBrosv]

The probabilities on the far right hand side are not normalized. First we show that the
err(h*) < err(hl). err(h*) = Ra + R3 + R + R7 and err(h') = Ry + Ry + Rg + Rs, thus
err(h*) < err(h!) if and only if R3 + R; < Ry + Rg or thus if

(1 =r)( =pn+r1—-p)nbros)(1—v)

<A =r)A=p)A=n)+r1-p)I[1-nBnec+nbBrosv]

Equivalently,

0<(I=r)(1=2n)+r[(1-nbrvec—nBros(l—2v) (5)
Now we consider h* compared to h°. Then err(h®) = Ry + Rz + Rs + R7 Then err(h*) <
err(h®) if and only if Ry + Rg < Ry + Rs.

(1 =7)pn+rp[(1 = n)Brosv +nBnec] < (1 —r)p(1 —n) +rp(1 —n)Bpros(1 —v)
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Equivalently,
0<(I—=7r)(1—=2n)+7r((1-n)ppros(l—2v)—nbnEc) (6)

Thus we have shown that the error of h* is less than the error of of h' and h° if and only if
both Lines 5 and 6 are true, which we assume in our theorem.

Now we show that we error of h = (ha, hpg) is linear in A. There are two cases depending
on what parameter of h is non-zero.

Let h be a hypothesis such that Pia(ha) = p1p = A and Pya(ha) = pep = 0 and
A €[0,p].

A p—A A p—A

eT’T‘(h):R1E+R2 +R3+R55+R6 +R7
A p—A

= Zerr(h’) + ——err(h*
) (h") ) (h")

On the other case let Pya(ha) =p1p =0 and Pya(ha) =p2p = A and A € [0,1 — p).

1-p—A A 1-p—A A
P Rs + R4+ Rg + b R7 + Rg
1-p 1-p 1-p 1-p

A 1 1-p—A
= l_peTT'(h )"‘ﬁ

err(h) = Ry +

err(h™)

Thus the error of A is linear in A and boundary values for A correspond to the hypotheses

in {h*, kY h'}. These two arguments show that:

1. Any single parameter h is a weighted sum of (h* and h° ) or is a weighted sum of (h*
and h') and so is linear in A. The boundary values of A correspond to {h*, h°, ht}.

2. Since the optimal value of a linear function occurs on the boundaries of its range, the
optimal Equal Opportunity classifier with at most one non-zero parameter is one of
{h*,h° hl}.

3. The inequalities in the theorem statement enforce that h* has lower biased error than
either h° or h', so h* has the lowest biased error of any single parameter hypothesis
satisfying Equal Opportunity. |

If the conditions in the Theorem do not hold, then h* will not have lower error than h°

and h'.

4.2 \Verification Re-Weighting Recovers from Labeling Bias

The way we intervene by Reweighting is we multiply the loss term for mis-classifying positive
examples in Group B by a factor Z such that the weighted fraction of positive examples in
biased data for Group B is the same as the overall fraction of positive examples in Group A.
The goal of this reweighting is to ensure that the ratio of positive to negative samples
in the positive region of h7 is greater than 1 while the ratio is less than 1 in the negative
region of h};. Thus the re-weighted probabilities need to simultaneously satisfy:
( (@ =1 _20-n0-v) _,
Ply=0hj@) =1)  (n+(1—mv)
( (2)=0) _ _Zln(1—v)]
Py =lhp(x)=0) (1 —=n)+mw)
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The two constraints are equivalent to requiring that:

n+(1—-nyv 1—n+nv
0 i) @)

Recall from Section 3.2 that Z = %

First we show the right hand inequality.

1-pai(1—v) 1—n+nv
(1-=v)A=pas) n(l-v)
<1—77+77u 1—pa1(1—-v)

n (1—paz1)

0

Observe that both terms are linear in v. When v = 0, the inequality becomes 1o _ 1lopas

n 1—pa
177" —1> 0. In our bias model v € [0,1), but if ¥ = 1, the inequality becomes %— 17;,4 ->0.
Thus Equation 7 holds if both 177’7 —1>0and % — 1_;A - > 0.

177’7 — 1> 0 is clearly true because 0 < n < 1/2.

To see that % — 1—;4 - > 0, note that this is equivalent to n < 1 — p4,1, where the
right-hand-side is the overall fraction of negative examples in A. This is clearly true because
the positive region of h% has exactly an 7 fraction of negatives, and the negative region of
h% has a 1 —n > n fraction of negatives.

Now we show the left hand inequality in Equation 7.

n+ 1 —nyv 1—Pya(l—v)

(1-m1-v) (1-v)(1-Pan)
n+(1—nv 1-Pai(l-v)

(1—7]) 1—PA71
1-Pya(l—v) n+Q1-ny
G = ®)

1
1-pa B
ﬁ > 0. This holds if 1 —psa1 <1 —n <= n < pa. This is clearly true because the

negative region of h* has exactly an n fraction of positives, and the positive region of h* has
a 1 —n > n fraction of positives. For v = 0, Equation 8 becomes 1 — 12777 > 0 which holds
since 0 <n < 1/2.

We follow a similar linearity argument to above. For v = 1, Equation 8 becomes

5 Calibration Results

» Theorem 8. Assume the training data is corrupted by Under-Representation Bias with
parameter 8 < 1. For any such B, h* does not satisfy Calibration on the biased data and
thus Calibration constrained ERM will return a hypothesis that has strictly worse true error
than the true error of h*. This occurs even when (1 —n)B >, i.e. in the bias regime such
that plain ERM on the biased data would recover h*.

Moreover, if bias is such that (1 —n)B < n and thus ERM on the biased data will not
recover h*, then the unique ERM solution that satisfies Calibration on the biased data is a
trivial classifier, meaning that all individuals from Group A receive one label (the positive
label) and all individuals from Group B receive the opposite label.
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Proof. Recall that Calibration of hypothesis h = (ha, hp) requires that both Eq. 9 and 10
hold simultaneously.

Px~DA(y:1|hA(9C) )

=1) = Piun,(y = lhp(z) = 1) 9)
Pirp,(y = 1|ha(z) = 0)

=1
Ponop(y = 1hp(z) = 0) (10)

We assume that if one of the terms is vacuous in the Calibration constraints , then that
constraint is still satisfied. In other words, if one bin is non-empty for one group while the
corresponding bin for the other group is empty, we assume that bin satisfies Calibration.
Due to the effects of the bias model positive samples from Group B appear in the training
data with lowered frequency and so the equalities in Equations 9 and 10 become:

) (11)

Ponaly = 1k (2) = 1) > Peap(y = 1hp(z) =1
0) (12)

Peray = 1| (2) = 0) > Ponp(y = 1A (x)

Thus h* = (h%, h};) violates calibration for any 8 < 1 and any other hypothesis satisfying
calibration will have strictly greater error on the true data distribution. Intuitively, for h
to be Calibrated it will need to reduce the left-hand side of Equation 11 because it cannot
increase the right-hand side and will have to increase the right-hand side of Equation 12
because it cannot decrease the left-hand side. As a result, its true error will be strictly larger
than that of h*.

Now, consider (1 —7)8 < n. In this case, plain ERM will not recover h*. With this
amount of bias, then:

Pera(y = 1|3 (2) = 1) > Pealy = 1R (z) = 0)
> Poup(y = 1|hp(x) =1) > Peup(y = 1hp(x) = 10)

Satisfying Calibration with non-trivial classifiers requires achieving an equality with one side
being a non-negative combination of the first two probabilities, and the other side being a
non-negative combination of the second two probabilities. Since these inequalities are all
strict, this is clearly not possible, so the only way to satisfy calibration is to use a trivial
classifier that assigns all of Group A to one label, and all of Group B to the other label.® <

6 Conclusion

In this paper we have shown that Equal Opportunity constrained ERM will recover from
several forms of training data bias, including Under-Representation Bias (where positive
and/or negative examples of the disadvantaged group show up in the training data at a
lower rate than their true prevalence in the population) and Labeling Bias (where each
positive example from the disadvantaged group is mislabeled as negative with probability
v € (0,1)), in a clean model where the Bayes optimal classifiers k%, h}; satisfy most fairness
constraints on the true distribution and the errors of A%, h; are uniformly distributed. The
high-level message of this paper is that fairness interventions need not be in competition
with accuracy and may improve classification accuracy if training data is unrepresentative or
biased; however these results will be connected to the true data distributions and features of

8 Which trivial classifier is selected by ERM will depend on p and 7. If 1 —7 > r and p > 1/2, then Group
A will be all positive and Group B all negative. While if 1 —r > r and p < 1/2, then then Group A
will be all positive and Group B all negative.
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the biased data-generation process. It would be interesting to consider other ways in which
training data could be biased, and other assumptions on the optimal classifiers, to determine
what kinds of interventions might be most appropriate for different biased-data scenarios.
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