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Consider the heteroscedastic nonparametric regression model with
random design

Y = f(Xi) + VY3 X)es, i=1,2,...,n,

with f(-) and V() a- and B-Holder smooth, respectively. We show
that the minimax rate of estimating V'(-) under both local and global
squared risks is of the order

____ 8aB __2B8
n~ 3aB+2atB \/p 2641

where a V b := max{a, b} for any two real numbers a, b. This result
extends the fixed design rate n=** v n=2%/2#+1D derived in Wang
et al. [2008] in a non-trivial manner, as indicated by the appearances
of both a and B in the first term. In the special case of constant
variance, we show that the minimax rate is n =8¢/t v =1 for
variance estimation, which further implies the same rate for quadratic
functional estimation and thus unifies the minimax rate under the
nonparametric regression model with those under the density model
and the white noise model. To achieve the minimax rate, we develop
a U-statistic-based local polynomial estimator and a lower bound
that is constructed over a specified distribution family of randomness
designed for both ¢; and X;.

1. Introduction. Consider the model

(1) Y = (X)) + VV3(X))ei, i=1,2,...,n,

where {X;}" ; are independent and identically distributed (i.i.d.) univariate ran-
dom design points, and {e;}" ; are i.i.d. with zero mean, unit variance, and are
independent of {X;}” ;. In this paper, we study the optimal estimation of V(+)
under both local and global squared risks. Variance estimation is a fundamental
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statistical problem [Von Neumann, 1941, 1942; Rice, 1984; Hall et al., 1990] with
wide applications. It is useful in, for example, construction of confidence bands for
the mean function, estimation of the signal-to-noise ratio [Verzelen and Gassiat,
2018], and selection of the optimal kernel bandwidth [Fan, 1992].

When {X;}? ;| are fixed, estimation of V(-) in (1) has been studied extensively
in the literature via residual-based methods [Hall and Carroll, 1989; Ruppert
et al., 1997; Hérdle and Tsybakov, 1997; Fan and Yao, 1998] and difference-
based methods [Muller and Stadtmuller, 1987; Miiller et al., 2003; Brown and
Levine, 2007; Wang et al., 2008]. One important heuristic from previous studies
is that, compared to residual-based methods, difference-based methods are able
to achiever a smaller bias and subsequently a smaller mean squared error by
avoiding direct estimation of the mean function. More precisely, when X; = i/n,
i=1,...,nand f(-) and V(-) in (1) are a- and S-Holder smooth, respectively,
Wang et al. [2008] proposed a difference estimator which achieved the optimal
rate of the order n=4® v niﬁ% under both local and global squared risks.

In contrast, our study focuses on the case where {X;}! , are i.i.d. random
design points on the real line. For this, we show that when f(-) and V(-) in (1)
are a- and S-Holder smooth, respectively, the minimax rate of estimating V'(-) is
of the order niﬁ \% nf% under both local and global squared risks. This
result has several noteworthy implications:

e The minimax rates in random and fixed design settings share a common

component, n_%, as well as the same transition boundary o = 3/(45+2).
e For a < B/(48 + 2), a faster rate is achievable with a random design.
e Unlike the fixed design setting, for a < /(48 + 2), a and /8 are now both
present in the first term of the minimax rate in the random design case.

We now discuss in more detail this minimax rate. The upper bound of the
minimax rate is achieved by smoothing pairwise differences via local polynomial
regression, the former of which is formulated via U-statistics. Our analysis of
this estimator hence relies on the four-term Bernstein inequality in Giné et al.
[2000], and unlike classic kernel methods, requires no smoothness assumption on
the design density.

For the lower bound, due to the appearances of both o and S in the non-
trivial n_% part of the minimax rate and the additional randomness of
{Xi},, the derivation is much more involved than its counterpart in the fixed
design setting. We tackle the first difficulty of entangled o and 3 via a proper
localization technique in the construction of the mean function f(-), depicted in



VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION 3

Figure 2 in Section 3.2. The second difficulty caused by the randomness of {X;}!" ;
is resolved with a new trapezoid-shaped construction of the mean f(-), aided by
a result due to Kolchin et al. [1978] on the sparse multinomial distribution. This
result helps characterize the asymptotic behavior of the locations of {X;}!" ; and
plays a key role in our proof, but to our knowledge has not been well used in the
nonparametric statistics literature.

In the special case of constant variance, (1) is reduced to

(2) }/i:f(Xi)—i-O'Ei, 1=1,2,...,n,

and the goal becomes estimation of ¢2. In this case, the problem is linked to
estimation of a quadratic functional, which has been studied in depth in the
other two benchmark nonparametric models, the density model [Bickel and Ritov,
1988; Laurent, 1996; Giné and Nickl, 2008] and the white noise model [Donoho
and Nussbaum, 1990; Fan, 1991; Laurent and Massart, 2000]. In the density
model, one observes an i.i.d. univariate sequence {X;} ; from some unknown
density f(-), and the goal is to estimate [ f?(z)dz. In the white noise model, one
observes a continuous-time process from dY; = f(t)dt + n='/2dW; for t € [0,1]
with W; a standard Wiener process. The goal is to estimate fol f?(t)dt. Under an
a-smoothness condition on f(-), the minimax rate in both of the aforementioned
two cases is n~8%/(4a+D) v =1 (¢f. Theorem 1(ii) and 2(ii) in Bickel and Ritov
[1988], Theorem 4 in Fan [1991]).

Following Doksum and Samarov [1995], a quadratic functional of interest under
(2) with random design is

(3) Q= / 2 ()px (@)w(x)dz,

where px(-) is the unknown design density and w(-) > 0 is some known weight
function. Assuming in (2) that f is a-Holder smooth, we show that the mini-
max rate of estimating o2 and Q (when o2 is unknown) is n=8¢/(4e+1) v =1
thereby unifying the minimax rate of quadratic functional estimation in all three
benchmark nonparametric models.

In this paper, we also provide extensions of (2) to multivariate cases, with a
focus on the multivariate nonparametric regression model

(4) Y;:f(Xz)—l-O'&“z, 1=1,2,...,n,
and the nonparametric additive model

d
(5) Y;:ka(Xl,k)"i'JEw Z:1,2,,7’L,

k=1
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TABLE 1. Summary of minimaz rates in (1), (2), (4) and (5). The two types of fized design
considered, (GD) and (DD), are defined in (20) and (21), respectively. For a d-dimensional
smoothness inder a = (ai,...,aq), a = d/(X0¢_,1/ar), Gmn = minj<k<qor, and
Omax ‘= MaXi<k<d k. The respective sections contain the definition of the distribution class
of {(Xi,e:)}i=1 in the random design setting and distribution class of {e;}i—1 in the fized design
setting. Our results include all of the random design rates and fized design rates in (4) and (5).
Note results for (4) and (5) have additional requirements; see Sections 4.1 and 4.2 for details.

stated in minimax rate boundary
1), fixed Wang et al. [2008 n~ioy T 2A/RAED
() s | } ___ 8ap __28 a=p/(48+2)
(1), random Theorems 3, 4, 5 n~ daBFpFza \/ p 28+1
2), fixed Wang et al. [2008 n yvpt

& a=1/4
(2), random Theorems 1, 2 p8e/(datl) /=t -
(4), fixed (GD) Proposition 3 p~domax/dy =1 Omax = d/4
(4), fixed (DD) Proposition 4 p~40min \/ 1 Qmin = 1/4
(4), random Propositions 1, 2 p~8a/(datd) =1 a=d/4
(5), fixed (GD) Proposition 5 n~!
5), fixed (DD Proposition 6 VR
(), p Qmin = 1/4
(5), random Propositions 7, 8 | n~8@min/(@emint1) /=1 e

in both fixed and random designs. Here, X; := (X; 1,. .. ,Xi,d)T, i=1,...,n, for
some fixed positive integer d. Regarding the fixed design, we consider two types,
namely, the grid design (GD) and the diagonal design (DD). With a total of n
design points, the former places them on a regular grid in the d-dimensional cube
[0, 1]¢ while the latter only places design points on the diagonal. Details are given
in Sections 4.1 and 4.2.

We summarize the minimax rates in all of the aforementioned models in Table 1.

The rest of the paper is organized as follows. Section 2 presents the simple
model (2) with constant variance. Section 3 discusses its heteroscedastic extension
(1). Section 4 discusses the multivariate nonparametric regression model (4), the
additive model (5), and several other extensions of our main results. The essential
lower bound proof of the minimax rate n~8%/(a+1) v p=1 under model (2) is
presented in Section 5, with the rest of the proofs given in a supplement.

The notation used throughout the paper is as follows. For any positive integer
n, [n] denotes the set {1,2,...,n}. For any real number a, we use [a] to de-
note the smallest integer greater than or equal to a, and |a] the largest integer
strictly smaller than a. For any positive integer d, 05 denotes the zero vector of
dimension d and I; denotes the identity matrix of dimension d. For a real vector
z, ||z|| and ||z||s denote its Euclidean and infinity norms, respectively. For a
real matrix A, we use |Al|, ||A|lr, and |A]| to denote its spectral norm, Frobe-
nius norm, and determinant, respectively. For an m-times differentiable function
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f: R — R with some positive integer m, we use f*) to denote its kth deriva-
tive for k = 1,2,..., m. For identically distributed random variables X; and X},
we use Px,(-) and px,(-) to denote the distribution and density of X;, )Nfij to
denote X; — X, and p)}ij() to denote the density of X; — X;. Similar notation

Px,(-),px,(-), Xij’p)?ij(') applies to identically distributed random vectors X;
and X ;. For a positive integer d and p € R4, X € R4 Ny(p,X) stands for
the d-dimensional normal distribution with mean p and covariance 3. We will
drop the subscript d for simplicity when d = 1. ®(-) and ¢(-) represent the stan-
dard normal distribution and density. More generally, we will write ¢, ;2(-) as
the density for the normal distribution with mean p and variance o2. For two
probability measures P, Q defined on a common space (£2,.4), TV(P,Q) denotes
their total variation distance, that is, TV(P, Q) := sup 4 4|P(A) — Q(A)|. For two
real sequences {a,} and {b,}, an < by if |a,| < Clby| for some positive absolute

~

constant C. We say a,, < b, if a, <

~

by, and b, < ap.

2. Homoscedastic case. To illustrate some of the main ideas developed in
this paper, we begin with a discussion of the elementary univariate homoscedastic
nonparametric regression model (2):

Yi=f(X;)+oeg, i=1,2,...,n.

Here, {X;}? , are ii.d. copies of a univariate random variable X, f(-) belongs
to an a-Hoélder class that will be specified soon, and {¢;}?_; are i.i.d. copies of a
variable € with zero mean and unit variance and are independent of {X;}7* ;. Both
the mean function f(-) and the distribution of {X;}? ; are assumed unknown.

Model (2) has been extensively studied using residual-based and difference-
based methods; see, among many others, Von Neumann [1941], Von Neumann
[1942], Rice [1984], Gasser et al. [1986], Hall et al. [1990], Hall and Marron [1990],
Thompson et al. [1991], Miiller et al. [2003], Wang et al. [2008]. A related func-
tional estimation problem has also been studied in semiparametric models [Robins
et al., 2008, 2009]. Most of the previous studies focus on the case of fixed design,
especially the equidistant design with X; = i/n, i € [n], for which the minimax
rate of estimating o under an a-Holder smoothness constraint on f(-) is known
to be n=4* Vv n=1 (cf. Theorems 1 and 2 in Wang et al. [2008]).

In detail, let I be a fixed (possibly infinite) interval on the real line. Define the
Holder class Ay, 1(Cr) on I as follows:

Ao (Cr):={f:forallz,y € [ and k =0,...,|a],

o #®@)| < Cx and | 1D (@) - floD(y)| < Crlz I},
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where o’ := a — |a]. Denote the support of X as supp(X).
Define the joint distribution class P, (x,) (where “cv” stands for “constant
variance”) with the following conditions:

(a) X satisfies supp(X) C 1.
(b) X has density px(-) and there exists a fixed positive constant Cy such that

suppx (z) < Cp.
z€R

(c) There exist two fixed constants dp > 0 and ¢y > 0 such that for any 0 <
d < dp, there exists a set Us C [—1, 1] such that
> i = >
AUs) > ¢y and ulélsz;g P, (ud) > co,
where A(-) represents the Lebesgue measure on the real line, and )N(ij =
X - X;.
(d) Ee* < C. for some fixed positive constant C-..

Note that no smoothness condition is placed on the density of X. Condition
(c) essentially requires the density pg,. to be “dense” around 0, and is strictly
weaker than a uniform lower bound of p %, over a fixed neighborhood of 0. It also
follows from the following sufficient condition on the marginal density px(-) (see
Lemma A4 in the supplement for the justification):

(/) X is compactly supported (taken to be [0,1] without loss of generality).
There exists some positive constant ¢g and subset S C [—1, 1] with Lebesgue
measure A\(S) > 3/4 such that px(¢) > ¢o uniformly over ¢t € S.

In particular, (¢’) covers the uniform distribution on [0, 1] and the distribution of
X in the lower bound construction in the proof of Theorem 2.

The rest of the section is devoted to proving, for any fixed positive constants
Cr and C,, the following minimax rate:

. ~ 2 _ _
(7) inf  sup sup sup E(02 — 02) = p8/(datl) =1
Cs fEAa,I(C]:) UQSCU P(X,E) E/PCV,(X,S)

where Py .) denotes the joint distribution of (X, ¢), and o2 ranges over all esti-

mators of 2.

2.1. Upper bound. The upper bound is achieved by a difference estimator
based on U-statistics (with convention 0/0 = 0):

(3)_1 >ici Kn(Xs — X5)(Yi — Yj)2/2.
(5) " Cie; Kn(Xi — X;)

(8) 6% =
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Here, Ky(-) :== K(-/h)/h, where h = h,, is a bandwidth parameter satisfying
hn } 0 as n — oo, and K(-) is a symmetric density kernel supported on [—1,1]
that satisfies

9) My < inf K(u) < sup K(u) < Mg
lul<1 lu|<1

for two fixed constants Mg and M j; one example is the box kernel K (u) =
1{]u| < 1}/2 which satisfies (9) with M = M = 1/2.

The following error bound is derived via the exponential inequality for degen-
erate U-statistics due to Giné et al. [2000].

THEOREM 1.  Suppose the kernel K (-) in 62 is chosen such that (9) is satisfied
with constants M g and M i, and the bandwidth h, is chosen as

(10) o e 0 <a <y,
" n1, a>1/4.

Then, under (2) with random design, it holds that

~ 2 _ _
sup sup sup E(cr2 — 02) < C’(n 8a/(datl) \/ py 1),
feAa,I(C]:) U2SCU ]P)(X,e) e,Pcv,(X,s)

where C'is some fived positive constant that only depends on M ¢, My, o, Cx,C,,
and Co, co, Ce in P, (x.e)-

REMARK 1. The error rate in Theorem 1 is achieved by choosing the optimal
bandwidth h,, to balance the “bias-variance” decomposition:

(1) {E@* - )%}

1
nh,ln/2 7

S hi(a/\l) +

(anl) re-

where a A b := min{a, b} for any two real numbers a,b. The bias term hp
flects the second-order effect of the unknown mean on variance estimation, which
has been noted by Hall and Carroll [1989] and Wang et al. [2008]. The variance
part follows from the fact that there is an average number of n*h, pairs of (i, )
such that | X; — Xj| < hy,. We note that the same “bias-variance” decomposition
has appeared in quadratic functional estimation in the density model and Gaus-
sian sequence model [Bickel and Ritov, 1988; Fan, 1991; Giné and Nickl, 2008].

See Section 4.3 for a more detailed discussion.
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REMARK 2. While most of the previous works are in the context of fixed de-
sign, Mller et al. [2003] considered constant variance estimation with random
design, and their estimator (formula (1.4) therein) is almost identical to our 2.
Under certain assumptions (Assumptions 1 and 2 and (2.4) - (2.7) therein), they
show that their estimator is root-n consistent and asymptotically normal. How-
ever, as commented in the first paragraph on p. 184 of their paper, their condi-
tion (2.7) is only satisfied when the mean function smoothness « is strictly larger
than 1/4, and no analysis is provided below this threshold. Our minimax rate
n~8a/Watl) v/ =1 therefore confirms that o > 1/4 is indeed the minimal require-
ment for any variance estimator to be root-n consistent and we also demonstrate

the optimality of 5% for 0 < a < 1/4.

Finally, in (2), we have assumed that the smoothness index « is known. If it is
unknown, then the variance can be estimated adaptively via Lepski-type methods
[Lepski, 1991, 1992]. This is discussed in more detail in Section 4.5.

2.2. Lower bound. The derivation of the lower bound in (7) is much more
involved. In particular, the construction in the fixed design setting (cf. Theorem
2 in Wang et al. [2008]) cannot be extended to the random design case, since the
spike-type construction of f(-) located at each deterministic design point leads
to a sub-optimal rate in the random design setting. To achieve a sharp rate, we
have to exploit the randomness of {X;}!" ;; this requires us to handle a highly
convoluted alternative hypothesis that no longer leads to a product measure of
{Y;}?_, given each realization of {X;}!', in LeCam’s two-point method. This
calls for a careful analysis of the locations of {X;}!" ;.

We now sketch a proof of the n=8¢/(42+1) component in (7) for 0 < o < 1/4,
with a particular emphasis on where the difference arises with the fixed design
setting. The proof can be roughly divided into two steps. In the first step, we
construct a two-point testing problem with the null being a Gaussian (Hy) and the
alternative a Gaussian location mixture (f] 1). In the second step, we approximate
the Gaussian location mixture (ff 1) by a location mixture with compact support
(H1), which, unlike the alternative in the first step, belongs to the considered
model class.

We start by introducing the construction of f(-), 02, &, and X under the null
Hy and the alternative H 1 in the first step. For each n, let

hyp < n~ 2ot g2 — p2a - and N :=1/(6h,),
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a~
hnTN

ax | .
hory |-

hoTy

F1G 1. The black solid line represents the construction of f(-) under the alternative hypothesis
Hi. The thick red segments indicate the support of X under both Ho and fh, on which X is
uniformly distributed. Here, hy, < n~% 4tV and is chosen such that N := 1/(6h,) is a positive
integer. {7;}iL, are N i.i.d. standard normal variables.

and divide the unit interval [0,1] into N intervals of length 6h,, with n large
enough and h,, chosen such that N is a positive integer.

Choice of f(-): Under Hy, let f = 0. Under Hy, let f(-) be a piecewise
trapezoidal function on the N intervals. That is, for each i € [N], f takes
on a value of h%7; on the intervals [(6i — 5)hy, (60 — 1)h,,] and then linearly
decreases to zero on the two endpoints 6(i — 1)h,, and 6ih,, with {7},
ii.d. standard normal variables.

Choice of 0®: Under Hy, let 0 = 1+ 62. Under f[l, let 02 = 1.

Choice of e: Under both Hy and Hy, let € ~ N(0,1).

Choice of X: Under both Hy and Hy, let {X;}_, be uniformly distributed
over the union of the upper bases of the trapezoids, that is, over Ufi 1[(61—
5)hn, (60 — 1)hy).

See Figure 1 for an illustration of the construction.

In contrast to the spike-type construction of f(-) in the fixed design setting,
our construction is trapezoid-shaped, which guarantees a maximal variation in
the mean to compensate for the difference in the variance under the null and
alternative. This is unnecessary in the fixed design setting since the point of
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maximal variation in the mean (center of each spike) can be directly placed at
each fixed X; = i/n, resulting in nevenly spaced spikes in f(-).

Denote the joint distribution of {(X;,Y;)}!" ; under Hy and Hi by Py and P,
with respective density pg and p1. Under the above construction, conditional on
{Xi},, {Yi}]-, are distributed as

Ho : po({Yi}isy [ {Xi}isi) = H‘:OO,1+9%(YZ')
i=1

and

N
(i ) =T [ TT e |otide

i=17 \{ibi=j}
where {b;}?"_; is the location index sequence of {X;}7 , defined as
bii=j if X;€[(6]—5)hn, (6] — 1)k,

which characterizes which trapezoid each X; falls into. Using Lemma 2 that will
be stated in Section 5, one can then upper bound

TV(Po, P1) = ETV(Po({YiHy | {Xi}ior), Pr({Yidioy | {Xi}imy)) S Onnhy/?,

which can be made smaller than a sufficiently small constant ¢ by choosing h,
sufficiently small.

The second step of the proof aims to find a sequence of bounded random
variables {r;}I¥ | to replace the standard normal sequence {7;})Y | in Py, so that for
each realization of {r;})¥,, the corresponding f(-) in the alternative is a-Holder
smooth with a fixed constant. Then, denoting the distribution of {r;}, as G,
one wishes to approximate the conditional distribution IF’l({Yg}?:l | {Xi}~) in
Hy by Py({Y;}™, | {Xi}™,) with density

N

p(i [ 6E) =L [ T ersoa(¥) | 6lao)

in Hy. Even with the aid of moment matching techniques already established in
the literature, upper bounding TV(IPl,IFﬁ) is still nontrivial. Specifically, unlike
in the fixed design setting, now with high probability the conditional distribution
of {Y;}I; given {X;}!' | is no longer a product measure. This is because multiple
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X;’s could fall into the same trapezoid in the construction of f(-). This can be
handled relatively easily in the first step since there we only have to analyze the
pairwise correlation of Y; | X; and Y; | X; depending on whether X; and X;
fall into the same trapezoid, but it is much less tractable in the second step.
More specifically, in order to match moments, we now have to divide the X;’s
into groups based on their memberships among the trapezoids, which naturally
requires us to monitor the locations of {X;}!",, and in particular the number
of X;’s that fall into the same trapezoid. This is possible by observing that the
memberships of {X;}?_, now follow a sparse multinomial distribution (n?/(4e+1)
bins, n balls) so that a result in Kolchin et al. [1978] can be applied. This allows
us to show that with high probability the maximum number of X;’s in each
trapezoid is bounded by a fixed constant, which, along with Lemma 1 in Section
5, allows us to calculate
TV(Py, Py) < nb??

for p := 14[1/4a]. This indicates that TV (P1, P} ) is smaller than some sufficiently
small constant c¢. Then, by the triangle inequality,

TV(Py,P1) < TV(Py,Py) + TV(Py, Py) < 2c.

Details of the above derivation will be given in Section 5. The resulting lower
bound is as follows.

THEOREM 2. Under (2) with random design, it holds that

. ~ 2 _ _
1112f sup sup sup E(02 — 02) > c(n Sa/(datl) \/ py 1),
g feAa,I(C]:) 0'2§Ca ]P(X,s) 6'Pcv,(X,s)

where ¢ is some fized positive constant that only depends on o, Cr,Cy, and Cy, co, Cs
in P (x,6), and 7% ranges over all estimators of o>.

REMARK 3. It remains an open problem to prove a lower bound rate that is

strictly slower than n™*

over the sub-class of P, (x) with more reqular designs,
which includes in particular the uniform design on [0,1]. We conjecture that in
this case, n~8/4at1) \/ =1 s still the minimaz rate in view of analogous results

in quadratic functional estimation [Bickel and Ritov, 1988; Fan, 1991].
3. Heteroscedastic case. We now study the heteroscedastic model (1),

Y = f(X3) +V1/2(Xi)8i, 1=1,2,...,n,
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where {X;}I' | are i.i.d. copies of X on the real line, f(-) and V(-) are o~ and [3-
Hoélder smooth on the fixed (possibly infinite) interval I, respectively, and {e;}7 ;
are i.i.d. copies of € with zero mean and unit variance and are independent of
{Xi}" ;. As in Section 2, smoothness indices o and § are assumed known, while
F(-),V(-), and the distribution of X are unknown. For any estimator V(-), the
estimation accuracy is measured both locally via

(12) Ri(V.Via®) = (V) - V(:v*))2

at a point x* in the support of X, supp(X), and globally via

(13) Ro(V, V) i= / (Vi) - V(@) Bx(d)

with Px the distribution of X.

Model (1) has been studied in, for example, Muller and Stadtmuller [1987],
Hall and Carroll [1989], Ruppert et al. [1997], Hardle and Tsybakov [1997], Fan
and Yao [1998], Munk and Ruymgaart [2002], Brown and Levine [2007], Wang
et al. [2008], with a focus mainly on the fixed design case. An exception is Munk
and Ruymgaart [2002], with which we draw a detailed comparison in Remark 8
below. Theorems 1 and 2 in Wang et al. [2008] established a minimax rate of the
order n~4 v n=28/(26+1) ynder equidistance design X; = i/n, i € [n] when f(-)
and V(-) are a- and -Hoélder smooth on [0,1].

Define P (x,c) (where “vf” stands for “variance function”) as follows:

(a) X satisfies supp(X) C I.
(b) X has density px(-), and there exists a fixed positive constant Cy such that

suppx (z) < Cp.
z€ER

(c¢) There exist fixed positive constants ¢y and dy such that
inf  px(z*) >c¢p and
z*esupp(X)
inf inf  A({we[-1,1] : 2" + du € supp(X)}) > co,
0<d<dp z* €supp(X)
where A(+) is the Lebesgue measure on the real line.
(d) Ee* < C. for some fixed positive constant C-..

One can readily verify that P (x.) C P, (x,), with the latter defined in the
beginning of Section 2. Compared to P,, (x ), Condition (c) in P x ) is posed
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on the marginal density and support of X, since in the variance function case
we require a sufficient number of close pairs (X;, X;) around each target z*. We
also note that, as in P, (x ), no smoothness assumption is posed on the design
density in P (x )

The rest of the section is devoted to proving, for any fixed positive constants
Cr and Cy, the following minimax rates

(14)
. ~ v __8ap 25
inf sup sup sup sup ERy(V,V;z™)=<n 1ab+2a+8\Vn 25+
V €A, 1(Cr)VEAs 1(CV)P(x ) EPur, (x,e) T*Esupp(X)
~ _ 8af _ 2B
inf  sup sup sup ERy(V,V)=xn apt2a+s \/n 25+,

%4 fGAa,I(C]:) VEA[}J(C’V) P(Xys>e7jvf,<x,€)

where P(x ) denotes the joint distribution of (X,¢), and 17() ranges over all
estimators of V(-).

3.1. Upper bound. We now propose an estimator of V' (z*) for some fixed z* €
supp(X ) by combining pairwise differences with local polynomial regression. We
first introduce some notation. Let ¢ be the largest integer strictly smaller than [

and
q(u) == (1,u,u?/2, ... uf /.

For any 1 < i < j < n, define
Dij = (Y;=Y;)%/2, Xij == (Xi+X;)/2, and Ky; := Kp, (Xi— X;) Kp, (Xij — %),
where hq, hy are two bandwidths. Define an (£ + 1) x (¢ + 1) matrix

-1
n Xij —x* Xij —x*

B, = 2 = Kij
<2> Zq( s >q< s ) !

i<j

and B} as its adjugate such that B,,B} = B! B,, = |B,,|I;1;. For example, when
¢ =1, we have

S0 S1 52 —S81

B, =
S1 S2

] . and  |B,| = sgso — 52,

where
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Following Fan [1993], we propose a robust local polynomial estimator:
~ n -1 X _ x*
(15) Vie(z?) := <2> Z Dij(|Bn| +72)""q" (0)Brg <”h2)Kij7
1<J

where 7, is some sufficiently small positive constant that decays to 0 polynomially
with n. Let

—1
n . [ Xij—ax* ~
wij = <2> qT(O)B”q(”hz> Kij and  wij := wij/([Ba| + ).
Then, it holds that XA/Lp(a:*) = ZK]- w;i D;j, ZKJ- w;; = |Byl, and

(16) Zwij(Xij —x*)k = Z@J(XU —J}*)k 20, k= 1,2,...,6.
1<j 1<j

The last property (16) is referred to as the reproducing property of local polyno-
mial estimators (cf. Proposition 1.12 in Tsybakov [2009]).

THEOREM 3. Suppose the kernel K(-) in Vip is chosen such that (9) holds
with constants M i and My, 7 < n™" for some fized constant k > 1, and the
bandwidths hi, ho are chosen as

~Lapas ~TaF+s 0 B
n 4a++2a’n 4a++20¢>’ <0[<47
2
(17) (h1, h2) < L ) B
no,n 23“)= @ Z I

Then, under (1) with random design, it holds that

~ _ 8afB __2p
sup sup sup sup ER;(Vip,Vi;2*)<C (n 1aB+p+2a \/ny 213“)
fEAa,1(CF)VEAZ 1(Cv)P(x,6) EPut,(x,e)x* Esupp(X)

and

~ _ 8af _ 2B
sup sup sup ERs(Vip, V) < C’(n 1aBtp+2a \/ 2ﬂ+1),
F€Aa1(CF) VEAS 1(CV) P(x,6) EPve (X )

where C' is some fized positive constant that only depends on M g, Mg, a,8,Cr,Cy
and CQ, Co, Cg mn 'Pvf,(Xﬁ).

REMARK 4. Variance function estimation in (1) with fized design X; = i/n,
i € [n], has been studied in Wang et al. [2008]. There the minimaz rate is

inf  sup sup sup  sup ERy(V,V;2*) =< n~i* v n=20/6+1)
V' f€Mq 0,11(CF) VEAS [0,11(Cy) Eet<Ce 2*€[0,1]
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inf  sup sup sup ERy(V,V) x nie v n=26/26+1)
V' f€Aq,0,11(CF) VEAS [0,11(Cy) Eet<C:

with the integral in Ry under the Lebesgue measure on [0, 1]. Comparing the above
result with the error rate in Theorem 3, we see that the transition boundary in both
the fized and random design settings is o« = B/(403 +2). When a > /(48 + 2),
V(:) under both Ry and Ry can be estimated at the classic nonparametric rate
n=28/CB+1) 45 if the mean function f(-) were known. When o < B/(48 + 2),
a faster rate can be achieved in the random design case. This can be intuitively
understood by the fact that, by constrast to the fized design case, a significant
portion of pairs have distance smaller than 1/n in the random design setting.

REMARK 5. As has been noted in Wang et al. [2008], in the fized design
setting, estimating the variance (function) by smoothing the squared residuals
obtained from pre-estimation of the mean function f(-) is sub-optimal. The same
conclusion also applies to the random design setting. Since the design being fixed
or random has no first-order effect on the estimation of the mean, the above
method only achieves the rates n~4/2ot1) v n=1 in variance estimation and
p4e/2etl) \y =28/20H1) iy yariance function estimation, neither of which is
minimax optimal.

REMARK 6. Unlike in the fized design case, once below the threshold o =
B/(48 + 2), a and B are now both present in the minimax rate in the random
design case, suggesting that the smoothness of V(-) always has an effect on its
estimation. This is because variance function estimation in the random design set-
ting is essentially a “two-dimensional” problem, where we have to jointly choose
two optimal neighborhood sizes to characterize the closeness between (i) each X;
and Xj; and (1) every pair (X;, X;) and each target point x*. By contrast, in
the fized design setting, the distance between X; and X; is constrained to be no

smaller than 1/n, and thus cannot be jointly optimized with the distance between
(Xi, Xj) and z*.

REMARK 7. One might wonder whether the following Nadaraya- Watson type
estimator can be used to establish the upper bound in Theorem 3:
>ici Ky (Xi — X;) K, (Xij — 27) Dy

D i Ky (X — X;) Ky (X5 — %) 7

(18) ‘A/Nw(x*) =

where K (-) is now chosen to be a higher-order kernel to further reduce bias when
B > 1. It turns out that the analysis of Vaw requires an extra assumption on the
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smoothness of the density px () which can be completely avoided with X/}Lp. More-
over, it is well-known that local polynomial estimators have good finite sample
properties and boundary performances when X is compactly supported [Fan and
Gijbels, 1995].

REMARK 8. Munk and Ruymgaart [2002] considered minimax estimation of
the variance function (and more generally, its derivatives) in the context of non-
parametric regression with random design. We focus on the comparison of their
results on variance function estimation with ours. Their lower bound (Theorem 1
therein) is proved independent of the smoothness level of the mean function and
upper bound (Theorem 4 therein) is proved under sufficient smoothness on the
mean function. Therefore their minimaz rate is only comparable to the n~=28/(28+1)
component in ours. In this case, their lower bound of the order n~(2=1/(28) 4
proved over the following class of variance function:

o0
Sﬁ = {1 —I—Z(Skek : ’5k| S kﬂ}
k=1

for any B > 1, where {ex}2, is an arbitrary basis on L*([—m,x]). Moreover,
continuous differentiability of the error density is required in their paper. In con-
trast, we pose no smoothness conditions on the error density, and neither Sg nor
Sgy1/2 can be embedded in the 3-Holder class Ag considered in our setting (e.g.,
f(z) = |z| with domain [—m, 7| belongs to Sz but is not 1.5- or 2-Holder smooth
since it is not differentiable at the origin). In summary, the results in Munk and
Ruymgaart [2002] neither imply nor contradict the n=28/@B+Y) part in our mini-
mazx rate, and our results are more refined since they characterize the exact elbow
a = F/(48 +2) and also the minimax rate below this threshold.

3.2. Lower bound. The following are matching lower bounds to Theorem 3.
THEOREM 4. Under (1) with random design, for any x* € supp(X),

~ ___ 8B _ 28
inf  sup sup sup ER(V,V;x*) > c(n daftpt2a \/ 25“),
V' feM 1(CF) VEAS 1(CV) Pix o) E€Pve (x,e)

where ¢ is some fized positive constant that only depends on «,,Cr,Cy and
Co, co, Cz in Py (x,0), and V ranges over all estimators of V.

THEOREM 5. Under (1) with random design,

. ~ ___ 8B _ 2B
inf  sup sup sup ERy(V,V) > c(n daBtht2a \/ 2ﬁ+1),
V. €M, 1(Cr) VEAs 1(Cy) Px ) EPyr, (X e)
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1— 1S

ax H
hiTa

F1G 2. The black solid line on the top represents the variance function V(-) in the alternative ﬁl,
and the black solid line on the bottom represents the mean function f(-). The thick red segments
2

~ 4o
mark the support of X under both Ho and Hy. Here, hy X n~ %afF5F2a  hy X n %af+s+2e  and
are chosen such that both M := hy/(4h1) — 1/2 and N := 2M + 1 are positive integers. {7},
are N i.i.d. standard normal variables.

where ¢ is some fized positive constant that only depends on «,3,Cr,Cy and
Co, o, Ce 1n Py (x,c), and V ranges over all estimators of V.

Due to the appearances of both « and [ in the nontrivial n_% part of
the minimax rate, proving the above two results is more involved than proving
Theorem 2. In particular, it takes an extra step of localization in the construction
of the mean function f(-) as well as V'(-). More precisely, for the lower bound at
a target point z* in Theorem 4, our construction of both f(-) and V() only has
variation within a small neighborhood of x*. Such localized construction is not

4o component

necessary in the fixed design setting, since when proving the n~
therein (see Remark 4), the variance function can simply be taken as a constant.

In what follows, we give a proof sketch of the nontrivial n—88/(4aB+6+2a)
component of the lower bound in Theorem 4 for @ < /(45 + 2); the proof of
Theorem 5 can be seen as an extension of Theorem 4 via a standard construction
of multiple hypotheses. We assume the support of X is contained in I = [0, 1],
and for clarity of illustration, here we present the construction for an interior

point z* € (0,1) () supp(X). The proof works for boundary points as well.
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We continue to adopt the two-step approach introduced in the proof sketch
of Theorem 2 in Section 2.2. The second step is very similar with the help of
Lemmas 1 and 3, so we will focus on the construction under the null Hy and
alternative H; in the first step. Choose the parameters

28 1. — 2 2a B
hi < mn 4eBtbt2a  hg xn 4eftht2e and 0, = h1™ = hb

so that ha/hy — oo as n — 0.

Choice of V(-): Under Hy let V = 1. Under Hy, let V(-) be one minus
a smooth bump function around z* with width ho and height hg so that
V(z*)=1-62.

Choice of f(-): Under Hy let f = 0. Under Hy, let f(-) be a “local” version
of the design in Theorem 2. That is, f takes on a value of 0 outside of
[* — ho,z* + hs], and inside that hg-neighborhood of z*, f is piecewise
trapezoidal with upper base length 2h;, lower base length 4h; and height
{h$7}Y, for a standard normal sequence {7}, with N := hy/(2h1) a
positive integer.

Choice of e: Under both Hy and Hy, let & ~ N(0,1).

Choice of X: Under both Hy and Hy, let X be uniformly distributed on the
union of [0, 1]\[z* — ha,x™ + hg| and the upper bases of all the trapezoids
inside [z* — ha,2* + ha].

See Figure 2 for an illustration of H.

Under the above construction, the squared distance between the null and al-
ternative hypotheses (1 — (1 — 62))?2 = 91 < n~3B15¥% is the desired minimax
rate. Using Lemma 2, we can show that

TV(Po, P1) < 02nhi/?hi/* < c

for some sufficiently small ¢, where Py and IF’l represent the joint distribution of
{(X;,Y:)} under Hy and Hj, respectively. The detailed proof is presented in
the supplement.

4. Discussion. The two univariate models (1) and (2) discussed in the pre-
vious two sections raise natural questions about possible extensions to the mul-
tivariate setting. In what follows, we first present some partial results in this
direction in the sense of (4) and (5). We then establish some connections be-
tween our study and quadratic functional estimation and variance estimation
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in the linear model. Lastly, we discuss two more extensions of (2) in the direc-
tion of adaptive estimation and mean function with inhomogeneous smoothness.
Throughout, consider C'r, C,,, Co, co, C: to be fixed positive constants.

4.1. Multivariate nonparametric regression. Consider the following multivari-
ate version of (2):

Y, = f(X;) 4o, i=1,2,...,n,

where {X;}7, = {(X;1,..., Xiq) " }I, are i.i.d. copies of X = (X1,...,Xy)" in
R? for some fixed positive integer d, {51} ', are i.i.d. copies of € with zero mean
and unit variance and are independent of {X;}? ;, and f : RY — R belongs to a
d-dimensional anisotropic Hélder class with smoothness index a = (ay,...,aq) "
defined below. The goal is to estimate o with f(-) and the distribution of X as
nuisance parameters. This problem has been studied in Spokoiny [2002], Munk
et al. [2005], Cai et al. [2009], to name a few, again with a focus on the fixed
design setting.

Let Iy,...,1; be d fixed (possibly infinite) intervals on R and let I be their
Cartesian product I; x ... x I; C R%. Following Barron et al. [1999] and Bhat-
tacharya et al. [2014], we define an anisotropic Hélder class Aq 1(Cr) on I as
follows. For any « € I and k € [d], let fi(- | _f) denote the univariate func-
tion y — f(x1,...,2k-1,Y, Tht1,---,2q), With x_j defined as x without the kth
component. Then, Ay 1(Cr) is defined as all f : I — R such that

max max supH T_j H < Cr
1<k<d0<j<|_ak iBEI f ’ ) o0

and

‘ (LO%J (y1 | zp) — f;gtakJ)(yﬂiU—k))

max sup sup o <Cr,
1<k<d eI yy yocly, ly1 — Y2

where again |ay] is the largest integer strictly smaller than oy and of = ag —
| |. Let supp(X) be the support of X.

Define P, (x ) (where “mcv” stands for “multivariate constant variance”) as
the multivariate counterpart of P, (x )

(a) X satisfies supp(X) C I.
(b) X has density px(-) and there exists a fixed positive constant Cy such that

sup px(u) < Cp.
ucRd
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(c) There exist two fixed constants dp > 0 and ¢ > 0 such that for any § € R?
that satisfies ||]|oc < 0o, there exists a set U := Us C [—1,1]¢ such that

AUs) > cp and  inf

(w101, ..., ugdq) > co,
ueUs

rx,

where X(-) represents the Lebesgue measure on RY,
(d) Ee* < C. for some fixed positive constant C..

For an upper bound on the minimax risk, we propose the following multivariate
extension of (8) via a product kernel (again with convention 0/0 = 0):

(19) 52— ) % (szl K (Xik — Xj,k)) (Y; = Y))2/2
" (721)71 Dicj <Hz:1 Ky, (X — XM))

where K (-) is a kernel chosen to satisfy (9), and {h;}¢_, is a kernel bandwidth
sequence.

I

In the following results, we will use « to denote the harmonic mean of the
d-dimensional smoothness index a, i.e. a := d/ (ZZZI 1/ag). This quantity is
known as the effective smoothness in classical problems such as anisotropic den-
sity estimation [Ibragimov and Khasminski, 1981; Birgé, 1986] and anisotropic
function estimation [Nussbaum, 1986; Hoffman and Lepski, 2002].

PROPOSITION 1. Suppose 0 < o < 1, k € [d]. Suppose the kernel K(-)
in 52 is chosen such that (9) is satisfied with constants Mg and My, and the
bandwidth sequence is chosen as hy, =< n~2¢/(ex(4a+d)) for il ¢ [d]. Then, under

(4) with random design, it holds that

~ 2 _ _
sup sup sup E(Ufl — 02) <C <n 8a/(datd) \/ 1),
fEAa,I (C}') O'ZSCU P(X,E) epmcv,(x,a)

where C' is some fixed positive constant that only depends on MK,MK, o, Cr,C,
a'fld CO7 CO, C&‘ Zn Pmcv,(X,E) .

PROPOSITION 2.  Under (4) with random design, it holds that

) ~ 2 _ _
1112f sup sup sup IE(02 — 02) > c(n Sa/(tatd) \/ 1),
g feAa,I(C]:) ‘72§Co' ]P(X,s) 6,Pmcv,(X,e;‘)

where ¢ is some fized positive constant that only depends on o, Cr, C, and Cy, cg, Ce
i Prev,(X,e), and a2 ranges over all estimators of o2,



VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION 21

We note that Proposition 1 is only proved for ay € (0,1], k € [d]. The general
case when «y, is possibly larger than 1 is much more involved due to the difficulty
in the random design analysis. Propositions 1 and 2, combined, imply that the
minimax rate is n =%/ (4atd) v =1 for ay € (0,1], k € [d]. In particular, when f is
in an isotropic a-Holder class (0 < a < 1), this rate becomes n=8¢/(4a+d) v p=1,
We also remark that a different estimator achieving the rate n=8¢/(4etd) \/ p—1
over an isotropic a-Holder class has been briefly sketched in Robins et al. [2008].

For completeness, we also state without proof some results for model (4) in the
fixed design setting. In particular, we consider the following two types of fixed

designs in the d-dimensional unit cube [0, 1]%, namely, the grid design (GD):

(20) (X(il,...,id),b ) X(il,...,id),d) = (il/nl/d7 vee 7id/nl/d>7
(i1, ...,iq) € [P x ... x [n'/?

d

assuming n'/? is an integer, and the diagonal design (DD):

(21) (Xz',h . 7Xi,d) = (’L/TL, R ,i/n), 1€ [n]

Here for any positive integer n, [n] denotes the set {1,2,...,n}. Let apmax =
maxje(q k and Quin = Minge(q o The first result for (GD) is a simple mod-
ification of the isotropic result in Cai et al. [2009] by taking differences along
the smoothest direction with index aax. The second result can be readily de-

duced from the fact that Y; = f(i/n) + oe;, i € [n], where f(x) := f(x,...,x) is
amin-Holder smooth.

PROPOSITION 3. Under (4) with fized design (GD), it holds that

inf sup sup  sup E(52 — 02)2 = p~domax/d /=1

72 feA,, 0.1)4(CF) 62<Cy Bet<C.

up to some fized positive constant that only depends on o, Cr,Cy,C., where 7>

ranges over all estimators of o2.
PROPOSITION 4.  Under (4) with fized design (DD), it holds that

. ~ 2 _ . —
lllf sup sup sup E(UQ — 0'2) =n Acmin Vn 1
a2 feAa [0,1]@ (Cx) 02<Cs Eet<Ce

up to some fized positive constant that only depends on o, Cr,Cy,C., where 2

ranges over all estimators of 2.
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When f(-) belongs to an isotropic a-Holder class, Proposition 3 implies the
minimax rate n~4/¢ v n=! derived in Cai et al. [2009]. Comparison with the
random design rate n~—8/(4at+d) v =1 thus shows that, for 0 < a < 1, a faster
rate is again achievable in the random design setting for o < d/4.

4.2. Nonparametric additive model. Consider variance estimation in the ad-

ditive model (5):

M=

Yi= fe(Xig) + o8, i=1,2,...,n,

k=1
for some fixed integer d > 2, where {e;}!' ; are i.i.d. with zero mean and unit
variance and are independent from {X;}"; = {(Xi1,...,X;q) '}, in the ran-
dom design setting. Unlike Section 4.1, we specify d > 2, since the minimax rate
in the fixed design (GD) has completely different behavior for d = 1 and d > 2
(see Proposition 5 below).

4.2.1. Fized design. We first consider the two fixed designs (GD) and (DD)
defined in (20) and (21). For both designs, we consider an error distribution
class with only a finite fourth moment condition. We start with (GD), where
by iteratively taking pairwise differences, one is able to estimate the variance
at the parametric rate n~! without any smoothness assumption on the additive
components { fk}g:y For simplicity, we illustrate this idea with d = 2 with two
additive components f(-) and g(-), and assume that y/n is an even number. In
this case,

V= 1( ) +o( ) o G e Vil x VAL
where {e;;}; je;m are i.i.d. with zero mean and unit variance. By taking the
pairwise difference in the first dimension, we have

i io
Yiir,i0),5 = Yirj — Yinj = f<ﬁ> - f<\/ﬁ) + 0 (€ir,j — €in,j)

for all j € [/n] and (i1,i2) € [/n] X [v/n] such that i; # is. Taking again the
pairwise difference in the second dimension, we have
Y

i1,42),(j1.g2) *T Y(i1,i2)7j1 - Y(il,iz)dé = J(6i17j1 = €igg1 — €iryge T Siz,jz)

for all (i1, 12, j1,72) € [v/n] X [v/n] X [v/n] x [\/n] such that i1 # is and j; # jo.

Clearly, we have EY(; ;. (j, jo) = 0 and Var(Y(;, iy, jo)) = 402. Let m = \/n/2
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and define Z := {(1,2), (3,4), ..., (2m—1,2m)} with cardinality m. Then, for the

set of data points {Y(;, i,), (j1.jz) }(i1,i0),( c7 with cardinality m? = n/4, it can

J1,92)
be readily verified that they are i.i.d. with mean 0 and variance 402. Therefore,

with Y defined as the sample average of Yir i), G o) 1€ c7, the sample

i1,42),(j1,52)
variance estimator,

=R 1 >\ 2
Uzdd, Gp ‘T n Z (Y(i1,i2)7(117]'2) - Y) J
(7:177:2)7(j1:j2)ez

achieves the parametric rate n=!. A similar derivation holds for general d.

PROPOSITION 5.  Suppose d > 2. Under (5) with fized design (GD), it holds
that

inf sup sup sup E(52 —02)2 =n!

G2 f4,k€ld) 02<Cy Ee4<C.

up to some fized positive constant that only depends on Cy and C., where 7>

ranges over all estimators of 02, and the first supremum is taken over all functions

defined on [0,1] for each k € [d].

Now we move on to the design (DD), where we assume each additive component
fr in (5) is agx-Holder smooth on [0, 1] with some fixed constant Cx. In this case,
the model can equivalently be written as

Y= f(i/n) +oei, i=12,....n,

where ]? = Ei:l fr 18 amin-Holder smooth. Therefore, the univariate estimator
and lower bound in Wang et al. [2008] can be directly applied.

PROPOSITION 6. Under (5) with fized design (DD), it holds that

inf sup sup  sup IE(52 — 02)2 = p~dmin \/ 1

72 fr€Ma, 0.1)(CF) k€] 02<Co Bt <C:

up to some fized positive constant that only depends on Cr,Cy,C., where o>

ranges over all estimators of o2.

Comparison of Propositions 6 and 4 shows that, in contrast to grid design
(GD) and random design below, there is no gain from an additive structure in
the mean function for the diagonal design (DD).
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4.2.2. Random design. We now discuss (5) with a random design for {X;}7 ,
when fi, is ai-Holder smooth on some fixed set I, for each k € [d]. Since a shift
in the mean does not affect the estimation of variance, we assume Ef;,(Xq %) =0
for each k € [d] for simplicity. Recall the definition of P, (x ) in the beginning
of Section 2. Define the joint distribution class P4 (x ) (Where “add” stands for
“additive”) as:

For each k € [d], the joint distribution of (Xg,e) belongs to P, x,) and
the components of X are mutually independent.

In view of Theorem 2, the following lower bound is immediate.

PROPOSITION 7.  Under (5) with random design, it holds that

8 mi
. —~ 2 — min _
1112f sup sup sup E(02 — 02) > c<n domintl \/ 1),
7 fk€May, 1, (CF),k€ld] 02<Co P(x ) EPadd, (X )

where ¢ is a fized positive constant that only depends on a, Cr, Cy, and Cy, cg, C:
in P (X,e), and a2 ranges over all estimators of o2.

We now describe a procedure that matches the lower bound in Proposition
7, but depends crucially on mutual independence. For illustrative purposes, we
again consider the case of only two additive components f(-) and g(-), which are
«a- and (-Holder smooth, respectively. Let X and W denote the two covariates.
For each i € [n], define

eX == f(Xi)+oe; and eV = g(Wi) + os,
and their corresponding variances
0% =Ef*(X)+0®> and oF =Eg*(W)+o°

Clearly, we have IEaLX = 0 and ]EalW = 0, and EZX and E}/V are independent of
g(W;) and f(X;), respectively. Now, notice that the additive model in (5) can be
equivalently viewed as Y; = f(X;) + 5}/‘/. Thus by applying the univariate kernel
estimator defined in (8) to {(Y;, X;)}?;, which we denote as 53, one obtains

=1
E(&\‘%V _ 0_12/‘/)2 < O(n~8e/Vort 1)\ =1

for some fixed positive constant C. Similarly, defining 33{ as E%V, one has

E(Eg( _ U&)Q < C(n*SB/(MH) v,
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Lastly, under a finite fourth moment assumption on &, a sample variance estimator

of {Y;}" ,, denoted as 7%, achieves the parametric rate n~! in estimating the

total variance Var(Y'), which can be decomposed as Ef?(X) + Eg*(W) + o2.
Consequently, we have shown that the method-of-moments estimator

~ ) ~2 ~9
(22) amoment,Q =0x + Ow — Oy

achieves the optimal rate in Proposition 7. We summarize the above derivation
2

momcnt,d

for the natural extension & to general d.

PROPOSITION 8.  Under (5) with random design, it holds that

8y
~ 2 — min —
sup sup sup E(Uioment,d — 02) < C<n domintl \/ 1),
Tk€Aay 1, (CF).k€ld] 02 <Co P(x ) €Padd, (X ¢)

where C is some fixed positive constant that only depends on o, Cr,Cs, and
Co,¢0,Ce 1 P (X c)-

Propositions 7 and 8 together imply the minimax rate over P,y (x ), Which
further illustrates the fact that an additive structure in the mean function could
possibly avoid the “curse of dimensionality” in variance estimation. However,
we note that our results crucially rely on the mutual independence condition.
It is still largely unclear if the same minimax rate could apply to the general
case without this condition, though a discussion of an interesting connection to
variance estimation under linear models shall be made in Section 4.4.

4.3. Connection to quadratic functional estimation. We now formally state
the connection between quadratic functional estimation and variance estimation
in (2), the first of which has been studied in, for example, Doksum and Samarov
[1995], Ruppert et al. [1995], Huang and Fan [1999], and Robins et al. [2009].

Recall the definition of @ in (3) with some non-negative weight function w(-).
Squaring both sides of (2), multiplying by w(X;), and then taking the expecta-
tion, one has

E(Y?w(X;)) = E(f2(X)w(X;)) + o’E(w(X;)e}) = Q + o’ Ew(X;).

Under a finite fourth moment assumption on ¢, both E(Y2w(X;)) and Ew(X;)
can be estimated at the parametric rate via the sample mean estimator, and o2
can be estimated via 2 in (8) with rate n=8%/(4¢+1) v =1 ynder the quadratic
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risk. Therefore, the estimator

1 1 « .
Q= n;}?w(xi) - (n;w(X,-)> -5

dat1) \y =1 In fact, it is not possible to improve

achieves the same rate n—8%/(
upon this rate since if there exists an estimator () with a faster convergence rate,

then the “conjugate” estimator of o2 defined as

_ Lsn v2w(X;) - Q 1o
2= max{ n 2711 El:?_IUE(Xz) Q,O} . l{n;w(Xi) > O}

will also converge to o2 at a faster rate, violating the lower bound in Theorem 2.

The following result summarizes the derivation. Recall the definition of P, (x )
in the beginning of Section 2.

PROPOSITION 9.  Suppose the weight function w(-) in the definition of Q is
uniformly bounded on R. Then, it holds that

~ 2
inf  sup sup sup E(Q — Q) = p8/(atl) -1
Q fEAL1(CF)02<Cs P(x,c)EPev (X ,e)
up to some fized positive constant that only depends on w(-), a,Cr,Cy and
Co, co, Ce 1n Pey (x,6), where Q ranges over all estimators of Q.

4.4. Connection to the linear model. Throughout this paper, we have treated
the distribution of X as a nuisance parameter. Interestingly, when we do know the
distribution of X, variance estimation in nonparametric regression with random
design becomes substantially easier with the aid of parallel work in the high-
dimensional linear model [Verzelen and Villers, 2010; Dicker, 2014; Kong and
Valiant, 2018; Verzelen and Gassiat, 2018]. We first elaborate on this point using
the simple model (2), and then formulate corresponding results for (4) and (5).

By applying the inverse of the distribution function F' of X, (2) can be equiv-
alently written as

n:?(Ui)—FO’c‘:i, 1=1,2,...,n,

where {U;}"_; = {F(X;)}, are i.i.d. uniform on [0,1], and f(-) := fo F71(-) is
still a-Holder smooth under Lipschitz continuity on F~!. Then, using a wavelet
expansion for Holder classes (cf. Proposition 2.5 in Meyer [1990]), one has

2J
(23) Y = F1(Ui) + > ¢(Ui) +oei, i=1,2,...,m,
j=1



VARIANCE ESTIMATION IN NONPARAMETRIC REGRESSION 27

where {¢;}72, is an Ly-orthonormal wavelet basis under the Lebesgue measure

n [0,1], and f;(-) is the remainder term after truncation at resolution J = J,
which satisfies ||f;]lcc = O(27%n). Let 1 := (31, ...,1s) and assume without
loss of generality that 1 = 0,7, since a mean shift does not affect the estimation
of variance. Moreover, due to the orthonormality of {1;}72,, we have Cov(y) =
E(p3p ') = I,s. Following Verzelen and Gassiat [2018] and Kong and Valiant
[2018], the estimator

n —1
= i VR (5) vt woww)

n—1+4 —
=1 1<J

has a variance term of the order (277 4-n)/n? and a bias term of the order 272%/»,

Therefore, by choosing the optimal truncation level 2/» =< n2/(4a+1), Egmj recovers
the optimal rate n=8¢/(4e+1) v n=1 in Theorem 1.

~2 . . ~92
Define 7 . ; (with tensor wavelet basis) and o7, .44
~2
of 72

in the supplement for exact definitions). In the wavelet expansion, we will use
Ji to denote the truncation level for the kth component of f(-) in (4) and fj
in (5), and we use F} to denote the marginal distribution of X; ;. Recall that

a=d/(X4_1/ap) for a = (a1,...,aq)"

as the natural extensions
under (4) and (5), respectively (see the proofs of Propositions 10 and 11

PROPOSITION 10 (Multivariate nonparametric regression, design known).  Sup-
pose the distribution of X is known with supp(X) C I for some fived set I C R?,
and Fy () is Lipschitz continuous for all k € [d] with some fized positive con-
stant. Then, when 27 is chosen to be of the order n?®/(x(4atd) for k< [d] in
72 it holds that

proj,d’

sup sup sup IE(32

2 _ _
proj,d 0'2) < C(” Ba/(tatd) Vn 1)7
fE€AQ,1(CF) 02<Cy Ec*<C:

where C' is some fixed positive constant that only depends on o, Cr,Cy,Cs, and
the distribution of X.

PROPOSITION 11 (Nonparametric additive model, design known). Suppose
the distribution of X is known with supp(X) C Iy x ... X I; for some fixed
intervals I, ...,I; on the real line, and kal() is Lipschitz continuous for all
k € [d] with some fized positive constant. Then, when 27% is chosen to be of the
order n?ox/(4ext1) for I e [d] in 62 it holds that

proj,add?’

8
R 2 _ min _
sup sup sup E(Ugroj,add — 02) < C(n domintl \/ 1),
fk:EAak,Ik (C}‘),k‘E[d] 02<Cy Eet<Ce
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where C' is some fixed positive constant that only depends on o, Cr,Cy,Cs, and
the distribution of X.

As in the classical setting of mean function estimation via orthogonal series,
the difference of the rates in Propositions 10 and 11 is clearly explained by the
number of wavelet bases used to approximate f in (4) and {f}¢_, in (5). We
also note that, quite interestingly, Proposition 10 gives results beyond the case
0 <ag,...,aq <1 considered in Proposition 1, and Proposition 11 does not rely
on the mutual independence of the components of X.

4.5. Adaptive estimation of constant variance. In this subsection, we consider
adaptive estimation of the variance o in model (2). This is achieved by a Lepski-
type procedure [Lepski, 1991, 1992]. Let 52(h) be the estimator in (8) with an
explicit dependence on the bandwidth parameter h. For any given sample size n
and fixed positive constant §, define two positive integers my and mo such that
2-m1 < pl < g7mitl gpd 27m2—l < =(29) < 27m2 and define the following
dyadic grid

H(;::{27j:m1§j§m2,jEZ}.

adapt

Then, define the estimator o2, . := 52 (?L(;) with

hg = max{h € Hy 1 |52(h) — 32(W)| < r(logn) /20 (W) V2, Wh' € H, W < h}

for some sufficiently large positive constant 7. If the set being maximized is empty,
we will take hs = n~ (279,

To state the error bound of 52

adapt
adapt’ Of

cv,()(,E)
the distribution class P, x ) considered in Theorem 1, where we replace the

we need the following variant

finite fourth-moment assumption (d) therein by the stronger sub-Gaussian tail
condition:

(d") There exist some fixed positive constants C; . and Cs . such that Eexp(te) <
Cy cexp(Ca t?) for any t € R.

A similar exponential moment assumption has been made in the context of adap-
tive estimation under fixed design (cf. Theorems 1 and 2 in Cai and Wang [2008]).

PROPOSITION 12. For any given sufficiently small fivred o, > 0, fix some
8« € (0,804 /(4as + 1)). Suppose the kernel K(-) in 62, , = 02 <Eg*) is chosen

adapt

such that (9) is satisfied with constants Mk and My, and T in }\Lg* s chosen
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to be sufficiently large (only depending on dx,C1 ¢, Coc). Then, under (2) with
random design, it holds uniformly over all a > v, that

, log n\ /(1)
sup sup sup E(Ezdapt—a2) <C < 2) vl

2< dapt n
feA(x,I(C]:) o 7Co' ]P<X’E)E'Pcavya(1;(’€)

where C' is some fived positive constant that only depends on 8., M ic, M 4, Cr, C,,

. adapt
and Cy, o, Cr ¢, Ca e in PCV,&,a)-

The following proposition shows that the extra poly-logarithmic term cannot
be removed.

PROPOSITION 13.  Let ¢ 0 := (logn/n?)2/(et1) v n=1/2 for any a > 0 and
positive integer n. Consider any fized positive c, and o, < a1 < ag < 0o. Then,
for any sufficiently large n and sufficiently small fized positive constant c, any
estimator o2 will satisfy that, if

~2 2 2
sup sup sup E((o — 0 )/¢n,a2) <e,
f€May 1(CF) 0?<Co Pix,e) GP:\?,?I;,E)
then
~2 2 2
sup sup sup E((G% - 02)/¢na)” >c
FE€May 1(CF) o2 <Co p(x o ePIIE )

The above two results combined are in line with analogous adaptation results
in quadratic functional estimation [Efromovich and Low, 1996; Cai and Low,
2006].

5. Proof of Theorem 2.

—8a/(4a+1)

Proor. We will only prove the lower bound n in the regime 0 <

L and

a < 1/4 since for o« > 1/4, the rate reduces to the parametric rate n~
the proof is straightforward. Throughout the proof, C' represents a generic suffi-
ciently large positive constant and c represents a generic sufficiently small posi-
tive constant always taken to be smaller than 1/4. Both C' and ¢ only depend on
a,Cr,Cy, C,, Cy, co and might have different values for each occurrence. By ap-
propriately rescaling the parameters in the lower bound construction, without loss
of generality, we assume that the sample size n and the constants Cr, C,, C., Cy

are sufficiently large, ¢ is sufficiently small, and [0,1] C 1.
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We will make use of Le Cam’s two point method. Introduce the following
constants:

(24) 0% .= h20 .= ep~10/Uat)  and N := N, := 1/(6hy),

where we tune the constant ¢ in h, so that N is a positive integer. We now
specify f(+), distribution of X and distribution of ¢ in the null and alternative
hypotheses, Hy and H1, respectively.

Choice of 0?: Under Hy, let 02 =1+ 62. Under Hy, let 0% = 1.

Choice of e: Under both Hy and Hy, let £ ~ N(0,1).

Choice of X: Under both Hy and Hi, let X be uniformly distributed on the
union of the intervals [(6i — 5)h,,, (6i — 1)h,] for ¢ € [N].

Choice of f(-): Under Hy, let f = 0. Under Hy, let f take the value h&r; on
[(66 — 5)hn, (60 — 1)hy,], where {r;}| are N i.i.d. symmetric and bounded
random variables with distribution G satisfying

(25) / 2! G(dx) = / o(x)de, j=1,...,q,
—0o —0oQ

where ¢ is some fixed odd integer strictly larger than 1+ 1/(2«a). Let f be

0 at points 6(i — 1)h,, for i € [N], and then linearly interpolate f for the

rest of the unspecified points on [0, 1].

See Figure 1 for an illustration. In the definition of f(-) under Hj, the existence
of the distribution G is guaranteed by Lemma 1, and the range of {r;}2¥, which
we denote as B, only depends on a.

Clearly, 02 < C, under both Hy and H;. Moreover, f(-) under both Hy and H
belongs to A, 9.1)(CF) due to the boundedness of {r;};*, in H;. Next, we show
that the joint distribution of (X,e) belongs to P, (x.). Condition (d) clearly
holds and Condition (a) holds with I = [0, 1]. Condition (b) holds as well by the
fact that px(u) = 3/2 for u € [(6i — 5)hy,, (6 — 1)hy,] for i € [N] and px(u) =0
otherwise. Lastly, for Condition (c), it holds by the convolution formula that for
any 0 <u <1/2

N i,
e, 0= [oxonste—wa= S [T -

i=[u/(6hn) 417 (67=5)n
Y303 3 1
> 2.2, > 2 > -
- 2 g g Hmzg T mzy
i=[u/(6hn)]+1
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for sufficiently large n. Here, the second inequality follows from the fact that for
any fixed t € [(6i — 5)hy, (60 — 1)hy], px(t) = 3/2 and px(t —u) = 0 on a subset
with Lebesgue measure at most 2h,. By symmetry of )N(ij, Condition (c) also
holds with 6o = 1/2 and Us = [-1,1].

Denote by af,fi,IP’@(X’E), i = 0,1, the choice of o2, f, and P(x ) under Ho
and Hj, respectively. Let m be the distribution on A, ;(Cx) such that f; ~ =.
Moreover, let E,2 FP(x..) TePresent the expectation with respect to the model (2)
with parameters o2, f, P(x ). Then, we have

. ~ 2
1~H2f sup sup sup E(O'2 - 0'2)
g ferz,I(C}') O'QSCU IP)(X,e:)elpcv,(X,s)

: 1 ~2 2 1 ~2 22
= lygf{QEUg,fO»Po,(X,s) (0 -9 ) + 2/E0f7f7[?1,(x,5) (J -7 ) dm(f)

o

. 1 2 n2 1 ~2 2\ 2
=z IEI:IQf{QEU(Q)vaPO,(X,E) (U - ) T §EU%vflvP1,(X,5) (U —7 ) ’

where the first inequality follows by lower bounding the maximum risk with
Bayes risk with prior 7. In what follows, we will use Py and IP; to denote the joint
distribution of {Y;, X;}? ; under Hy and H;, respectively. Note that the choice of
62 in (24) leads to the desired lower bound under the quadratic loss. Therefore,
adopting the standard reduction scheme with Le Cam’s two point method (cf.
Theorem 2.2 in Tsybakov [2009]), it suffices to show that TV(Py,P;) < ¢ < 1. To
show this, let {7;}%, be N i.i.d. standard normal random variables, and P; be
the joint distributions of {X;, Y;}?; under H; with {r;}}¥, replaced by {7;}Y,.
Then, by triangle inequality, we have

TV(Py, Py) < TV(Po,Py) + TV(Py, Py).

We will show TV(Py, P;) < ¢ and TV(P1,P;) < ¢ seperately.

For the first inequality, define @ := (x4, ..., z,), de := dx; . .. dx, and similarly
for y and dy. Denote pg, p1, and p1 as the densities of Py, P1, and IAEBl with respect
to the Lebesgue measure. Then, we have

TV(Po, 1) = ;//|P0(337y) — p1(z, y)|dedy
(26) ~ [st@raa{} [imiy | 2) -ty | <)y}

= /p(m)dajTV(Po(y | 33)7@1(3/ | x))?
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where p(x) := [[I"; px(X;) stands for the common density of {X;}" ; under P
and Py. Note that under Py, y | & ~ N,(0,%0), with g = (1 + 62)I,,. Define
{b;i}?_; to be the location index sequence of {X;}7" ; taking values in [N], that is,

bi = ] if Xi € [(6] - S)hm (6] - 1)hn]

Then, due to the symmetry of {r;})¥.; and design of the nonparametric component
/. it holds that under Py, y | & ~ N;,(0,%1), with (B1)i = 14+ h2* = 1 + 62
and (21);; = h2*1{b; = b;} for i # j. Define Ny := >iz; 1{bi = b;}. Since X4 is
positive definite (see Lemma A5 in the supplement), we have by Lemma 2 that

92
1+ 62

n

TV(Po(y | @), Pi(y | ) < C="> Ng/* < CORNG .
Note that Np is a random variable that depends on {X;}! ;, and by (26) and
Jensen’s inequality we have

TV(Ro,P1) < CO2EN,/? < CO%(ENp)"/2.

Some simple algebra shows that ENy < Cn?h,, thus by choosing a sufficiently
small ¢ in the definition of h, in (24), we have

TV(Po,P1) < CO2nhl/? < c.

To complete the proof, we now show that TV (P, Iﬁ’l) < ¢. Consider an arbitrary
realization of {X;}? ;, and assume that based on their location indices {b;}! ,
{X;}" is partitioned into L clusters with corresponding cardinality s; so that
the X;’s in the same cluster have the same value b;. Apparently, we have the
relations 1 < L < n and Zé’zl s¢ = n. Let mmax be the maximum cluster size,
and define the “good event” €, := {mmax < K}, where K := [2/(1 — 4a)) ]| + 2.
Then, it holds that

TV(Py,Py) = E<ﬂQnTV(P1(U | 2),Py(y | fB)) +E<19%TV(P1(?J | 2),Pi(y | w)))
<E(1o, TVEi(y | 2).Pi(y | @) +B(25).

Under the choice of h,, in (24), N is of the order n? 4+ and

K

Ak = lim n

n—oo KINEK-1 =0

Thus by Lemma 3 (and continuity), it holds that €2,, has asymptotic probability 1
under both P; and P;. As a result, it suffices to upper bound TV(P;(y | ), Pi(y |
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x)) for each realization « in 2, where the maximum cluster size M yax is bounded
by a fixed constant.

Denoting p1 r, and p1 r, for each ¢ € [L] as the joint density of those y;’s in
the ¢th cluster 7y conditioning on the given realization of {X;}!' ; under P; and
]?’1, we obtain that

L L

nylz) —pylz) = leﬂre - Hﬁlﬂw'

(=1 (=1
The above inequality further implies by telescoping that

L
pi(y | 2) —Fuly | )] < Y lpim, — B

/=1
For each ¢ € [L], |p1,x, — P1,x,| only depends on the ¢th cluster through its car-
dinality, which we now control for a general cluster size d > 1. Without loss of
generality, we assume that ¢ = 1 and the y;’s in this cluster are {yi,...,yq} with
common location index b; = 1 for i € [d]. Then, under the choice of 62 in (24),
we clearly have Y; = 0,1 + ¢; under P; and Y; = 6,77 + &; under P, fori € [d],
where the sequence {¢;}¢_; follows the standard normal distribution under both
P; and ]@1. Therefore it holds that

P (Y1, -5 ya) = / o(y1 — 0nv) ... 0(ya — 0,v)G(dv),
ﬁl,m (@/b . 7yd) = / ‘P(yl - 9nv) e SD(yd - 9nv)<ﬁ(v)d0,

where G is the distribution of {r;}, specified in (25). Using the well-known
equality p(t — 0,v) = @(t) (Y reo v*0F Hi(t)/K!) for any t,v, where Hy, is the kth
order Hermite polynomial, it holds that

©(y1 — 0pv) ... ©(ya — Onv)

[e.o]

_ S kg ks Hi (1) Hiy(ya)
- M v v n ..o
1) - - »(ya) . E » i ™
S Hi,(y1)  Hiy(ya)
= (Y1) - »(Ya) E vhok E —a '
k=0 ki4...Akg=k i ! k!

and therefore

PLm (Y1, -5 Yd) — P (Y15 -+ - Ya)
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RUR) ST DI T PRI

k=0 ki+...+kq=k

pd oy Mol Huld) [ g)a),

k=p  kit..tkg=2k

where the second equality follows by the symmetry and moment matching prop-
erty of G in (25) and p := (¢ + 1)/2 is a positive integer. This further yields

L (Y1, Ya) = Prm (Y1, - - Ya)|

yd ZHZ’C Z ‘Hkl(ylﬂ ’de yd / QkG dU

kq!
=p  kit..tkg=2k

2k | Hp, (y1)] ’Hk Z/d \ 2k
yd 29 Z klll' d

=p  kit..tkg=2k

=IT+1I

For term I, since G is compactly supported on [—B, B], one clearly has

[e.e]

Hy, (y1 Hp, (Ya
I<o(n)--olya) Y 62°B* Y | ,;,(, I ;2(1 |
k=p k1. +kq=2k U @

For term II, using the equality [ p(v)v*dv = (2k — 1)!I, with (2k — 1)!! =
(2k —1)(2k — 3)...1, we obtain

HZSO(yO@(yd)i@%k(?k— 1)” Z |Hk1(y1)| ’de(yd)‘

ko ! kg
k=p kit...+kq=2k

We now upper bound [*_|Hj(t)|p(t)dt for an arbitrary positive integer k. When
k is even, as has been calculated in Wang et al. [2008] (cf. chain of inequality
after Equation (19) on Page 662), [*_|Hy(t)|o(t)dt < 2¥/2(k — 1)I1. When k is
odd, set k = 2k + 1, then we have

oo 00 k mt2k+1 2m
Hktgptdt:/ o(t 2k+1' dt
/_oo| (©)]e) —o0 Zom‘ (2k + 1 — 2m)!2m
k (2k +1)! o
S : / | |2k+1_2mg0(t)dt
—o m( (2k +1 — 2m)12m
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\[Z (2k + 12k — 2m)!!
‘ ml(2k + 1 — 2m)!2m
%E: :M+1( m)!!
1(2m + 1)12k—m
k T 262
\[ 2k + i ( )72
- m!(k (2m + 1)!

i ~
2k+1'§:
0

= (2% + 1)1k,

where in the third line we use the fact that [*_[¢|*Flo(t)dt = \/2/7(20)!! for
any positive integer ¢. Define for any positive integer k: [k]; := k — 1 if k is even
and k if k is odd, and [k]y := k/2 if k is even and (k — 1)/2 if k is odd. Then,
the above calculation implies that [ |Hy(t)|¢(t)dt < ([k])"2]2 for any k, and
moreover, it can be readily checked that ([k]1)!!/(k!) = 1/(2¥)2([k]2)!). Therefore,
for term I = I(y1,...,yq), we have

/I(yla---ayd)dyl---dyd
R4

ki 721 32 Z ;<[/{;1]1)”2[’f1]2 ([kd]l)HQ[kd]g

k1+...+kg=2k (k). .. (kg)!

_ % [ 22k 1
_E?”B) N [

kit tkg=2k

Now note that the number of d-tuple (ki,...,kq) such that k1 + ...+ kg = 2k is
upper bounded by (Ck)?, which is further bounded by C* for every k& > 0 with
some sufficiently large C that only depends on d, and for each such tuple, it holds
that

d d d
P IRED TR SR

i=1
thus we have

S (k) (Ral2)y < CF 3 (B! ... (k)L

k1+...+kq=2k k—d/2<k1+..+kq<k
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For the latter quantity, we have by the multinomial identity

Yoo B (! zgn)d+ 1) =1

x1+...+xd+1:k

that

M — Z 1
k! o Z = ‘
ki+..tkgp1=Fk (kl) cee (kd-i-l)'

1
= 2 (k). (k) (k= (k1 + ...+ kq))!

k1+..+kq<k

v

1
2 )l (k) (k — (k1 + ...+ kg))!

k—d/2<k1+...+ks<k

(O NP

k—d/2<ki+...+kq<k

Y

This concludes that

> (O B2)k
/ I(yla---,yd)dy1...dydgﬁip ! SeipeCBQ‘
Rd kz k!

=p
Using a similar argument for 11 = I1(yi,...,y4), we obtain
(27)
N L N ¢ VLB YRS
II(yy,... dyy .. .dyg < TP COR = ———L02%(2C)" < 62PCP
/]Rd (yla ayd) Y1 Yd > kZ:p k! n kZ:p (2k)” n ( ) =Yn

since 2 < 1/C for sufficiently large n.
Putting together the pieces, we have for every realization « in €,

L
_ 7 < _ < 2p(,CB? P
[t 1)ty [ty <3 [ oo =Pl < £ s 02 + 0

< n@ip(eCBz +C%) <ec

Here, the second inequality follows since every |pi ., — p1,r,| depends on the ¢th
cluster only through its cardinality, the third inequality follows since L < n and
K is a fixed absolute constant that only depends on «, and the last inequality
follows due to the choice #2 = h2® = en~4/(o+1) and the value of p. This
completes the proof. ]
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LEMMA 1 (Lemma 1, Wang et al. [2008]). For any fized positive integer q,
there exist a B < oo and a symmetric distribution G on [—B, B] such that G and
the standard normal distribution have the same first ¢ moments, that is,

B 9]
/ /G (dx) = / Hdo(x)de, j=1,...,q
—-B —0o0

LEMMA 2 (Theorem 1.1, Devroye et al. [2018]). If u € R? and £, and 3o
are positive definite d x d matrices, then

1o TV(Na(p, 1), Na(p, 2))
100 = min{1, |27y — Iyl|r}

3
< —-.
-2

For the following lemma, we first introduce some terminology regarding the
multinomial distribution. Let m, M be two positive integers, and the random
vector (f1,..., far) be the multinomial count with total count m and equal prob-
ability (1/M,1/M,...,1/M). Define p := m/M. For any positive integer r > 2,
define \ := )\, := lim,;, oo m"/(r!M"~1). Following Kolchin et al. [1978] (Chapter
2, Equation (11)), we will call the domain of variation m, M — oo, in which

p—0, 0< A <o0

the left-hand r-domain. The following lemma characterizes the asymptotic be-
havior of the maximum frequency f,... defined as maxi<j<ps f;.

LEMMA 3 (Theorem 1 of Section 2.6, Kolchin et al. [1978]). Suppose the
multinomial distribution with total count m and equal probability (1/M, ..., 1/M)
1s in the left-hand r-domain for some positive integer r > 2 with limit A\, then it
holds that

]P)(fmax =Tr-= 1) - eiAr and ]P(fmax = 7') —1— €7AT7
i.e., the mazimum frequency converges asymptotically to a two-point distribution.
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SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Optimal estimation of variance in
nonparametric regression with random design”
(). This supplement contains proofs of remaining results.
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