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Robust Scatter Matrix Estimation for High
Dimensional Distributions with Heavy Tail

Junwei Lu, Fang Han, and Han Liu

Abstract—This paper studies large scatter matrix estimation
for heavy tailed distributions. The contributions of this paper
are twofold. First, we propose and advocate to use a new
distribution family, the pair-elliptical, for modeling the high
dimensional data. The pair-elliptical is more flexible and easier
to check the goodness of fit compared to the elliptical. Secondly,
built on the pair-elliptical family, we advocate using quantile-
based statistics for estimating the scatter matrix. For this, we
provide a family of quantile-based statistics. They outperform the
existing ones for better balancing the efficiency and robustness.
In particular, we show that the propose estimators have compa-
rable performance to the moment-based counterparts under the
Gaussian assumption. The method is also tuning-free compared
to Catoni’s M-estimator for covariance matrix estimation. We
further apply the method to conduct a variety of statistical
methods. The corresponding theoretical properties as well as
numerical performances are provided.

Index Terms—Heavy-tailed distribution; Pair-Elliptical Distri-
bution; Quantile-based statistics; Scatter matrix.

I. INTRODUCTION

Large covariance matrix estimation is a core problem in
multivariate statistics. Pearson’s sample covariance matrix is
widely used for estimation and proves to enjoy certain optimal-
ity under the subgaussian assumption (1; 2; 3; 4; 5). However,
this assumption is not realistic in many real applications where
data are heavy-tailed (6; 7; 8).

To handle heavy-tailed data, rank-based statistics are pro-
posed. Compared to Pearson’s sample covariance, rank-based
estimators achieve extra efficiency via exploiting the dataset’s
geometric structures. Such structures, like symmetry, are nat-
urally involved in the data generating scheme and allow for
both efficient and robust inference. Conducting rank-based
covariance matrix estimation includes two steps. The first step
is to estimate the (latent) correlation matrix. For this, (9), (10),
(11, (12), (13), (14), and (15) exploit Spearman’s rho and
Kendall’s tau estimators. They work under the nonparanormal
or the transelliptical distribution family. The second step
is to estimate marginal variances. For this, (16), (17), and
(18) exploit Catoni’s M-estimator (19). However, Catoni’s
estimator requires to tune parameters. Moreover, it is sensitive
to outliers and accordingly is not a robust estimator.

In this paper, we strengthen the results in the literature in
two directions. First, we propose and advocate to use a new
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distribution family, the pair-elliptical. The pair-elliptical family
is strictly larger and requires less symmetry structure than the
elliptical. We provide detailed studies on the relation between
the pair-elliptical and several heavy tailed distribution families,
including the nonparanormal, elliptical, and transelliptical.
Moreover, it is easier to test the goodness of fit for the
pair-elliptical. For conducting such a test, we combine the
existing results in low dimensions (20; 21; 22; 23; 24) with
the familywise error rate controlling techinques including the
Bonferonni’s correction, the Holm’s step-down procedure (25),
and the higher criticism method (26; 27).

Secondly, built on the pair-elliptical family, we propose
a new set of quantile-based statistics for estimating scat-
ter/covariance matrices'. We also provide the theoretical prop-
erties of the proposed methods. In particular, we show that
the proposed quantile-based methods outperform the existing
ones for better balancing the robustness and efficiency. As
applications, we exploit the proposed estimators for conduct-
ing several high dimensional statistical methods, and show
the advantages of using the quantile-based statistics both
theoretically and empirically.

A. Other Related Works

The quantile-based statistics, such as the median absolute
deviation (29) and the @,, estimators (30; 31), have been used
in estimating marginal standard deviations. Their properties
in parameter estimation and robustness to outliers are further
studied in low dimensions (32). Moreover, these estimators
have been generalized to estimate the dispersions between
random variables (33; 34; 35; 36).

Given these results, we mainly make three contributions:
(i) Methodologically, we propose new quantile-based scatter
matrix estimators that generalize the existing MAD and @,
estimators for better balancing the efficiency and robustness.
(i) Theoretically, we provide more understandings on the
quantile-based methods. They confirm that the quantile-based
estimators are also good alternatives to the prevailing moment-
based estimators in high dimensions. (iii) We propose a projec-
tion method for overcoming the lack of positive semidefinite-
ness, which is typical in the robust scatter matrix estimation.
This approach maintains the efficiency as well as robustness to
data contamination, while the prevailing SVD decomposition
approach (36) cannot.

Of note, the effectiveness of quantile-base methods is being
realized in other fields in high dimensional statistics. For

I'The scatter matrix is any matrix proportional to the covariance matrix. See
(28) for more details.
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example, (37), (38), and (39) provide analysis on the penalized
quantile regression and show that it can handle the case that
the noise term is very heavy-tailed. Our method, although very
different from theirs, shares similar properties.

B. Notation System

Let M = [M;;] € R¥>? be a matrix and v =
(vl,...,vd)T € R? be a vector. We denote v; to be the
subvector of v whose entries are indexed by a set I C
{1,...,d}. We denote M ; to be the submatrix of M
whose rows and columns are indexed by I and J. For
0 < g < oo, we define the £y, £,, and ¢, vector (pseudo-
Jnorms to be ||v]lg = 2?21 I(v; # 0), ||y =
(3551 [vg[9)Y/%, and [[v]|ee = maxi<j<alvy|. Here I(:)
represents the indicator function. For a matrix M, we
denote the matrix ¢;, ¢max, and Frobenius {g-norms of
M to be [[M|l; = max|y|,—1 Mol [[Ml|lnax =
max;, |[Mjx|, and |[M[[e = (3, [Mjx[*>)'/?. For any
matrix M € R%¥? we denote diag(M) to be the diagonal
matrix with the same diagonal entries as M, and I € RIxd to
be the d by d identity matrix. Let A;(IM) and u;(IM) represent
the j-th largest eigenvalue and the corresponding eigenvector
of M, and (M, M) := Tr(M7 M) be the inner product of
M, and M. For any two random vectors X and Y, we write
X 2vifand only if X and Y are identically distributed.
Throughout the paper, we let ¢,C' be two generic absolute
constants, whose values may vary at different locations.

C. Paper Organization

The rest of the paper is organized as follows. In the next
section we provide the theoretical evaluation of the impacts
of heavy tails on the moment-based estimators. This motivates
our work. Section III proposes the pair-elliptical family, and
reveals the connection among the Gaussian, elliptical, non-
paranormal, transelliptical, and pair-elliptical. In Section IV,
we introduce the generalized MAD and @, estimators for
estimating scatter/covariance matrices. Section V provides the
theoretical results. Section VI discusses parameter selection. In
Section VII, we apply the proposed estimators to conduct mul-
tiple multivariate methods. We put experiments on synthetic
and real data in Section VIII, more discussions in Section IX,
and technical proofs in the appendix.

II. IMPACTS OF HEAVY TAILS ON MOMENT-BASED
ESTIMATORS

This section illustrates the motivation of quantile-based
estimators. In particular, we show how moment-based esti-
mators fail for heavy tailed data. These estimators include the
sample mean and sample covariance matrix. Such estimators
are known to be efficient under stringent moment assump-
tions (5). However, their performance drops down when such
assumptions are violated (40; 9).

We characterize the heavy tailedness by the L, norm. In
detail, for any random variable X € R and integer p > 1, we
define the L, norm of X as

1X|lz, = (BIX[P)7.

The random variable X is heavy tailed if there exists some
p > 0 such that
and || X]||L ., = oc.

p+1

1Xl, <K < oo for g <p,

The heavy tailedness of X is measured by how large p could
be such that the p-th moment exists.

In the following we first provide an upper bound of the
sample mean. It illustrates the “optimal rate but sub-optimal
scaling” phenomenon.

Theorem IL1. Suppose X = (Xi,...,Xg)7 € R? is
a random vector with the population mean p. Assume X
satisfies || X;||z, < K, where we assume d = O(n”) and
p = 2+42v+4. Letting @ be the sample mean of n independent
observations of X, we then have, with probability no smaller
than 1 — 2d=2° — (log d)P/?n=9/2,

log d
17 = plloo < 12K - /255,

Theorem II.1 shows that, for preserving the Op(+/logd/n)
rate of convergence, p determines how large the dimension d
can be compared to n. For example, when at most (4 + €)-th
moment exists for X for some € > 0, the sample mean attains
the optimal rate Op(y/logd/n) under the suboptimal scaling
d = 0O(n).

The results in Theorem II.1 cannot be improved without
adding more assumptions. Via a worst case analysis, the next
theorem characterizes the sharpness of Theorem II.1.

Theorem II.2. For any fixed constant C, p = 2 + 2y with
v >0, and d = n"t% for some &y > 0, there exists certain
random vector X, satisfying

|[Xil|z, < K, for some absolute constant K > 0

and all ¢ < p, such that, with probability tending to 1, we

have

Clogd

i — plloo = :
n

Theorems II.1 and Theorem IL.2 together illustrate the con-
straints of applying moment-based estimators to study heavy
tailed distributions. This motivates us to consider alternative
methods that are more efficient in handling heavy tailedness.

III. PAIR-ELLIPTICAL DISTRIBUTION

In this section, we introduce the pair-elliptical distribution
family. We first briefly review several existing distribution fam-
ilies: Gaussian, elliptical, nonparanormal, and transelliptical.
Then we elaborate the relations between the pair-elliptical and
aforementioned families.

A. Multivariate Distribution Families
We start by first introducing the elliptical distribution. The

elliptical family contains symmetric but possibly very heavy
tailed distributions.

Definition IIL.1 (Elliptical distribution, (41)). A d-
dimensional random vector X is said to follow an elliptical
distribution if and only if there exists a vector u € R?, a
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nonnegative random variable £ € R, a matrix A € Rdxa
(g < d) of rank ¢, a random vector U € RY uniformly
distributed in g-dimension sphere S?~! and independent from
&, such that

X2 pu+eAvU.

In this case, we represent X ~ FECy(u, S, &), where S :=
AAT is of rank q.

Remark ITL.2. An equivalent definition of the elliptical distri-
bution is: Any random vector X ~ ECy(p, S, €) is elliptically
distributed if and only if the characteristic function of X is of
the form exp(it” )¢ (t7'St), where i is the imaginary number
satisfying i2 = —1, ¢ is a properly defined characteristic
function, and there exists a one to one map between ¢ and
¢. In this case, we represent X ~ ECy(u,S, ). Moreover,
when the elliptical distribution is absolutely continuous, the
density function is of the form g((x — p)TS™'(z — p)) for
some nonnegative function g(-). In this case, we represent
X ~ ECd(N’? S7g)

Although elliptical distributions have been extensively ex-
plored in modeling many real world data, including financial
(42; 43; 44; 45) and imaging data (46; 47), it can be quite
restrictive due to the symmetry constraint (48). One way to
handle asymmetric data is to exploit the copula technique.
This results to the transelliptical family (meta-elliptical family)
proposed and discussed in (49) and (8). Below we give the
formal definition of the transelliptical distribution in (8).

Definition IIL.3 (Transelliptical distribution, (8)). A continu-
ous random vector X = (X1,..., X,)T follows a transellip-

tical distribution, denoted by X ~ TE4(X° &; f1,..., fa), if
there exist univariate strictly increasing functions fi,..., f4
such that

(fl(Xl)7"'7fd(Xd))TNECd(0720a§)7 (IIII)

where diag(2") = I; and P(¢ = 0) = 0.

In particular, when

(fr(X1), ..., fa(Xa)T

X follows a nonparanormal distribution (50; 9). Here X9 is
called the latent generalized correlation matrix.

~ N4(0,%%), where diag(X") =1,

B. Fair-Elliptical Distribution

In this section we propose a new distribution family, the
pair-elliptical. Compared to the elliptical and transelliptical,
the pair-elliptical distribution is of more interest to us. Specif-
ically, it balances the modeling flexibility and interpretability
in covariance/scatter matrices estimation.

Definition IIL.4. A continuous random vector X =
(X1,...,Xq)T is said to follow a pair-elliptical distribution,
denoted by X ~ PEy(w,S,¢), if and only if any pair of
random variables (X, X)) of X is elliptically distributed.
In other words, we have

(X, Xi)" ~ ECy (M{j,k-}v S{m}&m},ﬁ)

for all j # k € {1,.

As a special example, a distribution is said to be pair-normal,
written as PNy(, S), if any pairs of X is bivariate Gaussian
distributed.

It is obvious that the pair-elliptical family contains the
elliptical distribution family. Moreover, the elliptical is a strict
subfamily of the pair-elliptical by considering the following
example.

Example IIL5. Let f(X;, X2, X3) be the density function
of a three dimensional standard Gaussian distribution with
median 0 and covariance matrix I3, and X = (X1, Xo, X3)T
be a 3-dimensional random vector with the density function

2f(X1, X2, X3), if X1XpX352>0,
0, otherwise.
(1I1.2)

The distribution in Example III.5 with density in (IIL.2)
is bivariate Gaussian distributed for any pairwise marginal
distributions, and therefore belongs to the pair-elliptical family.
On the other hand, this distribution is marginally Gaussian
distributed but not multivariate Gaussian distributed, and ac-
cordingly cannot be elliptically distributed.

Example II1.5 also shows that the pair-elliptical distribution
can be asymmetric. Moreover, the pair-elliptical distribution
has a naturally defined scatter matrix S, which is proportional
to the covariance matrix X when E&? exists. This makes
the pair-elliptical compatible with many multivariate methods
such as principal component analysis and linear discriminant
analysis.

The rest of this section focuses on characterizing the rela-
tions among the Gaussian, ellipticalz, transelliptical, nonpara-
normal, pair-elliptical, and pair-normal families. Recall that in
this paper we are only interested in the continuous distributions
with density existing. It is obvious that the Gaussian family is
a strict subfamily of the elliptical, and the elliptical is also
a strict subfamily of both the transelliptical and the pair-
elliptical. The next proposition shows that the only intersection
between the elliptical and the nonparanormal is the Gaussian.

g(leXQ;XB) = {

Proposition I11.6 ((14)). If a random vector is both nonpara-
normally and elliptically distributed, it must follow a Gaussian
distribution.

In the next proposition, we show that the only intersection
between the transelliptical and the pair-elliptical is the ellipti-
cal.

Proposition IIL.7. If a random vector is both transelliptically
and pair-elliptically distributed, it must follow an elliptical
distribution.

We defer the proof of Preposition III.7 to the appendix.
In the end, let’s consider the relation among the pair-normal
and all the other distribution families. By definition, the pair-
normal is a strict subfamily of the pair-elliptical. On the other
hand, the next proposition shows that any random scaled
version of the pair-normal is pair-elliptically distributed.

’In the rest of this section we only focus on the continuous elliptical
distributions with P(§ = 0) = 0. And we are only interested in those whose

coyd}lﬁ:ﬁ(ﬂﬂ%{& §n@ﬁ tire (entity.
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transelliptical
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Fig. 1. The Venn diagram illustrating the relations of the Gaussian, el-
liptical, nonparanormal, transelliptical, pair-normal, and pair-elliptical
families. Here “elliptical*” represents the continuous elliptical family
with P(¢ =0) = 0.

Proposition IIL.8. Let Y ~ PNy(u,S) follow a pair-normal
distribution. Then for any nonnegative random variable £ with
P(¢ = 0) = 0 and independent of Y, we have X = /' + &Y
follows a pair-elliptical distribution.

In the end, we have the following proposition, which
characterizes pair-normal’s connections to the elliptical and
nonparanormal distributions.

Proposition IIL.9. For the pair-normal, elliptical, and non-
paranormal distributions, we have
(i) The only intersection between the pair-normal and ellip-
tical is the Gaussian;
(i) The only intersection between the pair-normal and non-
paranormal is the Gaussian.

In conclusion, the Venn diagram in Figure 1 summarizes
the relation among the Gaussian, elliptical, nonparanormal,
transelliptical, pair-normal, and pair-elliptical. From the figure,
we can see that the Gaussian distribution locates in the central
area whose covariance can be well estimated by the sample
covariance matrix. The transelliptical covers the left-hand
side of the diagram, where we advocate using rank-based
estimators to estimate the covariance matrix. The pair-elliptical
covers a new regime on the right-hand side of the diagram,
where we will introduce the quantile-based estimators for
estimating the covariance matrix.

C. Goodness of Fit Test of the Pair-Elliptical

This section proposes a goodness of fit test of the pair-
elliptical. The pair-elliptical family has its advantages here:
Both the transelliptical and elliptical require global geomet-
ric constraints over all covariates; In comparison, the pair-
elliptical only requires a local pairwise symmetry structure,
which could be more easily checked. In this section, we
combine the test of elliptical symmetry proposed in (24) with
the step-down procedure in (25) for performing the pair-
elliptical goodness of fit test.

Specifically, we propose a test of pair-elliptical:

Hj : The data are pair-elliptically distributed. (IIL.3)

The proposed test is in two steps: In the first step, we test the
pairwise elliptical symmetry; In the second step, we use the
Holm’s step-down procedure to control the family-wise error.

In the first step, we apply the statistic proposed in (24)
for testing pairwise elliptical symmetry. Let Z and X be
the sample mean and sample covariance of {Z;}7 ;. We
standardize the data by letting Y; := =312z, - Z) and
t(Z;) = \fY/wl where Y] : (Y1 +Yi2)/2 and w? :=
Z?Zl(Y —Y;)? for i = 1,...,n. Under Hy, we have

t(Z;) = ty for i = 1,...,n, where t; is the ¢ distribution
with degree of freedom 1. To study the goodness-of-fit of the
t-distribution, we define M := [y/n], where [-] represents the
integer part of a real number and F := n/M. Let Ty be the
¢/M x 100% quantile of the ¢; distribution for { =0, ..., M,
where Ty := —oo and Th; := 4o0o. We also denote the
observed frequency Oy = [{t(Z;) : Ty—1 < t(Z;) < Ty}
for 1 < ¢ < M. (24) consider the following Pearson’s chi-
squared test statistic:

M 2

-y oA

=1

Z({Zi}) -

By its nature, Z({Z;}) is asymptotically chi-squared dis-
tributed with degrees of freedom M — 1.

In the second step, we screen the data to find whether
there is any pair {X;, X} that does not follow an elliptical
distribution. Considering the following null hypothesis for any
1<,k <d:

ij : {X

;s X1} are elliptically distributed, (I111.4)

we use the Holm’s step-down procedure (25) to con-
trol the family-wise error rate. Denote the p-values of
Z({(Xij,Xik)}) as mj and let m, i be the rank statistic of
7k, such that

mjg = |{7Tj/k/ ‘Wj/k/ < Tk, 1< jl,kl < d}|
The Holm’s adjusted p-values are defined as

Wﬁc = max{l—(l—ﬂj/k/)tﬂk’ | mj < mjk,j’,k/}, (II1.5)

2(;?57:)1). Applying the adjusted p-values,
we reject Hjy, if wﬁc is smaller than the level of significance
a. Let wo := {(j,k) | Hj, in (IIL4) is true, 1 < j # k < d},

(25) shows that we can control the family-wise error rate as

where ¢, = 1 —

P, (wﬁc < « for some (j,k) € wo) <a.

Under the setting of goodness of fit test and Hy in (II1.3), we
have wo = {(4,k) |1 < j # k < d} and therefore

Py, (ﬂ'ﬁc < « for some j # k:) < a.

IV. QUANTILE-BASED SCATTER MATRIX ESTIMATION

This section introduces the quantile-based scatter matrix
estimators. To this end, we first briefly review the existing
quantile-based estimators, including MAD and @,, proposed
in (29) and (30). Secondly, we generalize these two estimators
for estimating scatter matrices. Thirdly, we introduce the
projection idea for constructing a positive semidefinite scatter
matrix estimator.
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A. Robust Scale Estimation

This section briefly reviews the robust estimators of the
marginal standard deviation. To this end, we first define the
population and sample versions of the quantile function. For
any random variable Z € R and fixed value r € [0,1], let
Q(Z;r) represent the r x 100% quantile of Z:

Q(Z;r) :=inf{z:r <P(Z < 2)}.

The r x 100% quantile is said to be unique if and only if
there exists one and only one z € R such that P(Z < z) =
r. Letting ZW < .. < Z(M) be the ordered statistics of

i.i.d. data Z1,...,2, 2 Z, we define the empirical version of
Q(Z;r) as
@({Zi};r) .= Z* ") where k* := argmin {i > r}.
n

ie{l,...,n}
aIv.1)

We then introduce the standard deviation estimators based
on the quantiles. These include the median absolute deviation
(MAD) and @,, estimators. MAD is defined as follows:

Z;i — @({Zi}; %) }l %)

where ¢MAP is the constant making its population counter-
part the standard deviation. In general, cMAP is different
for different distributions. MAD is robust to outliers with
1/2 breakdown points (32), but has relatively low efficiency
compared to the sample standard deviation under the Gaussian
model.

To improve the efficiency while preserving the robustness,
the @,, estimator is proposed:

Q,, estimator : ¢ - @({|Z, — Zi/|} 3 1/4),

i<

MAD estimator : ¢MAP . @({

MA

where ¢® is another constant comparable to MAP. Q,, is
known to be more efficient than MAD.

B. Robust Scatter Matrix Estimators

In this section, we propose our approach for estimating the
scatter matrix. This is via generalizing the aforementioned
quantile-based scale estimators.

Assume Xi,...,X, are n independent observations of
a d-dimensional random vector X = (Xi,...,X4)7 with
X; = (Xil,...,Xid)T. We first propose to estimate the
marginal standard deviations by generalizing the MAD and @,
estimators. Specifically, we define generalized median absolute
deviation (gMAD) as follows: For the j-th entry of X, the
population and sample versions of gMAD are:

gMAD : o™ (Xji7) = Q(IX; — Q(X;;1/2)[;7),
M(Xjir) = Q(IXiy — QUXi 113 1/2)]57).

Here the median is replaced by the r x 100% quantile®. We
then define the generalized (), estimator (gQNE) using the

IV.2)

3Later we will show that using the 7-th quantile instead of the median can
potentially increase the efficiency of the estimator, in the cost of losing some
robustness though.

same idea. The population and sample versions of the gQNE
for the j-th entry of X are:

gQNE : UQ(XﬁT) = Q(|X] — )A(:j|;7‘),
52X r) = QUIXy — XurslyicisT),

where X := ()?1, .. ,)?d)T is an independent copy of X. It
is easy to check that, when setting » = 1/2 and r = 1/4 in
(IV.2) and (IV.3), we recover the median absolute deviation
(MAD) and @,, estimators. This explains why we call them
the generalized MAD and @, estimators. Of note, for any j €
{1,...,d}, we have median(X; — X ;) = 0. Therefore, gQNE
is a generalization to the gMAD estimator without requiring
estimating the medians.

For estimating the scatter matrix, besides estimating the
marginal scales, we also need to estimate the dispersion
between any two random variables. For this, we follow the
idea in (33). We first remind that

(IV.3)

Cov(X,¥) = § [{o(X + )} ~ {o(X = ¥)¥*],

where for any random variable Z, o(Z) represents the pop-
ulational standard deviation of Z. We then define the robust
estimators of the dispersion between X and Y based on gMAD
and gQNE as follows:

aM(X,Y5r) = %[{UM(X +Y;m)})2 - {oM(X - Y;T)}ﬂ;
P, Yim) = 3[04 Vi~ (00 - viny]

Let oM(X,Y) and 69(X,Y;r) be the corresponding em-
pirical versions. For any d-dimensional random vector X =
(X1,...,X4)T, we then define the d by d robust gMAD and
gQNE scatter matrices RM" = [R ;"] and RY" = [R?lf] as
follows: For any j € {1,...,d} and k < j, we write

R%;T = (e™M(X;;7))?, R?/,i"' = Rllz/;-"' = o™ (X;, Xi;7);

RY" = (0°(X;5m)° R =R = 0(X;, Xisr).
In the later section we will show that RM:" and R®" are
indeed scatter matrices under the pair-elliptical family. Let
RM:" and R¥" be the empirical versions of RM" and RY"
via replacing o™ () and 09(-) by 5™ (-) and 72(-). RM" and
RQ" are the proposed robust scatter matrix estimators.

There are two remarks. First, we do not discuss how to
select r in this section, which will be stugied in more details
in Section VI. Secondly, we note that RM™ and RQ" are
both symmetric matrices by definition. However, they are not
necessarily positive semidefinite. We will discuss this issue in
the next section.

C. Projection Method

In this section we introduce the projection idea to overcome
the lack of positive semidefiniteness (PSD) in robust covariant
matrix estimation. It is known that when the dimension is close
to or higher than the sample size, the robust covariance matrix
estimator can be non-PSD (28). To illustrate this, Figure 2
shows the averaged least eigenvalue of the MAD scatter matrix
estimator under the standard multivariate Gaussian model, with
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Fig. 2. The plot of the averaged least eigenvalues of a MAD scatter
matrix (i.e., RM'/2) against the dimension d ranging from 2 to 200.
Here the n = 50 observations are coming from the standard Gaussian
distribution with dimension d, and the simulations are conducted with
100 repetitions.

the sample size n fixed to be 50 and the dimension d increasing
from 2 to 200.

The lack of PSD can cause problems for many high di-
mensional multivariate methods. To solve it, we propose a
general projection method. In detail, for arbitrary non-PSD
matrix estimator R, we consider the projection of R to the
positive semidefinite matrix cone:

R = argmin ||M — f{H, (Iv.4)
M>0

where M > 0 represents that M is PSD and || - || is a

certain matrix norm of interest. For any given norm || - ||,

a computationally efficient algorithm to solve (IV.4) is given

in Supplementary Material Section K.

Due to reasons that will become clearer later, we are
interested in the projection with regard to the matrix element
wise supremum norm || - [|ymax in (IV.4). Of note, R and R
have the same breakdown point because R is independent of
the data conditioning on R. Moreover, we have the following
property about R.

Lemma IV.l. Let R be the solution to (IV.4) with certain
matrix norm || - || of interest. We have, for any ¢ > 0 and
M € R™? with M = 0,

P(IR-R| =) <P(|R-R| > 3).

Of note, (36) propose an alternative approach to solve the
non-PSD problem. Their method exploits the SVD decom-
position of any given non-PSD matrix. However, Maronna’s
method is not a robust procedure and is sensitive to outliers.
More specifically, Figure 3 shows the averaged distance be-
tween the population scatter matrix and three different scat-
ter matrix estimators: the possibly non-PSD MAD estimator
(denoted by “MAD”), the PSD estimator calculated by using
Maronna’s SVD decomposition idea (denoted by “SVD”),
and the PSD estimator calculated by our projection idea
with regard to the || - ||max norm (denoted by “Projection”).
Figures 3 (A) and (B) illustrate the results regarding a standard
Gaussian distributed data (i.e., the data follow a Ny4(0,1,)
distribution) with 2% and 5% points being randomly chosen

(A) 2% Contamination (B) 5% Contamination
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Fig. 3. The plot of the averaged estimation erros of the MAD
("MAD”) and PSD scatter matrix estimators using the projection and
SVD decomposition ideas (denoted by “Projection” and ”SVD”). The
distances are calculated based on the || - ||max norm and are plotted
against the dimension d ranging from 2 to 100. Here the sample
size is 50 and observations are coming from a standard Gaussian
distributed data with dimension d, and 2% and 5% data points are
randomly chosen and replaced by +N (3, 3) or —N (3, 3). The results
are obtained based on 200 repetitions.

and replaced by +N (3,3) or —N (3, 3). It shows that the PSD
estimator obtained by projection is as insensitive as the MAD
estimator (and their estimation accuracy is very close). On the
other hand, Maronna’s method is very sensitive to such data
contamination.

V. THEORETICAL RESULTS

This section provides the theoretical results of the proposed
quantile-based gQNE and gMAD scatter matrix estimators.
The section is divided into two parts: In the first part, under the
pair-elliptical family, we characterize the relations among the
population gQNE, gMAD statistics and Pearson’s covariance
matrix; In the second part, we provide the theoretical analysis
for gQNE and gMAD estimators.

A. Quantile-Based Estimators under the Pair-Elliptical

In this section we show that the population gMAD and
gQNE statistics, RM™ and RO, are scatter matrices of X
when X is pair-elliptically distributed.

We first focus on gMAD. The next theorem characterizes a
sufficient condition under which RM:" is proportional to the
covariance matrix. It also quantifies the scale constant cM:”
that connects RM:" to the covariance matrix.

Theorem V.1. Suppose that X = (Xi,...,X4)7 is a d-
dimensional random vector with the covariance matrix X €
R%%4_ Then there exists some constant ¢™" such that

RM;r _ CM;TE’

if for any j # k € {1,...,d},

K G o
(B )
G = i LA
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and the above quantiles are all unique.

We then study gQNE. The next theorem gives a sufficient
condition under which R®" is proportional to the covariance
matrix and again quantifies the scale constant ¢,

Theorem V.2. Suppose that X = (Xi,...,X4)T is a d-
dimensional random vector with the covariance matrix 3 €
R%4 Let X be an independent copy of X and Z =
(Zy,...,Z3)T := X — X. Then there exists some constant
cQ" such that

R = CQ;TE,

if forany j £k € {1,...,d},

/2 = Q(’a(ZZjJ) ;7") - Q(’a(ZZJJ—:-ZZkk) ‘;T)
i)

and the above quantiles are all unique.

For any random variable X € R, Y is said to be the
normalized version of X if ¥V = (X — Q(X,1/2))/0(X).
Accordingly, we have that (V.1) holds if the normalized
versions of X;, X; + X}, and X; — X, are all identically
distributed, and (V.2) holds if the normalized versions of
Zj, 2 + Zy, and Z; — Zj, are all identically distributed.

The next theorem shows that (V.1) and (V.2) hold under the
pair-elliptical family.

Theorem V.3. For any pair-elliptically distributed random
vector X ~ PE4(u,S,€), we have both RM™ and RY"
are proportional to S. In particular, when E£? < oo, we have
both RM:" and R®" are proportional to the covariance matrix
Cov(X) and

= (afxa

(V.3)
where X and Z; are the normalized versions of X; and Z;.

Remark V4. Theorem V.3 shows that, under the pair-
elliptical family, RM" and R®" are both proportional to
Cov(X) when the covariance exists. Of note, by Theorems
V.1 and V.2, RM" or R®" is proportional to Cov(X) as
long as (V.1) or (V.2) holds, and therefore can be applied to
study potentially much larger family than the pair-elliptical.

B. Theoretical Properties of gMAD and gONE

This section studies the estimation accuracy for the pro-
posed scatter matrix estimators RM and RY". We show
that the proposed methods are capable of handling heavy-
tailed distributions, and shed light towards robust alternatives
to many multivariate methods in high dimensions.

Before proceeding to the main results, we first intro-
duce some extra notation. For any random vector X =
(X1,...,Xq)T and any j # k € {1,...,d}, we denote
FL],FL], Fojky Fojge, Fi, ko and Fj,; 1, to ‘be the distribution
functions of X;,|X; — Q(X;;1/2)|, X; + X, | X, + X —
QX +X; 1/2)|,Xj*Xk’ and |X1*Xk*Q(Xer; 1/2)].

) e =afa( 7))

We suppose that, for some constants 1 and 7; that might scale
with n, the following assumption holds:

(A1) —F;(y) > m,

min
{i.ly—Q(F1,5;1/2) <k} dy

d
—Fi(y) > m,
{J:ly— Q(Fl J7’)|<Hl} dy ( ) !
d

{i#k,ly— Q(Fz es1/2)|<m1} dy

d
—F >,
k. ly— Q(szkr\<,.;1}dy ok (y) = m
d

n
Uk ly—Q(Fay 151/2) | <rn} dy
d

min —
{7k, ly—Q(Fay g nir) | <r1} dy

27, k(y) 2 m,

Fs.6(y) > m,
Fsjk(y) > m,

where for the random variable X with distribution function
F, we denote Q(F';r) := Q(X;r). Assumption (A1) requires
that the density functions do not degenerate around median
or the r-th quantiles. It is easy to check that Assumption
(A1) is satisfied when we choose 7;' = O(\/||Z|lmax) for
Gaussian distribution. Based on Assumption (Al), we have
the following theorem, characterizing the estimation accuracy
of the gMAD estimator.

Theorem V.5 (gMAD concentration). Suppose that Assump-
tion (A1) holds and «; is lower bounded by a positive absolute
constant. Then we have, for n large enough, with probability
no smaller than 1 — 24032,

HﬁM;r,
max{g( logd + log(1/«) N 1)27

n3 n n

4/ TR [ (\/1ogd+log(1/a) +l)},

m

RM7 || pax <

In particular, when X is pair-elliptically distributed with the
covariance matrix 3 existing, we have, with probability no
smaller than 1 — 2402,

R —
6 logd +log(1/a) =~ 1\2
max{nf%( T — +E);
M;r )
4/]1M7 B[ imax (\/logd+log(l/a) +l)}
n n

m

MTE | max <

Theorem V.5 shows that, when k1,71, ||2||max, and ™"
are upper and lower bounded by positive absolute constants,
the convergence rate of RM" with regard to the || - ||max
is Op(y/logd/n). This is comparable to the existing results
under subgaussian settings (See, for example, Theorem 1 in
(4) and the discussion therein).

We then proceed to quantify the estimation accuracy of
the gQNE estimator RO, Let X = (X1,...,Xa)T be
an independent copy of X. For any j # k € {1,...,d},
let G J,Gg k> and G, 3,5,k be the distribution functlons of
X5 X, 1X;+ X5 — (X;+Xp)], and | X;— X5, — (X; - X5).
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Suppose that for some constants ko and 7o that might scale
with n, the following assumption holds:

d

A2 min —
(42) {ly=Q(Gryir)|<na} dy

Gu;i(y) > 2,

d

{i#k,ly— Q(sz ki) <rz} dy

d

min 7G3;',k Z 2.
{3#k,ly—Q(Gsyj k)| <r2} dy ! W) zn

—Gak(y) > n2,

Provided that Assumption (A2) holds, we hal/e the following
theorem. It gives the rate of convergence for R®" with regard
to the element-wise supremum norm.

Theorem V.6 (gQNE concentration). Suppose that Assump-
tion (A2) holds and k4 is lower bounded by a positive absolute
constant. Then we have, for n large enough, with probability
no smaller than 1 — 8¢,

||ﬁQ;r _ RQ;eraX <
2 21 log(1 1\2
max{g(\/ og d + log( /oz)+7) ’

Up n n

2/ [TRE [ (\/210gd+10g(1/a) + l)}

2
In particular, when X is pair-elliptically distributed with the
covariance matrix 3 existing, we have, with probability no
smaller than 1 — 8,

IR —

CQ;TZ‘ |max S
2

2logd + log(1 2
(\/ ogd + log(1/a) +7> 7
772 n n

2/ S o /21 Tog(1 1
V[ X] (\/ 0gd+n0g( /a)+g)}.

72

max {

Similar to Theorem V.5, when r2, 72, ||2||max, and ¢
are upper and lower bounded by positive absolute constants,
the convergence rate of R®" is Op(y/logd/n). Theorems
V.5 and V.6 imply that, under the pair-elliptical family, the
quantile-based estimators RM:" and R9™ can be good alter-
natives to the sample covariance matrix.

Remark V.7. Consider the Gaussian distribution with the
diagonal values of X lower bounded by an absolute con-
stant. Then, for any fixed r € (0,1) and lower bounded
Ki,t = 1,2, Assumption (Al) and (A2) are satisfied with
0yt ny b = O(y/|[=||max)- This implies that

HﬁM;T—cM;T’EHmaX:OP(HEHmax\/W)

and Hl?{Q”—cQ”EHmaszp<||E||maxw/logd/n>.

Corollary V.8. Under Assumptions (Al) and (A2), we have
with probability no smaller than 1 — 2402,

||ﬁM;T _

max{%( logd—f—fg(l/a) _~_%)27

(\/logd+log(1/a) n l)}
m n n

and with probability no smaller than 1 — 8a,

HﬁQ;r _ RQ;r”mEX <

maX{nQ (\/210gd+nlog(1/a) N 5)2,
2
VIR [ imax (\/QIOgd+log(l/a) N l)}

Up)

RM7|| o <

VI. SELECTION OF THE PARAMETER r

Theorems V.5 and V.6 show that the estimation accuracy of
gMAD and gQNE estimators depends on the selection of the
parameter r. In particular, the estimation error in estimating
RMi™ and RO is related to 7)1, 72 and ™7, ¢, On the other
hand, r determines the breakdown points of RM" and R,
Accordingly, the parameter r reflects the tradeoff between
efficiency and robustness.

This section focuses on selecting the parameter 7. The idea
is to explore the parameter r that makes the corresponding
estimator attain the highest statistical efficiency, given that the
breakdown point is less than a predetermined critical value.
Using Theorems V.5 and V.6, we have ||[RM:" /cM:r §]||rnax
and ||[RQ"/cQr — 3 ||max are small when 7;VeM and

12V Q" are large. Therefore, we aim at finding a parameter
r such that the first derivatives of {Fy.;, Fb.jx, F.jk} or
{G1.j, G2k, Gsjr } in a small interval around r times v/ ¢Ms7
or V¢ is the highest.

To this end, we separately estimate the derivatives and the
scale parameters VcM" and V7. First, we estimate the
derivatives of {Fl;j,FQ;j,k,Fg;j,k} or {Gl;j7G2;j7k,G3;j7k}
using the kernel density estimator (51). For example for
calculating the derivate of Fl;j, we propose to use the data
points:

X1 — QUXi 1y, 1/2)); - QU{Xij 11, 1/2)|-

After obtaining the density estimators { T Fogs f 3;]‘,1@} or
{G1.5, G2:5.k> G3:5.1 }» We calculate the estimators ¢ and ¢
of M and ¢®" by comparing the scale of the standard
deviation and its robust alternative (either gMAD or gQNE) for
any chosen entry. We denote the emplncal cumulative densities

to be {F1 s Fa. M,ng % and {Gl,j,Gg,M, ng k} We also

denote their inverse function as {F1 ],FQJ k,Fg g, k} and

{GIJ’G;] k> 3] k:}
In the end, we define the statistics

s |an -

Let RM" and RO" be the solutions to (IV.4). According
to Lemma IV.1, we can also establish the concentration for
RM:™ and R,

1 1 -1
" = Ve min {(Frs (Fr(0)s Faga (Faia®): T (Faga )
0% = Vo win {51y (G} (). oy (G} (1), B (G (1) -
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Fig. 4. The plot of the averaged estimation accuracy for the gMAD
and gQNE estimators (with » = 0.25 to 0.95 and a selected r using
the procedure described in Section VI). The distances are calculated
based on the || - ||max norm and are plotted against the dimension d
ranging from 2 to 100. Here the n = 50 observations are coming from
standard Gaussian or multivariate ¢ distributed data with dimension
d. The results are obtained based on 200 repetitions.

?M

The estimators and 79 are then obtained as:

™= Truncate( arg max ¢""; 61, 52) ,
r€[0,1]

Q= Truncatc(arg max ¢%"; 6y, 52); (VLD)

rel0,1]

where §1,0- are two pre-defined constants and for any v €
[0, 1], we write

01, if v <6y,
Truncate(v; 41, d2) 1= v, if 01 < v < da,
02, if v > 0,.

Here we control the range of r € [d1, J2]. This is for making
the procedure robust and stable. Based on the empirical results,
we recommend setting §; = 0.25 and d = 0.75. In practice,
we can also compare different values of ¢™M" and ¢,
and then choose one that achieve the best balance between
estimation accuracy and robustness.

To illustrate the power of the proposed selection procedure,
let’s consider the following cases: Each time we randomly
draw n = 50 i.i.d. standard Gaussian or multivariate ¢ (with
degrees of freedom 5) distributed data points with dimension
d ranging from 2 to 100. We explore the gMAD and gQNE
estimators with different quantile parameter r and scale all
the scatter matrices such that their population versions are the
covariance matrix. We repeat the experiments for 200 times.
Figure 4 illustrates the averaged estimation errors with regard
to the || - ||max norm. It shows that the procedure using the
selected parameter r has the averagely smallest estimation
error.

VII. APPLICATIONS

We now turn to various consequences of Theorems V.5 and
V.6 in conducting multiple multivariate statistical methods in
high dimensions. We mainly focus on the methods based on
the gQNE estimator, while noting that the analysis for the
methods based on the gMAD estimator is similar.

A. Sparse Covariance Matrix Estimation

We begin with estimating the sparse covariance matrix in
high dimensions. Suppose we have

i.4.d.

X1, Xo,..., X, """ X € R? with covariance matrix 3.

Our target is to estimate the covariance matrix X itself.
Pearson’s sample covariance matrix performs poorly in high
dimensions (52; 53). One common remedy is to assume
that the covariance matrix is sparse. This motivates different
regularization procedures (2; 54; 55; 3; 56; 57).

We focus on the method in (56) to illustrate the power
of quantile-based statistics. This method directly produces
a positive definite estimator and does not require any extra
structure for the covariance matrix except for sparsity. The
model we focus on is:

MEOV=Q(Z:5) = {X e MYUZ): \g(T) >0
and card({(j,k) : X;x # 0,5 # k}) < s}.

Motivated by the above model, we solve the following opti-
mization equation for obtaining the estimator X:

- 1, ~
3 =argmin - ||Z - M||% + )\Z M, ], s.t. Ag(M) > e,
M=mT 2 ik
(VIL1)

where 3 can be any positive semidefinite matrix based on the
quantile-based scatter matrix estimator for approximating the
covariance matrix, A is a tuning parameter inducing sparsity,
and € is a small enough constant. Here we focus on using
the gQNE estimator for generating the positive semidefinite
matrix 3. For estimating the covariance instead of the scatter
matrix, we need an extra efficient estimator of the scale
parameter ¢". Here ¢ is described in Theorem V.2. When
the exact distribution of the pair-elliptical is known, the value
c¥" could be theoretically calculated using (V.3). On the
other hand, when the exact distribution is unknown, we note
that estimating ¢®" is equivalent to estimating the marginal
standard deviation for at least one entry X; of X. The
proposed procedure then is in four steps:

1. Calculate the positive semidefinite matrix RO

R := argmin ||R — RY"[|max. (VIL2)
R>0
Equation (VIL.2) can be solved by a matrix maximum
norm projection algorithm. See Supplementary Material
Section K for details.
2. Choose the j-th entry with the lowest empirical fourth
centered moments and use the sample standard deviation
0; to estimate o(X}).
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- Qr py R /52 ~
3. Estimate ¢¥" by R /5%, and estimate 3 by
52

sQr _ RO

= RQ . (VIL3)

4. Produce the final sparse matrix estimator Qi by plug-
ging £7 into (VILI):

£ — argmin 7|57 - M} + A Y M.
J#k
s.t. Ag(M) > ¢, where we prefix ¢ to be 107° as
recommended in (56).

We then provide the statistical properties of the quantile-based
estimator 9" as follows.

Corollary VIL.1. Suppose that X1,...,X,, are n indepen-
dent observations of X € M“OV-Q(%;s) and the assump-
tions in Theorem 4.2 hold. We denote

. 4 4logd +log(l/a)  1\2
¢ = max{n%(\/ - +5) )
4/ S [max (\/4logd+log(1/a) N 1)}

72 n n/)’

and

G = max{ng( WW)Q’

QY og(1l/a
D)

(1) We have, with probability no smaller than 1 — 8a,
IRY" — R | 0 < C.

(VIL4)

@) If IEX;-1 < K for some absolute constant K, then there
exists an absolute constant c; only depending on K, such
that when n is large enough, with probability no smaller than
1—n=% — 120,

~ —1/2+¢ 1 )
= (2L LG
R —¢ ¥ RY -
. (HRQ;T“maX + C) + Cé;r . (VILS)

(iii) If X takes the same value as the right-hand side of (VIL5),
then with probability no smaller than 1 —n~2¢ —12a, we have

|ZQ" — B||p < 5A(s 4 d)/2.
In the following, for notation simplicity, we denote
—1/24¢ 1 Cj

c1n
i = (o)
RQ —¢ Qs R;Q] —¢
(IR |max +¢) + é (VIL6)
s
Corollary VII.1 shows that, when nl,cQ”,HZHmax, and

min; 3;; are upper and lower bounded by positive absolute

constants, via picking A > 1(r, 7, £, ) = O(y/log d/n), "
approximates X in the rate

||§;Q;T —

Sl OP( (s—|—d)logd),

n

which is the minimax optimal rate shown in (58) and the
parametric rate obtained in (56).

Remark VIL.2. Following the steps introduced in this section,
we could similarly calculate RQ7, Q7 and T for the
gMAD estimator R

Remark VII.3. For handling heavy tailed data, the quantile-
based and rank-based methods are intrinsically different. The
rank-based estimator first calculates the correlation matrix,
then estimate the d marginal variances via employing Catoni’s
M-estimator. However, for the quantile-based estimator, as
(VIL.3) shows, we only need to estimate one marginal variance.
Moreover, the tuning in Catoni M-estimator is unnecessary.

B. Inverse Covariance Matrix Estimation

This section studies estimating inverse covariance matrix.
Suppose X1, Xo,..., X, are i.i.d. copies of X € R? with
covariance matrix X. We are interested in estimating the
precision matrix ® := X!, Precision matrix is closely
related to graphical models and has been widely studied in
the literature: (59) propose a neighborhood pursuit method;
(60), (61), (62), and (63) apply penalized likelihood methods to
obtain the estimators; (64) and (40) propose graphical Dantzig
selector and CLIME estimator; (10) and (9; 14) generalize the
Gaussian graphical model to the nonparanormal distribution,
and (14) further generalize it to the transelliptical dlstrlbutlon

In this section, we plug the covariance estimator SQr
(VIL.3) into the formulation of CLIME proposed by (40) and
obtain the precision matrix estimator:

O%" = are max ®
@ngxdzl il

subject to ||2Q””@ — Tj|lmax < A (VIL7)

The CLIME estimator in (VIL.7) can be reformulated as d
linear programming (40). Let A be a symmetric matrix. For
q € [0,1), we define [|A[lg 1= max; ), [A;;|?. Consider-
ing the set

Sa(g, s, M) :={0 :[|O[[1,0c <M and [|®]|y0c < s},

= N =

the following result gives the estimation accuracy of the
precision matrix.

Corollary VIL4. Assume that @ = 7! € Sy(q,s, M) for
some ¢ € [0,1) and the tuning parameter in (VIL7) satisfies
A Z H®||1,oow(/rvj7£7a)a

where ¥(r,j,&, a) is defined in (VIL6). Then there exist
constants C', Cy such that

||(:)Q;r — Oy < CysA 1, ||(:)Q;r _
and || ©@Q" —

ellmax S ||®||17oo)\
O||2 < CysdA2.

If 01, %", || || max, and min; X;; are all upper and lower
bounded by absolute constants, we choose A = O(4/logd/n),
and Corollary VII.4 gives us the rate

6 - 1= 0, () ),

18" = ©nax = Op (
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and

biee -l <on () 7)

According to the minimax estimation rate of precision
matrix estimators established in (65), the estimation rates in
terms of all the above three matrix norms are optimal.

C. Sparse Principal Component Analysis

In this section we consider conducting principal component
analysis (PCA) and sparse PCA. Recall that in (sparse) prin-
cipal component analysis, we have

i.4.d.

X1,Xo,..., X, "~ X € R? with covariance matrix 3,

and our target is to estimate the eigenspace spanned by the
m leading eigenvectors uq, ..., u,, of 3. The conventional
PCA uses the leading eigenvectors of the sample covariance
matrix for estimation. In high dimensions where d can be much
larger than n, a sparsity constraint on w1, . . . , U,, iS sometimes
recommended (66), motivating a series of methods referred to
as sparse PCA.

In this section, let U,, := (u1,...,u,) € R¥™ represent
the combination of eigenvectors of interest. We aim to estimate
the projection matrix IT,, := U,, UL . The model we focus
on is:

MPCA=Q(3: 5 ) o= {X e MYD):

d m
Zz(zuij + o) < 5 A (E) = A1 (D) > o},
j=1 k=1
where ug; is the j-th entry of wj and A, (3) is the m-th
largest eigenvalue of 3. Motivated from the above model,
via exploiting the gQNE estimator, we propose the quantile-
based (sparse) PCA estimators (Q-PCA) as the optimum to
the following Fantope projection problem (67):

9" = argmax Tr(IITRY7) — A|IT

HeRdXd
subject to 0 < IT < I; and Tr(IT) = m, (VILS8)

where [[IIfi1 = >0 < x<q/Mjk| and A = B implies
B — A is a positive semidefinite matrix. Intrinsically ﬁ%r
is the estimator of the eigenspace spanned by the m leading
eigenvectors of RY". Because the scatter matrix shares the
same eigenspace with the covariance matrix, under the model
MPCAQ(S: 5 m), TIZ™ is also an estimator of IT,,,. We then
have the following corollary, stating that the Q-PCA estimator
achieves the parametric rate of convergence in estimating II,,
under the model MPCAQ(E; 5, m).

Corollary VIL5. Suppose that X1,...,X,, are n indepen-
dent observations of X € MFPCA-Q(X;5,m) and the as-
sumptions in Theorem V.6 hold. If the tuning parameter in
(VILB) satisfies A > 9(r, j, €, o) (reminding that v (r, j, €, )
is defined in (VIL.6)), we have

1,1,

4sA
(2) = A1 (B)
Corollary VILS5 shows that, under appropriate condi-

tions, the convergence rate of the Q-PCA estimator is
Op(sy/logd/n), which is the parametric rate in (67).

IS~ Thu s < 5
m

D. Discriminant Analysis

In this section, we consider the linear discriminant analysis
for conducting high dimensional classification (68; 69; 70; 71;
72; 12). Let data points (X1,Y7),...,(X,,Y,) be indepen-
dently drawn from a joint distribution of (X,Y"), where X €
R? and Y € {1,2} is the binary label. We denote I; = {i :
Y; = 1}, IQ = {Z : Y; = 2}, and ny = |11|,7’l2 = ‘I2| Define
T=B(Y = 1),y =E(X | Y = 1), s = E(X | ¥ = 2),
Y=Cov(X |Y =1) =Cov(X | Y = 2). If the classifier
is defined as h(x) = I(f(x) < ¢) + 1 for some function f
and constant ¢, we measure the quality of classification by
employing the Rayleigh quotient (17):

(B | V])
Var{f(X) —E[f(X) | Y]}

For the linear functions f(x) = 37 x+c, the Rayleigh quotient
has the formulation

Rq(f)

18" (p1 — pa2)]?
Rq(B) = (1 - W)W
The Rayleigh quotient is minimized when 3 = (B* =

Sy — po). When X|(Y = 1) and X|(Y = 2) are
multivariate Gaussian distribution, it matches the Fisher’s
linear discriminant rule hr(x) = I(x?3* + ¢*) + 1, where
c* = (1 + p2)TB*/2. In order to estimate B3* and c*, we
apply the estimator proposed in (71):

BY" = argmax 18],
BeRY

subject to ||§Q”ﬁ — (1 — 2)||max < A,

(VIL9)

where i1, (o are some estimators of g1, po.

In the following, we suggest two kinds of estimators of
the mean vectors. For simplicity, we only describe the es-
timator for p; and similar procedures can also be applied
to estimate po. Suppose that Xi,...,X,, correspond to
Y = 1. The first estimator for g is the sample median
fine = (Tinaas- -, finea) T where

,l/j\,Mj = median({le, N 7Xn1j})'
Due to the Hoeffding’s inequality, we can derive that
there exists some constant c,, that P(|in;, — pj| >

em/log(1/6)/n) <6 forany j =1,...,d.

(19) proposes an alternative M-estimator for p;. Consider-
ing a strictly increasing function h such that —log(1 — y +
y?/2) < h(y) < log(1 + y + y?/2) and some 6 € (0,1)
satisfying n > 2log(1/4), v > max{c?,...,03}, we define

ozg _ 21og(1/0)
2vlog(1/6 :
(v + n72l§é({/z)§))

The estimator fic = (Jic1, - - -, fica)’ is obtained by solving

the equation:

Zh(%(xij —icj)) = 0.

i=1
It is shown in (19) that there exists some constant C' such that
with probability at least 1 — (n vV d)~', P(||ic; — pejll® >
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%&{%)) < ¢ forall j = 1,...,d. By union bound, for

both estimators we have

logd

s = e V llic = mlle = Op (1) 2%). (VILIO)

n

Therefore, we have the following result on how well the
Rayleigh quotient of estimated classifier can approximate the
optimal one.

Corollary VIL6. We assume that n; =< ng, Ay = (1 —
po)TB3* > M for some constant M > 0. If we choose the
tuning parameter in (VIL.9) that A > ||i1 — iz — p1 + 2|0 +

w(raja€7a)“ﬁ*| 1, W have
BQr
m > 1—2M Y| [F0(r, 4, € o) —20M N[ 871

According to the rate in (VIL10), if 71, ¢, ||2||max. and
min; 3;; are universally bounded from above and below by
positive absolute constants and ||3*||; is also upper bounded
by a constant independent of d and n, we choose the tuning
parameter A = O(4/logd/n) and obtain the rate through
Corollary VIL.6 as

Rq(BY")
Rq(B*)

The above result matches the parametric rate in (71).

21_0( logd).

n

VIII. EXPERIMENTS

This section compares the empirical performance of
quantile-based estimators to these based on the Pearson,
Kendall’s tau, and Spearman’s rho covariance estimators for
both synthetic and real data. Since for synthetic data analysis,
conducting inverse covariance estimation and sparse PCA has
reflected the quality of matrix estimation very well, these two
methods are the main focus for synthetic data. For the real
data, on the other hand, we aim to apply our methods to the
classification of genomic data.

A. Synthetic Data

This section focuses on conducting inverse covariance ma-
trix estimation and sparse PCA. Let {oy,...,04} be the
sample standard deviations of X. Let ST, SK and S be the
Pearson’s, Kendall’s tau and Spearman’s rho sample corre-
lation matrices. We compare 39" and ™" introduced in
Section VII-A* to three covariance matrix estimators:

1) Pearson’s sample covariance matrix: Efj = 0,0, Sfj, for
i,j=1,...,d,; R R

2) Kendall’s tau covariance matrix: 25 = a-ajsg, for
ij=1,....d: A ~

3) Spearman’s rho covariance matrix: X, = ;5;S7;, for
ij=1,...,d.

Moreover, given a covariance matrix 3, we consider the
following three schemes for data generation:
e Scheme 1: X4,...
N, d(O, E),

, X, are iid. copies of X ~

4Here the parameter r is set as in Section VI with d; and d2 to be 0.25
and 0.75.

TABLE I
COMPARISON OF THE GMAD, GQNE, PEARSON’S, KENDALL’S TAU AND
SPEARMAN’S RHO COVARIANCE ESTIMATORS COMBINED WITH THE
CLIME AND SPARSE PCA (SPCA) ALGORITHMS. THE ESTIMATION
ERRORS OF CLIME ESTIMATORS ARE IN TERMS OF FROBENIUS NORMS.
THE ESTIMATION ERRORS OF SPCA ESTIMATORS ARE IN TERMS OF
[[TI1 — II1||p. THE ERRORS ARE AVERAGED OVER 100 REPETITIONS
WITH STANDARD DEVIATIONS IN THE PARENTHESES.

Scheme 1 Scheme 2

d 100 200 500 | 100 200 500
547 629 882 | 773 906 11.00

eMAD
022)  (028) (0.60) | (0.64) (0.80) (0.92)
(ONE | 475 542 753 | 758 876 1095
“ 020)  (0.19) (022) | (0.68) (0.79) (1.03)
S eeon | 475 538 739 | 777 895 1137
= 022)  (022) (026) | (0.82) (1.05) (1.45)
S el | 338 635 884 | 847 1001 1334
023)  (025) (029) | (055 (0.62) (0.66)
Spearman | 436 549 760 | 799 017 1133
020)  (020) (030) | (0.64) (0.78) (1.04)
035 041 048 | 048 053 060
gMAD 1 023)  (027)  (026) | (025) (025 (027)
GONE | 019 025 034 | 037 043 047
0.16)  (024) (026) | (026) (026) (0.29)
S bewson | 017 020 031 | 078 080 091
£ : ©.14)  (020) (028 | (027) (023) (0.16)
endal | 020 023 032 | 045 053 058
©.15)  (020) (028 | (0.30) (0.28) (0.30)
Spearman | 021 025 034 | 046 054 057
0.16) (023) (0.28) | (032) (028) (0.29)

e Scheme 2: X,..., X, are ii.d. copies of X following
the multivariate ¢-distribution with the degree of freedom
5and Cov(X) =X

In the following, we plug the five covariance matrix estima-
tors into the inverse covariance estimation procedure discussed
in Section VII-B and the sparse PCA procedure in Section
VII-C.

1) Inverse Covariance Matrix Estimation: We consider the
numerical performance using the setting in (40). Let 2 =
(Wij)i<ij<d = 3! represent the inverse covariance matrix.
We consider 2 = B + 0I;. Each off-diagonal entry of B
is independent and of the value 0.5 with probability 0.1 and
the value 0 with probability 0.9. The value ¢ is chosen such
that the condition number of € is d. The diagonal of X is
renormalized to be ones.

We generate the data under the three schemes with dimen-
sions d = 90, 120, 200, sample size n = 100, and repetition
time 100. We measure the estimation error by Frobenius norm
|3 — 3||g. The numerical results are presented in Table I.

2) Sparse PCA: We use the setting in (13) to investigate
the numerical performance of the sparse principal component
analysis. We consider the spike covariance ¥ = A\jvjvf +
Aovavd 4+ 14, where Ay = 5 and Ny = 2, v = 1/4/10 for
j=1<4<10,v; =0 for j > 10 and vo; = 1//10 for
11 < 5 <20, vo; = 0 otherwise. The data sample size is n =
50 for d = 90, 120, 200 with repetition 100 times. We measure
the difference between the true projection matrix Il = vy vl
and its estimator IT; through (VIL8) by the Frobenius norm
|[II; — II;||r. The results are given in Table 1.
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3) Summary of Synthetic Data Results: From the numer-
ical results summarized in Table I, the gMAD and gQNE
covariance estimators perform better than other estimators
for both CLIME and sparse PCA under Scheme 2 and
Scheme 3. This implies that gMAD and gQNE have better
performance in studying heavy-tailed distributions and con-
taminated data. This is due to the advantage that only one
variance is required to be estimated in (VIL.3), while the
other covariance estimators demand variance estimators for
d covariates. Moreover, gQNE outperforms gMAD estimator.
This matches the assertion that gQNE is more efficient than
gMAD. Under the Scheme 1, since the synthetic data fol-
low Gaussian distribution, the sample covariance estimator is
efficient and outperforms the gMAD and gQNE covariance
estimators. However, the performance is still comparable even
under this scheme.

B. Genomic Data Analysis

In this section, we apply the method introduced in Section
VII-D to the large-scale microarray dataset, GPL96 (73). The
dataset contains 20,263 probes with 8,124 samples belonging
to 309 tissue types. The probes correspond to 12,679 genes
and we average the probes from same genes. The tissue types
include prostate tumor (148 samples), B cell lymphoma (213
samples), and many others. The target of our real data analysis
is to compare the performance of classifying the prostate tumor
from the B cell lymphoma by using gMDA, gQNE, and other
estimators. We only focus on the top 1,000 genes of the largest
p-values in performing the marginal two-sample t-test.

First, we consider the goodness of fit test of the pair-
elliptical. Our goal is to select genes such that their corre-
sponding data from both tissue types are approximately pair-
elliptical separately. Then we apply the linear discriminative
classifier in (VIL9) to the selected genes for classification.
Specifically, let { X}, be the dataset corresponding to the
prostate tumor. We employ the goodness of fit test proposed
in Section III-C by calculating the statistic Z({(X;;, Xx)})
for each pair of 1 < j # k < d. The Holm’s adjusted p-values
{Wﬁc};’l,kzl are evaluated according to (IIL.5). We delete any
gene j if there exists another gene k such that the adjusted p-
value ﬂﬁ < a = 0.05. All the left ones are the selected genes
for the prostate tumor. Same procedures are also applied to
the dataset of B cell lymphoma. The final screened genes are
the intersection of the selected genes for both categories. In
the end, the number of selected genes is 225.

Figure 5 illustrates the results for the above procedure
corresponding to the prostate tumor. In detail, Figure 5(A)
reports the histogram of the test statistics Z({(X;;, Xix)})
for all pairs of genes corresponding to the prostate tumor.
The curve in the figure is the density of Y2 distribution
with degrees of freedom [/n] — 1 = 11. Figure 5(A) shows
that the empirical distribution of the statistics is close to the
x? distribution. Figure 5(B) illustrates the histogram of the
Holm’s adjusted p-values for all pairs of genes. Figure 5(B)
shows that we do not reject the goodness of fit test of the
pair-elliptical for most pairs of genes in the dataset. We select
the pair of genes with the largest p-value and denote the pair

TABLE II
MEANS (STANDARD DEVIATIONS IN THE PARENTHESES) OF
CLASSIFICATION ERRORS ON GPL96 FOR PROSTATE TUMOR AND B CELL
LYMPHOMA BY APPLYING THE GMAD, GQNE, PEARSON’S, KENDALL’S
TAU AND SPEARMAN’S RHO COVARIANCE ESTIMATORS TO THE LINEAR
DISCRIMINATIVE CLASSIFIER WITH 100 REPLICATIONS.

eMAD  gQNE  Pearson Kendall Spearman
0.055 0.059 0.134 0.099 0.098
(0.003)  (0.004)  (0.003)  (0.007) (0.005)

as (j*, k*). Figure 5(C) reports the estimated density function
of the t-statistics from the selected pair {¢((X;j+, Xir+)) iy
versus the density of the ¢-distribution with degree of freedom
1. The density function is estimated by kernel density estimator
with bandwidth A = 0.4. We see that these two distributions
are close to each other.

Secondly, we plug the samples of these selected genes to
the linear discriminative classifier in (VIL.9). To compare the
classification errors for different covariance estimators, each
time we randomly select 74 samples from the prostate tumor
and 74 from the B cell lymphoma as the training dataset.
For the training dataset, we divide each category into two
parts randomly: One is to derive the classifiers from different
covariance estimators by (VIL.9) and the other is for tuning
the parameters of the first part by minimizing its classification
error. The rest samples are applied as the testing dataset to
calculate the final classification error. The above steps are
repeated for 100 times. We summarize the classification errors
in Table II. The errors reported in Table II demonstrate that
the gMAD and the gQNE estimators significantly outperform
the other estimators in the GPL96 dataset. This indicates the
power of quantile-based statistics in high dimensions.

IX. DISCUSSION

This paper studies estimating large scatter matrices for high
dimensional data with possibly very heavy tails. We propose a
new distribution family, the pair-elliptical, for modeling such
data. The pair-elliptical is more flexible than the elliptical. We
also characterize the relation between the pair-elliptical and
several popular distribution families in high dimensions. Built
on the pair-elliptical family, we advocate using the quantile-
based approaches for estimating large scatter and covariance
matrices. These procedures are both statistically efficient and
robust compared to their Gaussian alternatives.

In the future, it is of interest to investigate the performance
of the quantile-based methods when the data are not inde-
pendent. Studies of moment-based and rank-based approaches
under high dimensional dependent data include (74) and (75).
However, their proof techniques cannot be directly applied to
analyze the quantile-based estimators.

All the results in this paper are confined in parameter
estimation and focus on nonasymptotic analysis. In the future,
we are also interested in studying the asymptotic properties of
quantile-based estimators under the regime that both d and n
go to infinity.
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Fig. 5. (A) The histogram of Z({(Xj;, X;)}) for the pairs of genes
for the prostate tumor and the curve is the density function of x31: (B)
The histogram of the Holm’s adjusted p-values for the prostate tumor
and the red dashed line is the significance level « = 5%; (C) The
estimated density of {¢((X;;=, Xix+))}i=1 (black solid line) versus
the density of ¢ (red dashed line) for the pair of genes with largest
p-value of the statistic Z({(X;, Xix)}).

APPENDIX

Lemma A.1. For any continuous random variable X € R with
the distribution function F' and any n independent observations
Xiq,..., X, of X, we have for any ¢ > 0,

P(IQU{Xi}im) — Q(X;m)| > 1)
< exp ( —on[F{FY(r)+t} —r— ”71]2>

+ exp ( —2n[r — F{F~(r) - t}]2>7

whenever F{F~(r)+t} >r+n!

Proof. Let F;, denote the empirical distribution of X7, ..., X,
and F1(r) := Q({X;};r). By the definition of Q(;-) in
(IV.1), we have for any € € [0,1],

e < Fo(Fl(e) <e+

This implies that

We have
P[%iI{XZ<F (ry+t} <r+ ]
i=1
:P[iiI{X1<F (1) + 1} — F{F1(r) + 1}
gr:}L—F{F ()+t}]

Because EI{X; < FY(r)+t} = P(X < FY(r)+1t) =
F{F~Y(r)+t} and I{X; < F~!(r)+t} € [0,1] is a bounded
random variable, by Hoeffding’s inequality, we have

P{QUXi}im) - Q(Xir) >t

< exp ( —m[F{F () +t} —r — n*l]z), (A.1)

as long as t is large enough such that F{F~1(r) + t} >

rJrn’l.

On the other hand, we have

P{OUXi}im) - QX
SP{T<F{F Yr) -t}

:IPEZI{Xi <F () -t} > r]

Then again, exploiting the Hoeffding’s inequality as above, we

have
P{QUX:}im) - Q(Xi7) < —t}
< exp ( —2nfr — F{F~!(r) — t}]Q). (A2)

Combining (A.1) and (A.2), we have the desired result. [

Lemma A.2 (gMAD concentration inequality). Letting X &€
R be a one dimensional continuous random variable. We
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denote F; and F5 to be the distribution functions of X and
|X — Q(X;1/2)|. Then we have for any ¢t > 0,

P(J5"(Xs7)
<2exp (=20 [F{F(1/2) +1/2} - % - %}2)4-
2 exp ( - 2n[% R {FY(1)2) - t/2}}2)+
exp ( —2n[FofF ) 4 4/2) —r — ')
texp ( —on [r — B{F; Y (r) - t/2}]2),

—oM(X; 1) >t>

whenever Fy { F; 1 (1/2)+t/2}—1/2 > 1/n and Fo{F, *(r)+
t/2}y —r>1/n.

Proof. By definition, we have for any ¢ > 0,

IP’( (X;r)— (X;r)>t)
=#(Q[{[x-a{ta g}
~offx-e(xig)fr}>o)
We denote v := Q(X;1/2) and 7 := Q({X,};1/2). We then
have
IP’(EM(X, )—JM(X-T)>t)

~ol}r) = Q(IX —vlir) > ¢}
{1X; —V|},r)—|—|1/—y\ (‘X—y‘7r>>t}
{|X _V|}77") Q(|X—V|,r) >t/2}

IA
g B =
/—’H/—/‘ﬂ/—/‘ﬂ
O
AA/—\

+P(lv—v|>t/2).
—_————

B

On the other hand, we have
B (3 (X 1)~ oM(Xir) < 1)
= P{Q({1x; - 7lhr) - Q(IX —vl.r) < 1]
LU —vhr) =17 v = Q(IX —vl.r) < 1}
P{O(11X: — vlhr) = Q(IX —vl.7) < —t/2}

Az
FP(P -] > t/2).
—_—
B

Using Lemma A.1, we have

B< exp(_ Qn[Fl{Fl—l(l/Z) +1/2) — % B %r)

reoxp (- 2n[% _R{FN(1)2) - t/2}r).

Moreover, we have
= p{|Q(0x: - vyr) - @(1X ~vl.r)| > 5}
< exp ( —2n [FQ{FQ_l(T) +t/2} —r— %} 2)

+ exp ( - Qn{r — B {F5 ' (r) _t/2}r>’

where we remind that F} and F5 represent the distribution
functions of X and |X — Q(X;1/2)|. Finally, using the fact
that

Al + Ay

P(‘EM(X;T)

we have the desired result. O

—UM(X;T)‘ > t) < Ay + Ay + 2B,

Lemma A.3 (gQNE concentration). Let X € R be a one
dimensional continuous random variable and X be an inde-
pendent copy of X. Let G(-) be the distribution function of
|X — X|. We then have

P(FAX;7) = o UX:7)| > ) < exp (= nlG{G (1) + 1}

—r— nil]z) + exp ( —nlr—G{G™(r) — t}]2),
whenever G{G~!(r) +t} >r+n~!
Proof. We denote Z := | X — X|. By definition, we have
P(jo%(X;r) — 0¥ (X5m) > 1)
=PIQUIX: = X;l}icysr) — Q(Z7)[ > ).
Similar as in the proof of Lemma A.l, we have
P{QUIX: = X;lhicsir) = Q(Z57) = t
2 1
<P|—— < < —1.
_P[n(n S HIXi- X <G )+ < v+ -]

z<j

By Hoeffding’s inequality in U-statistics (c.f., Equation (5.7)
in (76)), we have

P{OUIX: = X;lhicssr) — Q(Zi7) > t

< exp ( —n[G{GT () +t} -7 — n—1]2), (A3)

where we remind that G represents the distribution function
of Z. Similarly, we have

P{QUIX: = Xjlhicsir) — Q(Zi7) < —t]
< exp ( —n[r —G{G7(r) — t}]z).
Combining (A.3) and (A.4), we have the desired result. [

(A4)

A. Proof of Propositions II1.7, 111.8, and I11.9

Proof of Proposition I1l.7. Consider a pair-elliptically dis-
tributed random vector X = (Xi,...,X4)7

~ PE4(p,S,&). If X is also transelliptically distributed,
by definition, there exists a set of univariate strictly in-
creasing functions f = { fJ _, such that f(X) :=
(fi(X1),. .., fa(Xa))T ~ EC’d(O 30 &) for some gener-
ating variable ;. Because X has the same Kendall’s tau
correlation matrix as f(X), without loss of generality, we can
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assume S = XY, Accordingly, the margins of X follow the
same distribution. Combined with the fact that the margins of
f(X) are identically distributed, we have the transformation
functions f; = fo = = fq = fo. The desired result follows
by considering the followmg two cases. If \2 | =1 for all

J. ke {l,...,d}, then we have X7 = (£) X2 =+ = (£) Xy
almost surely. This, combined with the fact that X are pair-
elliptically distributed, implies that X is elliptical distributed.
Otherwise, if there exists j # k such that [X%| € (0, 1), then
without loss of generality, we assume j = 1,k = 2 and let
p = X% = 0. Because (X1, X2)7 is elliptically distributed,
we then have
X2|X1 7p2,£/1)7

for some generating variable £}, which implies that

median(X»|X; = X;) = pXy

median(fo(X2)[fo(X1) = fo(X1)) = fo(pX1).
On the other hand, because (fo(X1), fo(X2))T
distributed, we also have

Jo(X2)| fo(X1) = fo(X1) ~ EC1(pfo(X1),1007, &),

for some generating variable &5, which implies that

median(fo(X2)|fo(X1) = fo(X1)) = pfo(X1).  (A.6)

Combining Equations (A.5) and (A.6), we have for all X; € R,
fo(pX1) = pfo(X1), implying that fo(x) = ax for some
a € R. This further implies that X ~ EC4(0,a%X" &) is
elliptically distributed. O

= X1 ~ ECl(le,].

(AS5)
is elliptically

Proof of Proposition I11.8. By definition, any pair in Y satis-
fies

(Y5, i)™ 2 €GAU ~ No(pagj i3, S i (k)
where ¢ = rank(Sgjy(jky), A € R?*9 with AAT =
Sijk} k- U € RY uniformly distributed in S77%, and &3,
follows a chi square distribution with degree of freedom gq.
This further implies that any pair in X satisfies

(X5, Xp)" = €Y, V)T ~€-&o - AU,
and accordingly is elliptically distributed. This verifies that X
is pair-elliptically distributed. O

Proof of Proposition II1.9. Because the margin of a pair-
normal is normally distributed and the only elliptical distri-
bution that has normal margins is the Gaussian, we have the
first assertion is true. We then prove the second assertion.
Suppose that Y = (Y7,...,Yy)? is pair-normally as well as
nonparanormlly distributed. Then for any j € {1,...,d}, Y] is
normally distributed. Moreover, because Y is nonparanoram-
Ly distributed, we have f;(Y;) ~ N (0, 1). This implies that f;
is a linear transformation. Therefore, Y is Gaussian distributed
because f1,..., fq are linear. O

B. Proofs of Lemma IV.1

Proof. Since R is the minimizer of (IV.4), we have
IR-R| <|R-R],

which implies P(|R —R| > t) <P(|R-R[|+|R-R| >
t) <P(JR-R| >1). O

C. Proofs of Theorems II.1

Proof of Theorem II.1. Let Xq,...,
observations of X € R? with X; = (X;1,...,
Chebychev’s inequality, we have

P(| X5 = 8) < (/11 X5llz,) "
Let’s cut X;; into two parts:
Yvij = Xij ]l(|X”| 2 6) and Yv-*-

We have |Y;% —EY;%| is upper bounded by 2¢ and its variance
has the property

X, be n independent
X1L). By

= Xy 1(|Xi5] < e).

Var(Y;;) <E(Y;5)? < [1X5l[7, <[1X4l7, = K>
Accordingly, by Bernstein’s inequality, we have
1/8 - nt?
—EY}) > 1/2) <exp (- i)
( QY3 R)sew(—m sy
For Y;;, we have
P(Yi; #0) = P(|Xi| > €) < (¢/K)™P
and
E|X ,|P KP
IEY;;| = [EX; 1(| X450 =€) < epi,”l = oo
Accordingly, for any e such that
KP/eP™1 < t/2, (A7)

we have for any j € {1,...
1

(3]
LS x>
1

<rb<f‘ Y,

<r(13

yd,

)+ 5w o)

1/8 - nt?
< -t .
72exp( 2+1/3-et)+”P(Eﬂ7AO)
1/8 - nt?
< A — -p
_2exp( 2+1/3.€t)+n(e/K)

This yields that
Pl plloe > 1) <d-B(| 230 Xy | > 1)

<d- (Qexp ( - m> + n(e/K)*p).

Taking t = 12K - y/logd/n and e = K - \/n/(logd), as long

as logd/n = o(1), we have

1/8 - nt?
K2+ 1/3 et
It is also straightforward to verify that for such chosen ¢ and
€, we have KP/eP~1 < t/2 as long as p > 2.

For the second term, we have

log(ne - K?) =logn — ploge + plog K

=logn — p(log K + 1/2logn — 1/2loglogd)) + plog K

= (—p/2+41)logn + p/2loglogd.

2d exp < — ) < 2d7%5.

So for large enough p and K, we need to have

logd + (—p/2 + 1) logn + p/2loglogd — —oc.
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Thus, letting p = 2+ 2y 4+, for d = O(n?), with probability
no smaller than 1 — 2d=2% — (log d)?/?n=%/2, we have

_ logd
18— plloo < 12K/ ——.

This completes the proof. O

Proof of Theorem 11.2. Consider the distribution X =
(X1,...,X4) with X;,..., X, independent and identically
distributed. For reasons that will be clear later, we can set
C =1 and consider

1

P(X; = v/nlogd) = §(nlogd)_p/2,
1

P(X; = —y/nlogd) = i(nlogd)*pﬂ,

and P(X; = 0) = 1 — (nlogd)~"/2. (A.8)

We then have p = 0 and || X,[|r, — I(q = p)+o00-1(q > p).
Moreover, letting

o :=B(|iu| > \/logd/n)
>1-P(X;=...= X, =0)

> n(nlogd)™"/2(1+ o(1)), (A9)

we have

P/l — plloe = V/log d/n)

— da— (§)a® + (d)a’ — - --
=1-(1-a)

When p = 2 + 2y and d = 1% with §; > 0 and some
0 < §1 < dg, we have

nYtd0

(1-a)< (1 —n""(log d)*p/z)

1 nYt%0
- n’Y+51

Accordingly, with probability tending to 1, we have

<(1/e"""" 0.

Iz — pllsc > V/logd/n.
When C # 1, we can replace all terms /nlogd in Equation
(A.8) with v/Cnlogd and all the proofs can follow. O]

D. Proofs of Theorems V.1 and V.2

Proof of Theorem V.1. For j = 1,...,d, we denote p; :=
Q(X;;1/2). By definition, we have for j =1,...,d,

M(Xji7) = QX - Q(X;:1/2)li7) = QX

In other words, we have

= wilir).

r=P{X; - uyl < oM (X;im)}
X5 — gl _ oM (Xysr)
_P{ o(X;) = o(X;) }’

because all the quantiles are unique. Accordingly, we have
oM(Xy5r) Q<|Xj - Nj|,r)
o (X;) o(X;)
X5 = 1y
o(X;) - Q( ;r).
! o(X;)

UM(Xj;T) =

Using a similar technique as above, we can further derive that

oM(X; + Xiir) =

(X +Xk)
U]VI(X Xk; )*
1X; — X — Q(X; — Xy;1/2)]
o(X; - Xi) - Q( oo i)

Therefore, RM" = ¢M" 3 if (V.1) holds and by definition

CM;T _ {UM(Xj; r
o(X;)

~{e(T=p))

This completes the proof. O

Proof of Theorem V.2. The proof of Theorem V.2 is similar
as Theorem V.1, and is accordingly omitted here. O

E. Proof of Theorem V.3

Proof. We first prove the case for the gMAD estimator RM:".
By the definition of the pair-elliptical and the discussions in
Remark I11.2, we have any pair in PE4(u, S, £) can be written
as ECy(pyjkys Sy ky. {4,k @) where ¢ is a properly defined
characteristic function only depending on £. On one hand, by
Theorem 2.16 in (41), we have for any j € {1,...,d},

Xj =i

V/Sij
Because X is continuous (by the definition of the pair-
elliptical) and accordingly all quantiles of ECy(0,1,&) are

uniquely defined, using the same proof techniques as exploited
in the proof of Theorem V.1, (A.10) shows that

2
)5,
for any j € {1,...,d}. On the other hand, for those j # k
such that S;; + S + 2S;3 # 0 and S;; + Sk — 28,k # 0,
we have
X+ X ~ ECq(pj + p1x,S;5 + Skr + 2Si, 6),

and  X; — Xy ~ EC4(pj — pk, Sjj + Skr — 28k, 9),

and accordingly X;+ X}, and X; — X}, are both elliptically dis-

tributed with the same characterization function ¢. Therefore,
we have

Xj + X — Q(X] + Xi; 1/2)
V/Sij + Skr + 2S;i
2 Xj —Xk; - Q(Xj —Xk;l/Q)
\/Sjj + Skk 72334]@

and accordingly we have

EC1(0,1,9). (A.10)

RO — (Q(‘E01(071,¢) ;

~ ECl(07 ]-v ¢)7

‘Xj — K| D ‘Xer/c—Q(XjﬁLXk;l/?)’
\/@ \/Sjj +Skk +2S;i

\/SJJ—FSkk—?SJk
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Thus, in parallel to the proof in Theorem V.1, we have

r))z-sjk.

For those j # k € {1,...,d} such that S;; + Sy —2S;; = 0,
we have Cov(X; — X}) = 0, implying that X; = X, a.s..
Accordingly, we have

R (Q(‘EC&(O, 1,0);

oM (X, Xpir) = MX+Xes )2

7 - (o))

Sjj = (Q(‘ECI 0,1,¢) ‘ )) ik Similarly, for those
J # k € {l,...,d} such that Sj; + Sy + 2S;;, = 0, we

have R = R = —(Q(|BCi(0.1.0)]i7)) 8y, =
(QgEcl(o, Lo)l:
the first part.

Secondly, we switch to the gQNE estimator. We note that,
by Remark II1.2,

XX = (o

Accordingly, RMT = RM" =

2
r)) - S;k. This completes the proof of

Eexp(itT (X(juy — Xiny) = 02#TS (k1. 11008),

and accordingly X X ~ PFE4(0,28S, $?) and is continuously
distributed. Then by following the same proof as in the first
part we have the desired result.

In the end, let’s show the scale constant. Using the same
argument as above, we have
2
7‘)) -3

Because X is continuous and symmetric, letting ¢, :=
Q(|ofr).

P(|Xo| <qr) =2P(Xo < ¢q) - 1=

e (of |

we have

= P(Xo < gr) = 1J2FT =q =Q(‘Xo ; I;Fr)-
Similarly, we have
w = o(2) 15) 2
This finalizes the proof. O

FE. Proof of Theorem V.5

Proof. Using Lemma A.2 and Assumption (A1), we have for
any j € {1,...,d},

P([o™(Xj57) — o™ (X537)| > 1)
< 3exp(—2n(mt/2 — 1/n)*) + 3exp(—2n(mt/2)?),

whenever ¢/2 < k1 and m1t/2 > 1/n. Accordingly, we have

PR} — R[> ¢)
=P(|@" (Xj57) +

oM(Xjim))] > t)

< IE"(\(AM(X r) = oM (X))

+20M (X5 m) M (X;) — M

oM (Xj5r)) (M (X5m)

Xjr)l > 1)

M (X;ir)| > @

+P(|6M<Xj;r> - oMy >

n(my/t/2/2 —1/n)?)
n(mt/(40™ (X;37)))%).
Using Lemma A.2 and Assumption (Al), we have for any
J#k,

P(|oM(X; + Xp;7) — )
< 3exp(—2n(mt/2 — 1/n)?) + 3exp(—2n(
B(Y (X, — Xpir) — 0™(X, — Xuir)| > 1)
< 3exp(—2n(mt/2 — 1/n)?) + 3exp(—2n(

< P(|M(Xj57) -

4
QUM(Xj;r)>
< 6exp(—

+6exp(f (A.11)

MX; 4+ Xpr)| >t

And accordingly, letting Opax := 21/||RM7||1yax, We have

P(RY" — M8 > 1)
<P(|(eM(X; + Xg;7))? — (M(Xj + Xi;7))?| > 28)
+P((M(X) = X37))? = (06X — Xi;7))?| > 20)
SP(|3M(XJ- + Xp;r) — oM(XG + Xy )| > \/%)

t

+P(BM (X + Xii7) = o™X + Xgi )] >

+ 1}»(|&M(Xj — Xpir) — M(X; = Xpir)| > ﬁ)

t
(TM(Xj — Xi;m)| >

+ ]P’(|8M(Xj — Xpr) —
<6 exp(~2n(mVE/2 — 1/n)?) + 6 exp(—n?t/2)
+ 6 exp(—2n(n1t/(20max) —
<24 max{exp(—2n(mVt/2 —1/n)?),
exp(—2n(mnt/(20max) — 1/n)*)}.

Combining Equations (A.11) and (A.12), we have, with prob-
ability 1 — 2402,

(A.12)

HﬁM;r _RM;T”maX S
log d + log(1 1\2
max{ g( logd +log(l/a) f) ,
b n n
T
4/ JTRM [ (\/logd—i—log(l/a) N l) }
m n n/J’
T

whenever n is large enough such that 77 < 8&% and 1o <
21 -minj 2, {20M (X5 7r), oM(X; + X 1), oM(X; — Xis )}
Combining the above inequality with Theorem V.3, we com-
plete the whole proof. O

UM(Xj + Xk;T)

O‘M(Xj — Xk;T)

1/n)%) + 6 exp(—nnit® /(2607

)
)
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G. Proof of Theorem V.6

Proof. Using Lemma A.3 and Assumption (A2), we have for
any j € {1,...,d},
P(B(X;7) = aUX37)| > ) < exp (= nlnat — 1/n)?)
+ exp ( — n(ngt)2>,

whenever t < ko and 75t > 1/n. Using a similar proof
technique as in the proof of Theorem V.5, we have

P(RY™RY"|> ) < P(|52X;im) - SIENGE)
+P([5(Xyim) oAU X 57| >

<2exp ( — n[na\/t/2 - 1/n]2>
+ 2exp (—n(ngt/(QaQ(Xj; T))—l/n)2>,

Similarly, we have

t
209(X;; r))
(A.13)

(A.14)

P(RJ" — R > 1)
< IP’<|8Q(X]- + Xpr) — 0UX; + Xpr)| > \/i)

+P(J5%; — Xiir) — 0K — Xisr)| > VE)

t

Qv QU : _

+IP’(|J (X, + Xp;r) — 0(X; +Xk’r)‘>gQ(Xj+Xk;r)
t

Q cQUX — X _

_|_IP’(|0' (Xj = Xpsr) — 0(X; — Xy )| > oQ(X; — Xgir)

< 4exp(—n[772\/f —1/n]?) + dexp(—n(nat/Cmax — 1/0)),

(A.15)

where Cnax = 21/||RQ7||max. Combining (A.13) and (A.15)
leads to that, with probability larger than or equal to 1 — 8a,

||f{Q;r_RQ;r|| e <
2log d + log(1 2
max{ 2(\/ ogd +log(1/a) 1 )
& n n
T3
2¢/| RQ" (\/210gd+1og(1/a) N l) }
o n n/ )’
Ty
whenever T3 < 2/{2 and Ty < 2K1
min; 2, {209(X;;7), o UX; + Xi), 0UX; — Xi)}- Fmally,

combining the above inequality with Theorem V.3, we
complete the whole proof. O

In this section we provide the proofs of the results presented
in Section VII.

H. Proof of Corollary VII.I

Proof. We first prove that (VIL4) holds. Because R®" is
feasible to Equation (VIIL.2), we have

HRQ;T _ ﬁQ;eraX < ||ﬁQ;r _ RQ;THmaX,

implying that

P([RY -RY| =) <P(|RY - RY'| + R} - RY
SP(HﬁQ"’T _
<P(|JRY" — R pax > 1/2).

Combined with (A.13) and (A.15), the above inequality im-
plies that

P(||ﬁ$,f — R |[max > t) <d*(4exp(—n[na\/t/4 —1/n]?) +4exp(—

Plugging t = ( into the above equation, we have the desired
result.

Secondly, we prove that (VIL.5) holds. Because EX ]4 <K,
by Chebyshev’s inequality, with probability no smaller than
1 —n~2, we have

|a —o?( X)) < cynV2E

Moreover, using (A.13), we have for any given j € {1,...,d},
by Markov inequality, with probability larger than or equal to
1—4a,

RE—RY"| < ¢
For notatio& simplicity, we denote o := 0;(X;), r RJQJ "
and 7, := R%T. Accordingly, we have
~9 2
) ||§A)Q;T _ ﬂf{Q;r _ QRQ;T
?j Tj max
) /O'\2 ~ 0’2 ~ g2, ~
< HTJRQ;T — JIRQr + —jHRQ"'T _ RQ;r”max
T5 ’I“j max ’I“j
52 2 ~
< Aj - ' (||RQ;T - RQ;erax
T‘j ’I’j
)+ ; 7RQ;eraX

while noting that ¢®" = r;/o2. Finally, we have

~2 2 ~2 2
o: o3 0% — 03
2 -1 :‘%'Fﬂf(i—i)‘
Tj ’I“j 7“]' ’I“j ’I“]'
LA P
— |7y — — |7y =7yl

This implies that with probability no smaller than 1 —n~2¢ —

12c, we have

02 2 —-1/2+ .
% 9 < M + L . G
~ — . )
i =G T =G

which completes the proof of the second part. The third part
can then be proved by combining Equation (VILS5) and the
proof of Theorem 2 in (56). O]

1. Proof of Corollary VII.4

Proof. According to Theorem 6 in (40), if the tuning param-
eter A > [|O]/1.00|EX" — X|/max. We have there exists two
constants C'y, Cy such that

H@Q;r —0|, < s\, H@Q;f’ _

and @R —@O|Z < Cys5dA\2~7. Combining the above results
with Corollary VII.1, we prove the desire rate. O

@Hmax < ”@”1700)‘-

> t)
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J. Proof of Corollary VIIL.5

Proof. According to Theorem 3.1 in (67), if A > Hf{—RHmaX
and maxi<p<m ||ur(X)|jo < s, we have

4s)\

= MR - ()

where H%T, R, and R can be the Q-PCA estimator, pop-
ulation and sample versions of the quantile-based scatter
matrix estimators based on the gQNE. Combining the rate of
R — Rl|max in Theorem V.5 and Theorem V.6, the theorem
is proved.

ITIQ" — R = Rl|max. (A.16)

O

K. Proof of Corollary VII.6

Proof. We mainly follow the procedure in the proof of The-
orem 2 in (71) Suppose 673" < M. Let § = py — po,
8 = [i1 — fis. Since (B27)Q" is the solution of (VIL9), we
have

(31" —(3
and
(877 S 7 o

Combining the above two equations together, we have |(BQ?T7
B*)T8| < 4| B*||; which implies

78] < (AH0-0]10) 11811 < 2) 87|

(BYU)T8) < (A+ I8 — 8]|o0) 1B 1.

W >1—8M~I)\|B%|:. (A.17)
On the other hand, we have
=B = 8|0 < [I(Z — ZU)BU| o + 2
<18 IZ = EU7 || max + 22,
which implies that
|<aQ;r)TEﬁQ;r o éTﬂ*‘
< |(BU)TZBY — 5T BUT| +((BY" — B*)T 6|
<IB*BINIZ = ZU | max + 6X[8 1, (A.18)

where the last inequality is due to the definition of [)'Q
Therefore, for sufficiently large n, we have (BQ ’”)TE,BQ "
M /2. We can rewrite (A.18) as

20

Algorithm 1 Matrix nearness problem in the maximum norm
in (A.20)

R « MatrixMaxProj(R, Z°, R?, v, ¢, N)

fort=0,...,N do
R} < R! — Pp,(R* — Z?) R
Z, «— 7' — Pg, (R' +Z' — R)
if max{||R{|lmax, |R|lmax} < € then
break
else
Rit! « Rt — v(RE — Z) /2
7+« 70— (R + Z1)/2
end if
end for _
return R = R’

by the algorithm proposed in (77). Since for any matrix A €
R? we can reformulate ||A || max = maxzep, Tr(ZTA), where

={Z e R | Z =27".%, ;1  alZiyl <1} We
define By = {Z € R?*? |- 0} and (A.20) can be rewritten

1, ..
as a minimax problem

min max Tr(Z7 (R — f{))

REB, ZEB, (A21)

In order to solve the above minimax problem, we need to first
study two subproblems on matrix projection. The first is

Pg,(A) = argmin ||A — BH%,
BeB;

(A.22)

where || - ||r is the Frobenius norm. We can have the closed
form solution to A.22 such that Pg,(A) = UA,U”, where
A = UAUT is the spectral decomposition of A and
A, = diag(A11 VO,...,Agq V 0). The second subproblem
we are interested in is Pp, (A) = argming,p, [|A — BJ[}.
This is equivalent to the vectorized problem Pg,(A) =
argminy,,, < [[vec(A) — v||3. We denote a = vec(A) and
la| = sign(a) o a, where o is the Hadamard product. Let
T)q) be the permutation transformation matrix of |a| such that
Tiq|(|a]) is in descending order. We now define z,y under
two kinds of cases: ||a|; <1 and ||la||; > 1.

If ||a]|; <1, we let (:v ¥) == (a,0).If ||a||1 > 1, we define
Aa = (a1 —ag, .. ad 1 — ag,aq)* . Since Aa; > 0 for alll
i =1,...,n and ZZ 1%Aa; = |la|li > 1. We choose the

T B smallest 1nteger K such that Z _,1Aa; > 1. Let
O 1AM B RS S e (19 —iha
(Ber)TEE
Combining (A.17) and (A.19), we have (ZaZ ) (@1—7,...,ax—7,0,...,0)T € RY.
Rq((BQvT)QJ‘) —1 * (|2 AQ;T —1
Rq(83*) 2 1=2M BT =2 [l =200 )\”’BAu;zzbrding to (77), we can write Pp, (A) = sign(a)oTH_alH ().

This completes the proof.

This section describes the algorithm to solve (IV.4) for the
matrix element-wise supremum norm | - ||max. In particular,
we aim to solve

R = argmin ||R — R||max (A.20)
R>-0

We set arbitrary Z° € B,, R® € By as the initializations of the
algorithm, v € (0, 2) as the step length of each iteration, ¢ > 0
as the tolerance, N as the maximum number of iterations.
Algorithm 1 provides the following convergence to the exact
solution of (A.20).

Theorem A.4 ((77)). If (R°PY, Z°P) is the solution to (A.21).
Let R, Z", R, Z{ be the sequence obtained from Algorithm
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1. We have

IR = ROPYF + (|27 — 2P
<R =R + (120 - 2}

(2 —7)
+ T(IIRSII% + [1Z511%)-
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