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This paper studies the joint limiting behavior of extreme eigen-
values and trace of large sample covariance matrix in a generalized
spiked population model, where the asymptotic regime is such that
the dimension and sample size grow proportionally. The form of the
joint limiting distribution is applied to conduct Johnson-Graybill-
type tests, a family of approaches testing for signals in a statistical
model. For this, higher order correction is further made, helping alle-
viate the impact of finite-sample bias. The proof rests on determining
the joint asymptotic behavior of two classes of spectral processes, cor-
responding to the extreme and linear spectral statistics respectively.

1. Introduction. Considering a sequence of independent and identi-
cally distributed (i.i.d.) p-dimensional real-valued random vectors {X1, . . . ,Xn}
with zero mean and population covariance matrix Σp, the corresponding
sample covariance matrix is defined as

(1.1) Sn =
1

n

n∑
i=1

XiX
T
i ,

with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 denoting the eigenvalues of Sn. It is statisti-
cally fundamental and important to study the distributions of the m largest
eigenvalues λ1, . . . , λm and the trace, Tr(Sn) =

∑p
j=1 λj , of Sn as p = pn

grows to infinity with n.
Indeed, each of them has led to a large volume of literature. For results

on extreme sample eigenvalues, [16] first introduced the spiked population
model as the non-null case where all eigenvalues of Σp are unit except for a
fixed small number of spikes, i.e.,

(1.2) Spec(Σp) =
{
α1, · · · , αm, 1, · · · , 1︸ ︷︷ ︸

p−m

}
.
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Here we define Spec(A) to be the sets of eigenvalues of matrix A. Under the
“null” (i.e., Σp is the identity matrix Ip), [16] established the Tracy-Widom
law for the largest eigenvalue of real Wishart matrix Sn. Following John-
stone’s development, many efforts have been put into quantifying the effect
caused by spiked eigenvalues {αk, 1 ≤ k ≤ m} on m extreme sample ones
{λk, 1 ≤ k ≤ m}. To name a few, under Johnstone’s spiked model settings,
[5] thoroughly studied the almost sure limits of the extreme sample eigenval-
ues under the Marčenko-Pastur regime when p, n→∞, p/n→ y ∈ (0,∞).
They found that these limits are different when the corresponding popula-
tion spiked eigenvalues are larger or smaller than critical values 1 +

√
y and

1−√y. Similar phase transition phenomenon of largest sample eigenvalues
was shown in [6] for complex Gaussian population. [22] further proved that
a phase transition of eigenvectors also occurs with Gaussian observations.
[3] followed the set-up of [5] and established central limit theorems (CLTs)
for the extreme sample eigenvalues associated with spikes outside the in-
terval [1−√y, 1 +

√
y] under general population distributions. [4] extended

the theory in [3] to a generalized spiked population model where the base
population covariance matrix is arbitrary.

In contrast to extreme sample eigenvalues, many important statistics in
multivariate analysis can be expressed as linear functionals of eigenvalues
of some random matrices, namely, linear spectral statistics (LSS). Tr(Sn) is
one of the most important examples. Limiting behaviors of LSS has been
intensively studied in the literature. One of the most widely used results
is [2], which first established the asymptotic normality for LSS of sample
covariance matrix Sn under the Marčenko-Pastur regime with some moment
restrictions on data entries. Further refinement and extensions can be found
in numerous follow-up works. To name a few, [30] studied CLT for LSS of
sample covariance matrix when the population mean vector is unknown.
[9] investigated the ultra-high dimensional case when the dimension p is
much larger than the sample size n. They further established the asymptotic
normality for LSS as p/n → ∞ and n → ∞. [31] removed the fourth order
moment condition in [2] and incorporated it into the limiting parameters.
[29] derived a CLT for LSS of large dimensional general Fisher matrices. The
limiting distribution of Tr(Sn) is derivable by implementing these results.

Despite the substantial advances in both directions, to our knowledge,
little has been made on investigating the joint distribution of extreme sample
eigenvalues and trace, which is equivalent to studying the asymptotic joint
distribution of the largest and summation of sample eigenvalues. As will be
seen soon, obtaining such a limiting distribution is fundamental in many
applications, and is worth investigating in depth.
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As a first contribution of this paper, we aim to study such a joint dis-
tribution. For this, we focus on Bai and Yao’s generalized spiked model [4],
which generalizes Johnstone’s spiked model in [16]. Here, the population
covariance matrix Σp has the structure

(1.3) Σp =

(
Λ 0
0 Vp′

)
,

where Λ and Vp′ are of dimension m × m and p′ × p′ (p′ = p − m) and
Λ is assumed fixed. The eigenvalues of Λ and Vp′ are α1 ≥ · · · ≥ αm > 0
and βp′,1 ≥ · · · ≥ βp′,p′ ≥ 0, respectively. The α′js are larger than and well
separated from βp′,j

′s, thus named as spiked eigenvalues.
Under the generalized spiked model with p/n → y ∈ (0,∞), we prove

that the extreme eigenvalues and Tr(Sn) are jointly asymptotically normal
and asymptotically independent. The results are hence connected to the
influential work of [11] and [14] on sum and maximum of i.i.d. and strongly
mixing random variables. The conclusion holds as long as finite fourth order
moments exist, and in particular, requires no normality assumption. Our
result is hence also connected to another interesting related work [12] where
for sample covariance matrix Sn with heavy-tailed entries, this asymptotic
independence also holds.

Although Tr(Sn) can be represented as the summation of all sample eigen-
values, in fact it is very difficult to quantify the correlation between extreme
eigenvalues and the rest bulky ones, especially under the high dimensional
settings without a Gaussian assumption. In facing this challenge, we make
full use of the spiked model structure and carry out a block-decomposition
analysis of spiked and non-spiked ones. The correlation between extreme
eigenvalues and trace of each block of Sn is analyzed separately based on
the joint asymptotic behavior of two classes of spectral processes, corre-
sponding to the extreme and linear spectral statistics respectively. The idea
of block-decomposition provides a novel perspective for proving the asymp-
totic independency between (λk)1≤k≤m and Tr(Sn). [22] adopted a similar
block-decomposition technique to represent sample eigenvalues as solutions
to certain equations. However [22] only considered the Gaussian case and
focused on individual behavior of eigenvalues and eigenvectors when their
population covariance is spiked with unit bulk eigenvalues.

The form of joint limiting distribution is then employed to conduct Johnson-
Graybill-type tests [15], a family of approaches testing for signals in a sta-
tistical model based on the sample ratio λ1/(Tr(Sn)/p). To name an appli-
cation, this family of tests is important in modern signal processing appli-
cations, such as testing for the presence of signals in cognitive radio and
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non-parametric signal detection in array processing. For more details, we
refer the readers to [8] and a comprehensive review paper [23]. [16] proved
that when Σp = σ2Ip, λ1/σ

2 converges to the Tracy-Widom (TW) dis-
tribution after appropriate centering and scaling. However, this ratio test
statistic λ1/(Tr(Sn)/p) cannot be well approximated by the same asymp-
totic distribution. Finite sample adjustment of critical values for every (p, n)
combinations was made in [20]. [13] suggested an alternative variance correc-
tion which also improved the finite sample approximation. However, neither
of them derived the asymptotic distribution of this studentized statistic.
Furthermore, in the presence of m spikes, the limiting TW distribution of
λm+1/σ

2 has not been fully testified yet. [13] performed some simulation ex-
periments of testing multiple spikes based on the TW conjecture of λm+1/σ

2.
They found that the test was uniformly undersized due to the downward bias
of the TW approximation. Further analytic tools are needed to correct this
bias, which is nevertheless nontrivial.

In this paper we start from a different perspective by studying the be-
havior of λm/σ

2 in the presence of m spikes. We use (p − m)−1
∑

j>m λj
instead of p−1 Tr(Sn) as the surrogate for σ2. Although the analytic tools
are the same, the former enjoys better performance in finite sample cases. As
a specific example, we formulate our null hypothesis as the spiked covariance
model where

(1.4) Σp =

m∑
i=1

aiviv
T
i + σ2Ip,

and vi’s are orthonormal vectors. A typical example of such parametrization
originates from the factor model where the p-dimensional data vector Xt has
a factor structure of the form

Xt = AFt + Et,

with Et ∼ N(0, σ2Ip) independent of Ft ∼ N(0, Im) and Ap×m is a deter-
ministic matrix such that AAT has spectrum

∑m
i=1 αiviv

T
i . The limiting

distribution of our test statistic, λm/
1

p−m
∑

j>m λj , is then derived based on

the asymptotic joint distribution of
(

(λk)1≤k≤m ,Tr(Sn)
)T

, and the corre-

sponding test is implementable due to the developed theory. Our test targets
at detection of signals above certain signal-to-noise ratio. Higher order cor-
rections are further made to alleviate the impact of finite sample bias, which
ensures satisfactory testing size and power.

It is worth mentioning here that this test is closely related to sphericity
test (i.e. to test H0 : m = 0, v.s. H1 : m > 0) discussed in [21] and [27].
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In particular, they have non-zero power under the spiked alternative (i.e.
H1 : m > 0) even when the spikes are below the phase transition threshold.
Admittedly, our test statistic can only detect distant spikes above the phase
transition threshold. However, the sphericity test in [21] and [27] is only
designed for testing existence of signals while our tests can be used to detect
total number of spikes and the signal strength of the spikes being tested. In
another related work, [10] formulated the observed data matrix X ∈ Rn×p
as the sum of a low-rank signal matrix B ∈ Rn×p and a Gaussian noise
matrix E ∈ Rn×p and aimed at finding the rank of the deterministic signal
matrix B. It is, however, very different from our model settings. In their
model signals are treated as a low-rank mean of the observed data matrix
while in this paper we analyze spiked models when factors are embedded in
a spiked population covariance structure.

Throughout the paper, we use bold Roman capital letters to represent ma-
trices, e.g., A. Tr(A) and |A| denote the trace and determinant of matrix A.
For matrix A, [A]ij denotes the (i, j)-th entry of A. diag (α1, · · · , αm) rep-
resents an m×m diagonal matrix with diagonal entries α1, · · · , αm. Scalars
are often in lowercase letters and random ones in capitals. Vectors follow
bold italic style like vi and random vectors are in capitals like Fi. N, R, and
C represent the sets of natural, real, and complex numbers. 1(·) stands for
indicator function and T stands for transpose of vectors or matrices. Let
f : C → C be a complex-valued function defined on the complex plane C,
then

∮
γ f(z) dz denotes the contour integral of f(z) on the Jordan curve γ.

For any x ∈ R, δx represents the point mass at x.
The remaining sections are organized as follows. Section 2 gives a detailed

description of the generalized spiked model and introduces some preliminary
results which form the basis of our analysis. Our main results are presented
in Section 3. An application to factor modeling is studied in depth in Section
4. Proofs of theorems and technical lemmas are relegated to Section 5.

2. Generalized spiked population model and preliminaries. For
any p× p square matrix A with eigenvalues (θj)1≤j≤p, its empirical spectral
distribution (ESD) is the measure FA = p−1

∑p
j=1 δθj (weighting equally

the eigenvalues). Under the generalized spiked population model (1.3), the
following assumptions are made:

(i) as n→∞, p = pn →∞ such that p/n→ y ∈ (0,∞);
(ii) the sequence of spectral norms of Σp is bounded and the ESD Hp′ of

Vp′ converges to a nonrandom limiting distribution H;
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(iii) the eigenvalues {βp′,j , 1 ≤ j ≤ p′} of Vp′ are such that as n→∞,

sup
j≤p′

d(βp′,j ,ΓH) = εp → 0,

where d(x,A) denotes the Euclidean distance of x to a set A and ΓH
stands for the support of H;

(iv) the sample vectors Xi, 1 ≤ i ≤ n can be expressed as Xi = Σ
1/2
p Yi,

where Yi are i.i.d. p-dimensional vectors with i.i.d. components {Yij , j =
1, · · · , p} satisfying EYij = 0, E|Yij |2 = 1, and E|Yij |4 = ν4 <∞.

Letting µ be a finite measure on the real line with support Γµ, its Stieltjes
transform sµ(z) is defined as

sµ(z) =

∫
1

x− z
µ(dx), z ∈ C+,

where C+ := {z ∈ C : =(z) > 0} is the upper half plane with positive
imaginary part and =(z) denotes the imaginary part of any given complex
value z.

Let FSn be the ESD of the sample covariance matrix Sn. It is well known
that under Assumptions (i) to (iv), FSn weakly converges to a nonrandom
probability measure F y,H , the Marčenko-Pastur (M.P.) distribution with
indexes (y,H). Its Stieltjes transform s(z) is implicitly defined as a solution
to the equation

s(z) =

∫
1

t(1− y − yzs(z))− z
dH(t).

Correspondingly, the Stieltjes transform sn(z) = 1
p Tr (Sn − zIp)−1 of the

ESD FSn converges to s(z) almost surely as n→∞.
Moreover, consider an n× n companion matrix for Sn,

Sn :=
1

n
YTΣpY with Y = (Y1, · · · ,Yn).

Both matrices share the same non-null eigenvalues and their ESDs satisfy

nFSn − pFSn = (n− p)δ0.

Their limits and respective Stieltjes transforms are linked to each other by
the relation

F y,H − yF y,H = (1− y)δ0, s(z) = −1− y
z

+ ys(z),
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and the Stieltjes transform s(z) of FSn satisfies the Silverstein equation [24]:

(2.1) z = −1

s
+ y

∫
t

1 + ts
dH(t).

Notice that the spiked structure (1.3) can be viewed as a finite rank per-
turbation of a general population covariance matrix with eigenvalues {βp′,j}.
As the number of spikes m is fixed while p → ∞, the limiting spectral
distribution of FSn is determined by the distribution of bulk population
eigenvalues {βp′,j} independent of the spikes. However, the behavior of the
m extreme sample eigenvalues λ1, · · · , λm relies heavily on their population
counterparts α1, · · · , αm.

Consider the functional inverse ψ of the function α : x 7→ −1/s(x). By
(2.1), we have

(2.2) ψ(α) = ψy,H(α) = α+ yα

∫
t

α− t
dH(t),

ψ′(α) = 1− y
∫

t2

(α− t)2
dH(t), ψ′′(α) = 2y

∫
t2

(α− t)3
dH(t).

This function ψ(·) is well defined for all α /∈ ΓH .
[4] gave a detailed characterization about the phase transition phenomenon

of the limits of λ1, · · · , λm when α1, · · · , αm satisfy different conditions.
They name a generalized spiked eigenvalues α a distant spike for the M.P
distribution F y,H if ψ′(α) > 0 and a close spike if ψ′(α) ≤ 0. Using the
characterization of support of the LSD F y,H given in [24], it can be seen
that for distant spikes, the corresponding sample eigenvalues almost surely
converge to limits which are outside the support ΓF y,H of LSD of Sn. These
spikes are also referred as “outliers” in the literature.

In this paper, we are focused on the generalized spiked model with dis-
tant spikes. In addition, for presentation simplicity, we only consider the
case when α1, . . . , αm are non-identical. Extension to the case with possible
overlaps on population spikes is straightforward using the developed tech-
niques in this paper. Therefore, in addition to Assumptions (i) to (iv), we
further assume that

(v) Λ is a fixed m×m matrix with non-identical bounded eigenvalues α1 >
· · · > αm > supp maxj βp′,j . All α′ks are distant spiked eigenvalues
satisfying ψ′(αk) > 0.

3. Main results. In this section, we study the asymptotic behavior of
m largest sample eigenvalues λ1, · · · , λm and trace of Sn. Define the spectral



8 Z. LI, F. HAN, AND J. YAO

decomposition of Λ = (Λij)m×m to be

Λ = U diag (α1, · · · , αm) UT,

where we remind that diag (α1, · · · , αm) represents the m×m diagonal ma-
trix with diagonal entries α1, · · · , αm.

Theorem 3.1. Under Assumptions (i) to (v), for the m largest eigen-
values λ1, · · · , λm of Sn, denoting ψ(αk) as ψk, we have, the m-dimensional
random vector (√

n

(
λ1

ψ1
− 1

)
, · · · ,

√
n

(
λm
ψm
− 1

))T

and Tr(Sn) are jointly asymptotically normal and independent. Marginally,

Tr(Sn)− Tr(Σp)
d−→ N(0, 2yγ2 + y(ν4 − 3)γd,2),

where for k = 1, 2, . . ., γk :=
∫
tk dH(t) denotes the k-th moment of LSD of

Vp′ and γd,2 := limp′→∞
1
p′
∑p′

i=1[Vp′ ]
2
ii.

Moreover,
(√

n
(
λ1
ψ1
− 1
)
, · · · ,

√
n
(
λm
ψm
− 1
))T

weakly converges to an m-

dimensional Gaussian vector (M1, · · · ,Mm)T, with each

Mk = uT
kG(ψ(αk))uk,

where uk = (u1k, · · · , umk)T is the k-th column of U, G(ψ(αk)) is an m×m
Gaussian random matrix with independent entries such that

(a) its diagonal elements are i.i.d. Gaussian with mean zero and variance

(3.1) σ2
αk

:= 2
α2
k

ψ2
k

· ψ′(αk) + βy
α2
k

ψ2
k

· (ψ′(αk))2,

with βy = E|Yij |4 − 3 = ν4 − 3 denoting the fourth cumulant of base
entries {Yij};

(b) its upper triangular elements are i.i.d. Gaussian, with mean zero and
variance

(3.2) s2
αk

=
αk
ψk
· ψ′(αk).
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Meanwhile, denoting the (i, j)-th entry of matrix A by [A]ij, we have, for
k1 6= k2,

Cov
(

[G(ψ(αk1))]ij , [G(ψ(αk2))]ij

)
=
αk1αk2ψ

′(αk1)ψ′(αk2)

ψk1ψk2
· αk1 − αk2
ψk1 − ψk2

, i 6= j,

Cov ([G(ψ(αk1))]ii , [G(ψ(αk2))]ii) =
αk1αk2ψ

′(αk1)ψ′(αk2)

ψk1ψk2
·
(

2 · αk1 − αk2
ψk1 − ψk2

+ βy

)
,

Cov
(

[G(ψ(αk1))]ij , [G(ψ(αk2))]i′j′
)

= 0, for all other cases.

Of note, [26] studied the limiting distribution of the random vector(√
n

(
λ1

ψ1
− 1

)
, · · · ,

√
n

(
λm
ψm
− 1

))T

under Johnstone’s spiked model (1.2) with Vp′ = Ip′ . Here we allow a more
general Vp′ .

Following the proof of Theorem 3.1, we are actually able to provide a more
accurate approximation for the asymptotic parameters of the limiting joint
distribution of (λk,Tr(Sn))T. Some second order terms which are ignored
in the proof of Theorem 3.1 are sorted out in the following theorem. In
applications, it may happen that the spiked eigenvalues α′ks are quite large
while the sample size n remains limited. In such situations, the correction
terms below will be significant although their large n limits are theoretically
null. These terms are very useful for finite sample approximations as studied
in the application of Section 4.

Theorem 3.2. The asymptotic parameters in Theorem 3.1 can be fur-
ther approximated as follows:

E
(√

n

(
λk
ψk
− 1

))
=
α2
kψ
′(αk)√
nψk

µMk
+ o

(
1√
nα2

k

)
,

Var

(√
n

(
λk
ψk
− 1

))
=

m∑
i=1

u4ikσ
2
αk

+

m∑
i 6=j

u2iku
2
jks

2
αk

+
α4
k

nψ2
k

(ψ′(αk))2σ2
Mk

+ o

(
1

nα2
k

)
,

Var (Tr(Sn)− Tr(Σp)) =
2

n
Tr
(
V2
p′
)

+
(ν4 − 3)

n

p′∑
i=1

[Vp′ ]
2
ii +

1

n

 m∑
i=1

Λ2
ii(ν4 − 1) +

∑
i 6=j

Λ2
ij

 ,

Cov
(√

n
(
λk
ψk
− 1
)
,Tr(Sn)− Tr(Σp)

)
= ρk + y(ν4−1)√

nψk

∫
t2

(1−t/αk)2
dH(t) + o

(
1√
nαk

)
,
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where

ρk =
αkψ

′(αk)√
nψk

(ν4 − 1)
m∑
i=1

Λiiu
2
ik +

m∑
i 6=j

Λijuikujk

 ,

µMk
= − 1

α3
k

 y
∫

t2

(1−t/αk)3
dH(t)(

1− y
α2
k

∫
t2

(1−t/αk)2
dH(t)

)2 +
yβy

∫
t2

(1−t/αk)3
dH(t)

1− y
α2
k

∫
t2

(1−t/αk)2
dH(t)

 ,

σ2
Mk

=
2s′(ψk)s

′′′(ψk)− 3 (s′′(ψk))
2

6 (s′(ψk))
2 + yβy

(
s′(ψk)

)2 ∫ t2

(1 + ts(ψk))4
dH(t).

Remark 3.1. In a related study, [25] proved, when the spiked part αj =
αj(p)→∞ while cj = p/(nαj) is bounded and the non-spiked part

1

p−m

p′∑
j=1

βp′,j = c+ o(n−1/2),

as p/n→∞, we have

√
n

{
λj
αj
−
(

1 + ccj +OP(α−1
j

√
p/n)

)}
d−→ N(0, ν4 − 1).

Notice that α−1
j

√
p/n = cj

√
n/p, while cj is bounded and p/n → ∞. Ac-

cordingly, OP(α−1
j

√
p/n) is of order oP(1). On the other hand, although our

result in Theorem 3.1 is derived for bounded αj for ease of presentation,
it turns out that it is still valid when αj → ∞. In fact, by some simple
manipulations, Theorem 3.1 implies (under our settings) that

√
n

{
λj
αj
−
(

1 + y

∫
t

αj − t
dH(t)

)}
d−→ N(0, ν4 − 1).

It is interestingly compatible with the result in [25] where the term ccj +
OP(α−1

j

√
p/n) is equivalent to y

∫
t

αj−t dH(t) as αj →∞.

As an immediate application of Theorems 3.1 and 3.2, the following the-
orem characterizes the asymptotic behavior of an important statistic, the
ratio statistic λk

p−1 Tr(Sn)
, which has been widely used in the literature of

signal detection.
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Theorem 3.3. Under Assumptions (i) to (v), for 1 ≤ k ≤ m, we have
(3.3)

√
n

(
λk

1
p Tr(Sn)

− ψk
1
p Tr(Σp)

)
d−→ N

0,
ψ2
k

γ2
1

 m∑
i=1

u2
ikσ

2
αk

+
m∑
i 6=j

u2
iku

2
jks

2
αk

 ,

where uij is the (i, j)-th entry of Λ’s eigenmatrix U, γ1 =
∫
tdH(t), the

mean value of LSD of Vp′, σ
2
αk

and s2
αk

are defined in (3.1) and (3.2).
Moreover, the asymptotic variance in (3.3) can be further approximated by

ψ2
k(

1
p Tr(Σp)

)2

 m∑
i=1

u2
ikσ

2
αk

+

m∑
i 6=j

u2
iku

2
jks

2
αk

+
α4
k (ψ′(αk))

2 σ2
Mk

n
(

1
p Tr(Σp)

)2(3.4)

−
2
(
ψk +

α2
kψ
′(αk)
n µMk

)
p
(

1
p Tr(Σp)

)3

αkψ′(αk)
(ν4 − 1)

m∑
i=1

Λiiu
2
ik +

m∑
i 6=j

Λijuikujk



+y(ν4 − 1)

∫
t2

(1− t/αk)2
dH(t)

]
+

(2γ2 + (ν4 − 3)γd,2)
(
ψk +

α2
kψ
′(αk)
n µMk

)2

p
(

1
p Tr(Σp)

)4

+

(∑m
i=1 Λ2

ii(ν4 − 1) +
∑

i 6=j Λ2
ij

)(
ψk +

α2
kψ
′(αk)
n µMk

)2

p2
(

1
p Tr(Σp)

)4 .

Under the generalized spiked population model in (1.3), by applying
Delta’s method to the ratio function f(x, y) = x/y, with the joint limiting
distribution of (λ1, · · · , λm,Tr(Sn))T in Theorems 3.1 and 3.2, we immedi-
ately have the above limiting distribution of λk/Tr(Sn) (proof thus omitted).
Observing that p−1 Tr(Sn)− p−1 Tr(Σp) = op(1), one might obtain (3.3) by
directly using Slutsky’s theorem. However the second order terms in (3.4)
need implementation of the Delta’s method.

4. Application. Determination of the number of signals embedded in
noise is a fundamental problem in signal processing and chemometrics com-
munity. A significant portion of this literature has been focused on the spiked
covariance model arising from the following factor structure. Consider a se-
quence of p-dimensional random vectors {Xt, t ∈ Z}, admiting a version of
static m-factor structure with m fixed,

(4.1) Xt = AFt + Et.
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Here the factors Ft ∼ N(0, Im) are assumed to be independent of the id-
iosyncratic error terms Et ∼ N(0, σ2Ip) with σ2 fixed. The loading matrix
Ap×m is deterministic and of full rank such that ATA has fixed eigenval-
ues a1 > · · · > am > 0. Suppose that we observe {Xt, t = 1, · · · , n} with
n comparable to p. In the high dimensional context, one major inference
problem in (4.1) is to infer the total number of factors m.

Note that the eigenvalues of population covariance matrix Σp of Xt are

Spec (Σp) = {a1 + σ2, · · · , am + σ2, σ2, · · · , σ2︸ ︷︷ ︸
p−m

}.

Thus, it is immediate to observe that Xt follows the generalized spiked
model (1.3) with αk = ak + σ2, 1 ≤ k ≤ m, βp′,1 = · · · = βp′,p′ = σ2.

A typical approach to test the number of factors is to find all the “outliers”
among eigenvalues λ1 ≥ · · · ≥ λp of sample covariance matrix. According to
the phase transition phenomenon of sample eigenvalues established in [6], it
is known that the asymptotic behavior of λk (1 ≤ k ≤ m) differs depending
on whether αk/σ

2 > 1 +
√
p/n or not. Only when the signal-to-noise ratio

(SNR) αk/σ
2 of the spikes is large enough can the corresponding sample

eigenvalues be separated away from those bulk ones (outliers). Otherwise,
these factors would be too weak and mix up with the noise. In this section
we develop a new test for presence of moderately strong factors. For any
given integer m0 ≥ 1 and constant c > 1 +

√
p/n, we aim to test

(4.2) H0 :
αm0

σ2
≥ c, v.s. H1 :

αm0

σ2
< c.

In other words, under H0, there are at least m0 signals with SNR larger than
c. If c = 1 +

√
p/n, we are actually testing for the number of moderately

strong factors above the critical transition value 1 +
√
p/n, that is to test

(4.3) H0 : m ≥ m0, v.s. H1 : m < m0.

Compared to [10] and [21] who have developed procedures to test “m = 0”
against “m > 0” which still have non-zero power even when the factors are
weak (SNR below the threshold 1+

√
p/n), our test focuses more on testing

existence of multiple strong spikes and their signal strength.
Since the noise variance σ2 is typically unknown in real applications, we

propose the following normalized sample eigenvalue as our test statistic,

Tm0 = λm0

/
1

p−m0

p∑
j>m0

λj
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Here we use (p−m0)−1
∑p

j>m0
λj instead of the popular alternative p−1 Tr(Sn)

as the surrogate for σ2. Although asymptotically equivalent under our con-
ditions, (p − m0)−1

∑p
j>m0

λj is often found to have better finite-sample

behavior and serve as a better estimate of σ2 than p−1 Tr(Sn) under cases
where several large spikes or a sizable collection of medium sized spikes are
present. Correspondingly, Tm0 often has superior detection power compared
to T̃m0 = λm0/(p

−1 Tr(Sn)) in finite sample cases.
In the literature, [20] and [13] adopted the test statistic T̃1 = λ1/(p

−1 Tr(Sn))
while they focus on testing the existence of one single spike, i.e.,

(4.4) H0 : Σp = σ2Ip, v.s. H1 : m ≥ 1.

Notice that this test is equivalent to the classical “sphericity test with a
spiked alternative”. In the seminal paper [16], it has been proven that when
Σp = σ2Ip with Gaussian data, as p, n→∞ with p/n→ y,

λ1/σ
2 − µnp
σnp

d−→ TW1,

where µnp = 1
n

(√
n− 1 +

√
p
)2
, σnp =

√
µnp

n

(
1√
n−1

+ 1√
p

)1/3
and TW1

denotes Tracy-Widom distribution of order 1. [19] further refined the cen-
tering and scaling parameters which improves the convergence rate from
O((n∧p)−1/3) to O((n∧p)−2/3). Note that the fluctuation in σ̂2 = p−1 Tr(Sn)
is of order O(1/p), which is negligible compared to that in λ1. Therefore, we
still have, as p, n→∞,

P

(
T̃1 − µnp
σnp

< s

)
→ TW1(s).

But in finite samples, the quality of this approximation for T̃1 breaks down
due to studentization. [20] derived an explicit approximation formula for
the tail probabilities of T̃1, which provides a significantly better fit to the
empirical distribution of T̃1. But still, it is not a proper distribution function.
[13] suggested an alternative variance adjustment for the scaling parameter
σnp to improve the finite sample performance of T̃1. Tests based on these
two corrections eliminate the downward size bias of the uncorrected test and
improve its power performance for small values of (p, n).

However, the problem of testing the existence of multiple spikes has not
been fully resolved yet, i.e., for m0 > 1, to test

(4.5) H0 : m ≤ m0, v.s. H1 : m > m0.
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First, in the presence of m (m > 1) spikes, the conjecture of

(4.6)
λm+1/σ

2 − µn,p−m
σn,p−m

d−→ TW1

has not been proven yet except for the complex Gaussian case (GUE case)
in [6]. Secondly, the finite sample bias caused by the replacement of σ2 with
p−1 Tr(Sn) becomes more severe under H0 in (4.5). [13] and [18] adopted
alternative estimators of σ2 based on p−m bulk eigenvalues. However, their
testing procedures are still based on the unverified conjecture (4.6) and
simulation experiments show that these tests are still uniformly undersized
due to the negative bias in the presence of spikes. Further analytic tools are
needed to correct this bias.

In this paper we start from a different perspective by studying the be-

havior of λm/
(

1
p−m

∑p
j>m λj

)
instead of λm+1 in the presence of m spikes

and aim to test (4.2) and (4.3). Although our test hypothesis is different
from previous works, it can still be used to determine the total number of
factors by performing a sequence of hypothesis tests on testing whether λk
(1 ≤ k ≤ m) arise from the signal or noise. The limiting distribution of our
test statistic Tm is fully implementable under H0 in (4.2) assuming that all
the conditions in Theorems 3.1 and 3.2 are satisfied. Our test statistic is
not only capable of testing the existence of multiple spikes, but can also be
used to test their signal strength. Higher order corrections are further made
to alleviate finite sample bias, which ensures satisfactory testing size and
power even when (p, n) is not large.

The corollary below follows from a direct implementation of Theorem 3.2.

Corollary 4.1. Considering the factor model (4.1), for 1 ≤ k ≤ m, as
n→∞, p = pn →∞ such that p/n→ y > 0, we have

(4.7)
√
n

(
λk

1
p−k

∑
j>k λj

− ψk
σ̃2

)
d−→ N

(
0,

2α2
kψ
′(αk)

σ4

)
,

where

ψj = αj +
yαjσ

2

αj − σ2
, ψ′(αj) = 1− yσ4

(αj − σ2)2
, αj = aj + σ2,

σ̃2 =
1

p− k

Tr (Σp)−
k∑
j=1

{
ψj +

α2
jψ
′(αj)

n
µMj

} .
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Additionally, we have a refined correction for the variance of λk
1

p−k

∑
j>k λj

,

σ2
∗,k =

2α2
kψ
′(αk)

σ̃4
+

4α2
kψ
′(αk)

{
ψk +

2α2
kψ
′
k(αk)
n µMk

}
(p− k)σ̃6

(4.8)

+
α4
k (ψ′(αk))

2 σ2
Mk

nσ̃4
−

4α2
k

{
ψk +

α2
kψ
′(αk)
n µMk

}
(p− k)σ̃6

+
n

(p− k)2

(
2yσ4 +

2

n

m∑
i=1

α2
i

) {
ψk +

2α2
kψ
′
k(αk)
n µMk

}2

σ̃8

+
2ψkα

4
k (ψ′(αk))

2 σ2
Mk

n(p− k)σ̃6
+
ψ2
k

∑k
j=1

{
2α2

jψ
′(αj)− 4α2

j

}
(p− k)2σ̃8

.

Here

µMj = − yσ4

(αj − σ2)3
{

1− yσ4

(αj−σ2)2

}2 , σ
2
Mj

=
2s′(ψj)s

′′′(ψj)− 3 (s′′(ψj))
2

6 (s′(ψj))
2 .

Let Zα be the lower-α quantile of the standard normal distribution at
level α. In order to define an appropriate critical value, one notes that the
null hypothesis (4.2) is composite. For a given value of αm0 under the null,
the decision rule is to

reject H0 in (4.2) at the value αm0 if Tm0 <
ψm0

σ̃2
+ Zα ·

σ∗,m0√
n
.

Letting tk = αk/σ
2, both the critical value above and the refined variance

(4.8) can be expressed as functions of these tk’s:

qn,α = qn,α(tm0 , tm0−1, . . . , t1) =
ψm0

σ̃2
+ Zα ·

σ∗,m0√
n

=
tm0 + y

1−1/tm0

1− 1
p−m0

∑m0
j=1

y
1−1/tj

+ Zα ·
σ∗,m0√
n
,
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σ2
∗,m0

= σ2
∗,m0

(tm0 , tm0−1, . . . , t1)

= 2t2m0

(
1− y

(tm0 − 1)2

)(
1

1− 1
p−m0

∑m0
j=1

y
1−1/tj

)2

−
4yt2m0

(p−m0)(tm0 − 1)2

(
tm0 +

y

1− 1/tm0

)(
1

1− 1
p−m0

∑m0
j=1

y
1−1/tj

)3

+
2yn

(p−m0)2

(
tm0 +

y

1− 1/tm0

)2
(

1

1− 1
p−m0

∑m0
j=1

y
1−1/tj

)4

+
t2m0

(
1− y

(tm0−1)2

)2

n

(
1

1− 1
p−m0

∑m0
j=1

y
1−1/tj

)2{
4ytm0

3(tm0 − 1)3

− 4ytm0

3(tm0 − 1)3
(

1− y
(tm0−1)2

)3 +
2y2t2m0

3(tm0 − 1)6
(

1− y
(tm0−1)2

)4

+
2yt2m0

(tm0 − 1)4
+

4y2t2m0

3(tm0 − 1)6
(

1− y
(tm0−1)2

)
 .

Therefore, for the composite null (4.2), we will use the critical value

(4.9) q∗n,α = q∗n,α(tm0−1, . . . , t1) = inf
c≤tm0<tm0−1

qn,α(tm0 , tm0−1, . . . , t1),

and reject the null if Tm0 < q∗n,α. For this procedure, it holds that

lim sup
n→∞

sup
c≤tm0<tm0−1

P(Tm0 < q∗n,α) ≤ α.

Implementation of this procedure finally requires to estimate the values
of larger spikes {tk, 1 ≤ k < m0} that appear in the critical value functions
qn,α and q∗n,α. As a matter of fact, consistent estimates for these spike values
have been proposed in [1]. It is known that, under H0 in (4.2), for distant
spikes αk(1 ≤ k ≤ m0), as p, n → ∞, p/n → y, λk

a.s.−−→ `k, satisfying
s(`k) = − 1

αk
. Based on this result, [1] proposed a consistent estimator α̂k

for αk,

α̂k = − 1

ŝ(`k)
, ŝ(`k) = −1− y

λk
+

1

n

∑
i>m0

1

λi − λk
.

Here the noise level σ2 is intrinsically hidden inside the values of sample
eigenvalues λj ’s, not explicitly used in the estimation of αk. Note that the
conditions used in [1] which ensure the consistency of α̂k are satisfied under
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our settings (Assumptions (i) to (v)). Thus for 1 ≤ k < m0, the tk’s can be
consistently estimated by

t̂k =
α̂k(

Tr(Sn)−
∑m0

`=1 α̂`
)
/(p−m0)

.

Plugging these estimates into the critical value functions qn,α and q∗n,α leads
to a full implementation of the test.

To summarize, the proposed testing procedure is to

(4.10) reject H0 in (4.2) if Tm0 < q̂∗n,α,

where

(4.11) q̂∗n,α = q∗n,α(t̂m0−1, . . . , t̂1) = inf
c≤tm0<t̂m0−1

qn,α(tm0 , t̂m0−1, . . . , t̂1).

Simulation experiments are conducted in the supplement to examine the
performance of out testing procedure. Empirical data are generated follow-
ing the factor model in (4.1). Different numbers of factors and signal strength
are assigned for various model settings. Results (Tables 1 and 2) show that
our test works for different numbers of factors. It has better performance for
higher signal strength levels. The same supplement section has also designed
experiments to illustrate the necessity of incorporating the second order cor-
rection to the asymptotic variance proposed in (4.8). Numerical comparison
is made between (4.10) and the following testing procedure to

reject H0 in (4.2) if Tm0 < q̃∗n,α,(4.12)

where q̃∗n,α is defined as q̂∗n,α in (4.11) except that
ψm0
σ̃2 is replaced by

ψm0
σ2

and the refined asymptotic variance σ2
∗,m0

used there is replaced by σ̃2
m0

=

2t2m0
− 2yt2m0

(tm0−1)2
. Tables 3 and 4 in the supplement show that this refined

correction (4.8) for the variance plays an important role in controlling the
size and improves the power in the testing procedure, especially when the
data dimension and sample size are relatively small.

5. Proofs.

5.1. Proof of Theorem 3.1. Considering the block structure of population
covariance matrix Σp, the analysis is carried out using a decomposition into
blocks of size m and p−m respectively. Define

Yi =

(
Y1i

Y2i

)
, Σp =

(
Λ 0
0 Vp′

)
, Xi =

(
X1i

X2i

)
=

(
Λ1/2Y1i

V
1/2
p′ Y2i

)
.
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The sample covariance matrix is then

Sn =
1

n

n∑
i=1

XiX
T
i =

1

n

(
X1X

T
1 X1X

T
2

X2X
T
1 X2X

T
2

)
=

(
S11 S12

S21 S22

)
,

where

S11 =
1

n
Λ1/2Y1Y

T
1 Λ1/2, S22 =

1

n
Vp′

1/2Y2Y
T
2 Vp′

1/2,

X1 = (X11, · · · ,X1n) , X2 = (X21, · · · ,X2n) ,

Y1 = (Y11, · · · ,Y1n) , Y2 = (Y21, · · · ,Y2n) .

The proof of Theorem 3.1 builds on the above block-decomposition analy-
sis of spiked and non-spiked ones. Tr(Sn) follows the decomposition Tr(Sn) =
Tr(S11)+Tr(S22). It will later be shown that Tr(S22) is asymptotically inde-
pendent of the random vector (λ1, · · · , λm)T, while the covariance between
Tr(S11) and (λ1, · · · , λm)T is of the order O(1/

√
n). The proof in general

consists of four steps as follows:

Step 1. deriving the asymptotic joint distribution of (λ1, · · · , λm)T;
Step 2. deriving the marginal limiting distribution of Tr(S11) and Tr(S22);

Step 3. deriving the asymptotic joint distribution of
(

(λk)1≤k≤m ,Tr(Sn)
)T

.

Step 1: Joint limiting distribution of (λ1, · · · , λm)T.
Many efforts in the literature have been put into the study of the asymptotic
behavior of extreme sample eigenvalues under various spiked population
models. Notably, [4] derived a CLT for sample eigenvalues corresponding to
one distant spiked eigenvalue under a more generalized model where possible
multiplicity of spiked eigenvalues is allowed such that

(5.1) Spec(Σp) =
{
α1, · · · , α1︸ ︷︷ ︸

m1

, · · · , αK , · · · , αK︸ ︷︷ ︸
mK

, βp′,1, · · · , βp′,p′
}
.

Here we eliminate the multiplicity of spikes in model (5.1) and focus on
the correlation among sample eigenvalues corresponding to different spikes.
[26] studied such correlations under the model where

Spec(Σp) =
{
α1, · · · , α1︸ ︷︷ ︸

m1

, · · · , αK , · · · , αK︸ ︷︷ ︸
mK

, 1, · · · , 1
}
,

while our model (1.3) is more general in the sense of bulk eigenvalue dis-
tribution H(t). The proof in general combines the Z-estimation scheme in
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[4] and the result of joint CLT for several random sesquilinear forms in [26].
Detailed proofs are presented here, which will also be used in subsequent
steps and the proof of Theorem 3.2.

Noting that, whenever A is invertible,∣∣∣∣ A B
C D

∣∣∣∣ = |A| · |D−CA−1B|,

an eigenvalue λi of Sn that is not an eigenvalue of S22 satisfies

(5.2) 0 = |λiIp − Sn| = |λiIp−m − S22| · |λiIm −Kn(λi)| ,

where
Kn(`) := S11 + S12 (`Ip−m − S22)−1 S21.

Thus, the eigenvalues of Sn satisfy

(5.3) |λiIm −Kn(λi)| = 0.

Consider a real number ` outside the support of LSD F y,H of S22 and the
goal is to find the limit of random matrix Kn(`) with fixed dimension m.
Since for ` 6= 0 which is not an eigenvalue of ATA,

In + A
(
`Ip−m −ATA

)−1
AT = `

(
`In −AAT

)−1
,

it holds that

Kn(`) =
1

n
X1

{
In +

1

n
XT

2

(
`Ip−m −

1

n
X2X

T
2

)−1

X2

}
XT

1(5.4)

=
`

n
Λ1/2Y1

(
`In −

1

n
YT

2 Vp′Y2

)−1

YT
1 Λ1/2.

By Assumptions (i)-(iv), ` is outside the support of LSD F y,H of S22

and for n large enough, the operator norm of
(
`Ip−m − 1

nYT
2 Vp′Y2

)−1
is

bounded. Meanwhile, Y1 is independent of Y2. Then by the law of large
numbers, Corollary 3.9 in [17], and Theorem 11.8 in [28], we have, as p, n→
∞, p/n→ y > 0,

Λ−1/2Kn(`)Λ−1/2 a.s.−−→ −`s(`) · Im,

where s(`) is the Stieltjes transform of the LSD of 1
nYT

2 Vp′Y2.
Therefore, the eigenvalue λi of Sn satisfying (5.3) converges almost surely

to the limit ` such that ∣∣` ·Λ−1 + `s(`) · Im
∣∣ = 0,
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that is
s(`) = −1/αk, ` = ψ(αk), k = 1, · · · ,m,

where Spec(Λ) = {α1, · · · , αm}. The following lemma, due to [24], charac-
terizes the close relationship between the supports of the generating measure
H and the Marčenko-Pastur (M-P) distribution F y,H .

Lemma 5.1. (By [24]) If λ /∈ ΓF y,H , then s(λ) 6= 0 and α = −1/s(λ)
satisfies

(1) α /∈ ΓH and α 6= 0 (so that ψ(α) is well defined);
(2) ψ′(α) > 0.

Conversely, if α satisfies (1)-(2), then λ = ψ(α) /∈ ΓF y,H .

By Lemma 5.1, ` = ψ(αk) is outside the support of LSD F y,H if and only
if ψ′(αk) > 0. By Assumption (v), all spiked values αk are large enough to
make ψ′(αk) > 0. Therefore, the limits

` = ψ(αk) =: ψk, k = 1, · · · ,m

are all outside the support of LSD F y,H . Meanwhile, for the m largest eigen-
values λ1, · · · , λm of Sn, as p, n→∞, p/n→ y > 0,

λk
ψk

a.s.−−→ 1, for 1 ≤ k ≤ m.

Note that ψ(·) is the functional inverse of function α : x 7→ −1/s(x), then

(5.5)

s(ψk) = − 1

αk
, s′(ψk) =

1

α2
kψ
′(αk)

, s′′(ψk) = − 2

α3
k(ψ
′(αk))2

− ψ′′(αk)

α2
k(ψ
′(αk))3

,

s′′′(ψk) =
6

α4
k(ψ
′(αk))3

− 2ψ′′(αk)s
′′(ψk)

(ψ′(αk))2

−
α2
kψ
′(αk)ψ

′′′(αk)− ψ′′(αk)
(
2αkψ

′(αk) + α2
kψ
′′(αk)

)
α4
k(ψ
′(αk))2

,

where [·]′|α=αk
means to take first order derivative with regard to α and

then let α = αk. Here

ψk = ψ(αk) = αk + y

∫
t

1− t/αk
dH(t),

ψ′(αk) = 1− y
∫

t2

(αk − t)2
dH(t), ψ′′(αk) = 2y

∫
t2

(αk − t)3
dH(t).
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Denote sn(`) = 1
n Tr

(
`In − 1

nYT
2 Vp′Y2

)−1
, then

Kn(`) =
`√
n

Λ1/2Rn (`) Λ1/2 − `Λs(`) + `Λ (s(`)− sn(`)) ,

where Rn(`) is a sequence of m×m random matrix-valued processes
(5.6)

Rn(`) = 1√
n

(
Y1

(
`In − 1

nYT
2 Vp′Y2

)−1
YT

1 − Im Tr
(
`In − 1

nYT
2 Vp′Y2

)−1
)
, ` ∈ U .

Here U is a compact set of indexes outside the support of LSD of S22.
The establishment of CLT for extreme sample eigenvalues λ′is relies heav-

ily on the finite dimensional convergence of processes

{Rn(`), ` ∈ U} and {n(sn(z)− s(z)), z ∈ C \ ΓF y,H} ,

which has been well established in [4], Lemma 1.1 in [2]. More specifically,
we have the following lemma.

Lemma 5.2. (By Theorem 11.10 in [28]) Under Assumptions (i) to (iv),
for any L index values {`j}, the L random matrices{

Rn(`1), · · · ,Rn(`L)
}

weakly converge to L Gaussian random matrices determined as follows: for
arbitrary L numbers a1, · · · , aL, the random matrix

R̃n = a1Rn(`1) + · · ·+ aLRn(`L)

weakly converges to a Gaussian random matrix R = {Rij} where

(1) the diagonal entries are i.i.d. zero-mean Gaussian with variance

Var(Rii) = w(E|Yij |4 − 3) + 2θ;

(2) the upper off-diagonal entries are i.i.d. zero-mean Gaussian with vari-
ance θ;

(3) all these entries are mutually independent.

Here the parameters θ and w are

θ =

L∑
j=1

a2
js
′(`j) + 2

∑
j<k

ajak
s(`j)− s(`k)
`j − `k

, w =

 L∑
j=1

ajs(`j)

2

.
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Notice that

λkIm−Kn(λk) = λkIm−
λk√
n

Λ1/2Rn(λk)Λ
1/2+λkΛs(λk)−λkΛ (s(λk)− sn(λk)) .

Since we have spectral decomposition Λ = Udiag (α1, · · · , αm) UT,

UT
(
Im − λ−1

k Kn(λk)
)
U =


. . .

(1 + αus(λk))
. . .


m×m

− 1√
n

UTΛ1/2Rn(λk)Λ
1/2U−


. . .

αu (s(λk)− sn(λk))
. . .


m×m

.

Now considering δn,k =
√
n
(
λk
ψk
− 1
)

, ψk = αk+y
∫

t
1−t/αk

dH(t), by Taylor

expansion, we have

s(λk) = s(ψk) +
ψk√
n
· δn,k · s′(ψk) +OP

(
1

n

)
,

which then yields

UT
(
Im − λ−1

k Kn(λk)
)
U

=


. . .

1 + αus(ψk) + αu

(
ψk√
n
· δn,k · s′(ψk) +OP

(
1
n

))
. . .



− 1√
n

UTΛ1/2Rn(λk)Λ
1/2U−


. . .

αu (s(λk)− sn(λk))
. . .

 .

First, it can be seen that all the non-diagonal terms tend to zero on the
right hand side. Then for a diagonal term with index u 6= k, by definition
1 + s(ψk)αu 6= 0 and it is indeed the leading term with the remaining three
terms converging to zero. As for the k-th diagonal term, 1 + s(ψk)αk = 0 by
definition, thus the k-th diagonal term reduces to

αk

(
ψk√
n
· δn,k · s′(ψk) +OP

(
1
n

))
− 1√

n

[
UTΛ1/2Rn(λk)Λ

1/2U
]
kk
− αk (s(λk)− sn(λk)) .
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Noting that
∣∣UT

(
Im − λ−1

k Kn(λk)
)
U
∣∣ = 0, for n sufficiently large, we have

(5.7)∣∣∣∣ ψk√n · δn,k · s′(ψk) +OP

(
1

n

)
− 1√

n

[
UTRn(λk)U

]
kk
− (s(λk)− sn(λk))

∣∣∣∣ = 0.

Taking into account the convergence of process {Rn(`), ` ∈ U} and
{Mn(z) = n (sn(z)− s(z))} in Lemma 5.2 and [2], it follows that δn,k weakly
converges to a solution of the limit of∣∣∣∣ ψk√n · δn,k · s′(ψk)− 1√

n

[
UTRn(ψk)U

]
kk
−OP

(
1

n

)∣∣∣∣ = 0,

i.e.,

δn,k =
√
n

(
λk
ψk
− 1

)
d−→
[
UTR(ψk)U

]
kk

ψks′(ψk)
.

Denote

G(ψk) =
R(ψk)

ψks′(ψk)
.

Then by Lemma 5.2, G(ψk) is a Gaussian random matrix with mutually
independent entries where the diagonal entries are i.i.d. zero-mean Gaussian
with variance

Var([G(ψk)]ii) =
(ν4 − 3)s(ψk)

2 + 2s′(ψk)

(s′(ψk))2ψ2
k

,

and the upper off-diagonal entries are i.i.d. zero mean Gaussian with variance

Var([G(ψk)]ij) =
1

s′(ψk)ψ
2
k

.

Now we consider the asymptotic joint distribution of (λk1 , λk2)T, 1 ≤
k1 6= k2 ≤ m. It can be seen from the previous proof that the leading

term of δn,k =
√
n
(
λk
ψk
− 1
)

is
[UTRn(ψk)U]

kk
s′(ψk)ψk

. Thus the correlation between

limits of (λk1 , λk2)T is determined by the joint limiting distribution of the
two random sesquilinear forms Rn(ψk1) and Rn(ψk2). This task is nontrivial.
Here we apply a joint CLT for random vector whose components are function
of random sesquilinear forms by [27] .

Lemma 5.3. (By [27]) Consider a sequence (Xi,Yi)i∈N of i.i.d. real val-
ued zero-mean random vectors belonging to RK×RK with finite fourth order
moment:

Xi = (X1i, · · · , XKi)
T, 1 ≤ i ≤ n, X(`) = (X`1, · · · , X`n)T, 1 ≤ ` ≤ K,

Yi = (Y1i, · · · , YKi)T, 1 ≤ i ≤ n, Y (`) = (Y`1, · · · , Y`n)T, 1 ≤ ` ≤ K,
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and ρ(`): = E(X`1Y`1). Let {An} and {Bn} be two sequences of n× n sym-
metric matrices. Assume the following limits exist:

w1 = lim
n→∞

1

n
Tr(An �An), w2 = lim

n→∞

1

n
Tr(Bn �Bn), w3 = lim

n→∞

1

n
Tr(An �Bn),

θ1 = lim
n→∞

1

n
Tr(AnA

T
n), θ2 = lim

n→∞

1

n
Tr(BnB

T
n), θ3 = lim

n→∞

1

n
Tr(AnB

T
n),

where A�B denotes the Hadamard product of two matrices A and B, i.e.,
[A�B]ij : = [A]ij [B]ij. Define two groups of sesquilinear forms:

U(`) =
1√
n

(
X(`)TAnY (`)− ρ(`) Tr(An)

)
, V (`) =

1√
n

(
X(`)TBnY (`)− ρ(`) Tr(Bn)

)
.

Then the 2K-dimensional random vector (U(1), · · · , U(K), V (1), · · · , V (K))T

weakly converges to a zero-mean Gaussian vector with covariance matrix

B =

(
B11 B12

B21 B22

)
2K×2K

, with each block Bij = (Bij(`, `
′))1≤`,`′≤K a

K ×K matrix having structure, for 1 ≤ `, `′ ≤ K,

B11(`, `′) = Cov(U(`), U(`′)) = w1a1 + (θ1 − w1)(a2 + a3),

B22(`, `′) = Cov(V (`), V (`′)) = w2a1 + (θ2 − w2)(a2 + a3),

B12(`, `′) = Cov(U(`), V (`′)) = w3a1 + (θ3 − w3)(a2 + a3),

a1 = E(X`1Y`1X`′1Y`′1)− ρ(`)ρ(`′),

a2 = E(X`1X`′1)E(Y`1Y`′1), a3 = E(X`1Y`′1)E(X`′1Y`1).

Noting that

Rn(`) =
1√
n

(
Y1

(
`In −

1

n
YT

2 Vp′Y2

)−1
YT

1 − Im Tr

(
`In −

1

n
YT

2 Vp′Y2

)−1)
,

it can be seen that, for any 1 ≤ i, j, i′, j′ ≤ m, the random vector(
[Rn(ψk1)]ij , [Rn(ψk2)]i′j′

)T
forms a sesquilinear pair

(
U(`) = 1√

n

(
X(`)TAnY (`)− ρ(`) Tr(An)

)
, V (`′) = 1√

n

(
X(`′)TBnY (`′)− ρ(`′) Tr(Bn)

))T
,

where

An =

(
ψk1In −

1

n
YT

2 Vp′Y2

)−1

, Bn =

(
ψk2In −

1

n
YT

2 Vp′Y2

)−1

,

ρ(`) = E(X`1Y`1) = δij , ρ(`′) = δi′j′ ,
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and X(`) corresponds to the i-th row of Y1, Y (`) corresponds to the j-th
row of Y1, X(`′) corresponds to the i′-th row of Y1, Y (`′) corresponds to
the j′-th row of Y1.

Therefore

w3 = limn→∞
1
n Tr

((
ψk1In − 1

nYT
2 Vp′Y2

)−1 �
(
ψk2In − 1

nYT
2 Vp′Y2

)−1
)

= s(ψk1)s(ψk2),

θ3 = limn→∞
1
n Tr

((
ψk1In − 1

nYT
2 Vp′iiY2

)−1 (
ψk2In − 1

nYT
2 Vp′Y2

)−1
)

=
s(ψk1

)−s(ψk2
)

ψk1
−ψk2

.

By Lemma 5.3, for any 1 ≤ i, j, i′, j′ ≤ m,
(

[Rn(ψk1)]ij , [Rn(ψk2)]i′j′
)T

weakly converges to a zero-mean Gaussian vector
(

[R(ψk1)]ij , [R(ψk2)]i′j′
)T

with the following covariance structure:

(1) for i = i′, j = j′, i 6= j, a1 = a2 = 1, a3 = 0,

Cov
(

[R(ψk1)]ij , [R(ψk2)]ij

)
= θ3 =

s(ψk1)− s(ψk2)

ψk1 − ψk2
;

(2) for i = i′ = j = j′, a1 = ν4 − 1, a2 = 1, a3 = 1,

Cov
(
[R(ψk1)]ii , [R(ψk2)]ii

)
= 2θ3 + (ν4 − 3)w3 =

2(s(ψk1
)−s(ψk2

))
ψk1
−ψk2

+ βys(ψk1)s(ψk2);

(3) for all the other cases, a1 = a2 = a3 = 0,

Cov
(

[R(ψk1)]ij , [R(ψk2)]i′j′
)

= 0.

Then substituting s(ψk) with (5.5), the limiting distribution of(√
n
(
λ1
ψ1
− 1
)
, · · · ,

√
n
(
λm
ψm
− 1
))T

in Theorem 3.1 naturally follows.

Step 2: Marginal limiting distribution of Tr(S22) and Tr(S11).
In this step we study the marginal limiting distribution of Tr(S22). In fact,

Tr(S22) = Tr

(
1

n
YT

2 Vp′Y2

)
=

1

n

n∑
i=1

Y T
i Vp′Yi,

where each Yi is a random vector with p′ i.i.d. entries Yij (1 ≤ j ≤ p′) satis-
fying EYij = 0, EY 2

ij = 1, EY 4
ij = ν4.

Moreover, by some calculations, we have

E (Tr(S22)) =
1

n

n∑
i=1

E
(
Y T
i Vp′Yi

)
= Tr

(
Vp′
)
,
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E (Tr(S22))2 =
1

n2

n∑
i 6=j

E
(
Y T
i Vp′YiY

T
j Vp′Yj

)
+

1

n2

n∑
i=1

E
(
Y T
i Vp′Yi

)2

=
n2 − n
n2

Tr2(Vp′) +
1

n

Tr2(Vp′) + 2 Tr(V2
p′) + (ν4 − 3)

p′∑
i=1

[
Vp′
]2
ii

 .
Thus

Var (Tr(S22)) =
2

n
Tr(V2

p′) +
ν4 − 3

n

p′∑
i=1

[
Vp′
]2
ii
.

Actually, in Section 4.2.3 of [7], the authors have proved the asymptotic
normality for trace of any symmetric polynomial of a general class of sample
(auto-)covariance matrices. It is directly applicable to our case of Tr(S22)
since our model settings fulfill all their assumptions. Therefore, we have, as
p, n→∞, p/n→ y > 0,

Tr(S22)− Tr(Vp′)
d−→ N(0, 2yγ2 + y(ν4 − 3)γd,2),

where γ2 = limp′→∞
1
p′ Tr(V2

p′), γd,2 = limp′→∞
1
p′
∑p′

i=1[Vp′ ]
2
ii.

Similarly, we have

E (Tr(S11)) = Tr(Λ), Var (Tr(S11)) =
2

n
Tr(Λ2) +

ν4 − 3

n

m∑
i=1

[Λ]2ii .

By Linderberg-Feller Central Limit Theorem, as n→∞,

(5.8)
√
n (Tr(S11)− Tr(Λ))

d−→ N

0,
m∑
i=1

Λ2
ii(ν4 − 1) +

∑
i 6=j

Λ2
ij

 .

Step 3: Joint limiting distribution of
(

(λk)1≤k≤m ,Tr(Sn)
)T

.

First, by (5.8) , we have

Tr(Sn)− Tr(Σp) = Tr(S11)− Tr Λ + Tr(S22)− Tr(Vp′) = Tr(S22)− Tr(Vp′) +OP

(
1√
n

)
.

Thus Tr(Sn)− Tr(Σp) shares the same Gaussian limiting distribution with
Tr(S22)− Tr(Vp′), i.e., under Assumptions (i) to (iv),

Tr(Sn)− Tr(Σp)
d−→ N(0, 2yγ2 + y(ν4 − 3)γd,2).

Secondly, from the previous proof we know that the main fluctuation of
λ′ks originates from Rn(`). It can be seen that (λk)1≤k≤m are asymptotically
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independent of Y2 because Rn(`) weakly converges to a Gaussian matrix
with distribution independent of Y2. Actually, by going through the proof
of Theorem 11.10 (see Lemma 5.2 in this paper) and the result of Theorem
10.8 in Yao et al. [28], it can be proved that, conditioning on Y2, the limiting
distribution of Rn(`) is a function of the LSD of S22, which does not depend
on the value of the conditioning variable Y2.

This establishes the asymptotic independence between Rn(`) and Y2.
Moreover, since

Rn(`) =
1√
n

(
Y1

(
`In −

1

n
YT

2 Vp′Y2

)−1
YT

1 − Im Tr

(
`In −

1

n
YT

2 Vp′Y2

)−1)
,

if we treat 1√
n
Y1

(
`In − 1

nYT
2 Vp′Y2

)−1
YT

1 as f(Y1,Y2), then

1√
n

Im Tr

(
`In −

1

n
YT

2 Vp′Y2

)−1

= E (f(Y1,Y2)|Y2) ,

Rn(`) = f(Y1,Y2)− E (f(Y1,Y2)|Y2) , Cov(Rn(`),Y2) = 0.

Note that Tr(S22) = 1
n Tr

(
YT

2 Vp′Y2

)
, the randomness of Tr(S22) all

originates from Y2 and marginally Tr(S22) is also asymptotically normal.

Accordingly, we have
(

(λk)1≤k≤m ,Tr(S22)
)T

are asymptotically normal and

independent.
Since Tr(S11) is of order O(1/

√
n) and (λk)1≤k≤m is of constant order,(

(λk)1≤k≤m ,Tr(Sn)
)T

is also asymptotically normally distributed and the

covariance between (λk)1≤k≤m and Tr(Sn) is of order O(1/
√
n).

5.2. Asymptotic joint distribution of
(

(λk)1≤k≤m ,Tr(S11)
)T

. In this sec-

tion we present a result of the joint distribution of
(

(λk)1≤k≤m ,Tr(S11)
)T

.

It is crucial for quantifying second order terms in Theorem 3.2.
Without loss of generality, we consider (λk,Tr(S11))T first. Since

Tr(S11)− Tr(Λ) =
1

n
Tr
(
YT

1 ΛY1

)
− Tr(Λ),

the leading term of δn,k =
√
n
(
λk
ψk
− 1
)

is[
UTRn(ψk)U

]
kk

s′(ψk)ψk
+

√
n(s(ψk)− sn(ψk))

ψks′(ψk)
.
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The second term sn(ψk) is a function of Y2 which is independent from
Tr(S11). Therefore, we only have to consider the correlation between Rn(ψk)
and Tr(S11).

Note that Tr(S11) = 1
n Tr(ΛY1Y

T
1 ) can be seen as linear combinations of

entries in the m×m matrix 1
nY1Y

T
1 . According to Lemma 5.3,(

Rn(`), 1√
n

(
Y1Y

T
1 − Im

))T
forms a random sesquilinear pair with

An =

(
`In −

1

n
YT

2 Vp′Y2

)−1

, Bn = In.

If the correlation between each entry of Rn(`) and 1√
n

(
Y1Y

T
1 − Im

)
can be

obtained, then we can derive the joint distribution of (λk,Tr(S11))T. More
specifically, we have the following result, whose proof is relegated to the
supplementary file.

Proposition 5.1. Under Assumptions (i)-(iv), as p, n→∞, p/n→ y,
we have √

n
(
λk
ψk
− 1
)

√
n (Tr(S11)− Tr(Λ))

 d−→ N

 0

0

 ,

 σ2
1 ρk

ρk σ2
2

 ,

where

σ2
1 =

m∑
i=1

u4
ikσ

2
αk

+
m∑
i 6=j

u2
iku

2
jks

2
αk
, σ2

2 =
m∑
i=1

Λ2
ii(ν4 − 1) +

∑
i 6=j

Λ2
ij ,

ρk =
αkψ

′(αk)

ψk

(ν4 − 1)
m∑
i=1

Λiiu
2
ik +

m∑
i 6=j

Λijuikujk

 ,

Λ = (Λij)m×m, has spectral decomposition Λ = Udiag(α1, · · · , αm)UT, U =
(uij)m×m, σ2

αk
and s2

αk
are defined in (3.1) and (3.2).
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