Bijective Projection in a Shell

ZHONGSHI JIANG, TESEO SCHNEIDER, DENIS ZORIN, and DANIELE PANOZZO, New York University

We introduce an algorithm to convert a self-intersection free, orientable,
and manifold triangle mesh 7~ into a generalized prismatic shell equipped
with a bijective projection operator to map 7~ to a class of discrete surface
contained within the shell whose normals satisfy a simple local condition.
Properties can be robustly and efficiently transferred between these surfaces
using the prismatic layer as a common parametrization domain.

The combination of the prismatic shell construction and corresponding
projection operator is a robust building block readily usable in many down-
stream applications, including the solution of PDEs, displacement maps
synthesis, Boolean operations, tetrahedral meshing, geometric textures, and
nested cages.

CCS Concepts: » Computing methodologies — Mesh models.

Additional Key Words and Phrases: Projection, Bijective Map, Envelope,
Mesh Adaptation, Attribute Transfer

ACM Reference Format:

Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo. 2020.
Bijective Projection in a Shell. ACM Trans. Graph. 39, 6, Article 1 (Decem-
ber 2020), 18 pages. https://doi.org/10.1145/3414685.3417769

1 INTRODUCTION

Triangular meshes are the most popular representation for discrete
surfaces, due to their flexibility, efficiency, and direct support in
rasterization hardware. Different applications demand different
meshes, ranging from extremely coarse for collision proxies, to
high-resolution and high-quality for accurate physical simulation.
For this reason, the adaptation of a triangle mesh to a specific set
of criteria (surface remeshing) is a core building block in geometry
processing, graphics, physical simulation, and scientific computing.

In most applications, the triangular mesh is equipped with at-
tributes, such as textures, displacements, physical properties, and
boundary conditions (Figure 1). Whenever remeshing is needed,
these properties must be transferred on the new mesh, a task which
has been extensively studied in the literature and for which robust
and generic solutions are still lacking (Section 2). Defining a con-
tinuous bijective map, more precisely, a homeomorphism where
the inverse is also continuous, between two geometrically close
piecewise-linear meshes of the same topology is a difficult prob-
lem, even in its basic form, when one of these meshes is obtained
by adapting the other in some way (e.g., coarsening, refining, or
improving triangle shape).a Common approaches to this problem
are Euclidean projection [Jiao and Heath 2004], parametrization

Authors’ address: Zhongshi Jiang, jiangzs@nyu.edu; Teseo Schneider, teseo.schneider@
nyu.edu; Denis Zorin, dzorin@cs.nyu.edu; Daniele Panozzo, panozzo@nyu.edu, Com-
puter Science Department, New York University, New York, NY.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/12-ART1 $15.00

https://doi.org/10.1145/3414685.3417769

(d) (e)

Fig. 1. A low-quality mesh with boundary conditions (a) is remeshed using
our shell (b) to maintain a bijection between the input and the remeshed
output. The boundary conditions (arrows in (a)) are then transferred to the
high-quality surface (c), and a non-linear elastic deformation is computed on
a volumetric mesh created with TetGen (). The solution is finally transferred
back to the original geometry (d). Note that in this application setting both
surface and volumetric meshing can be hidden from the user, who directly
specifies boundary conditions and analyses the result on the input geometry.

on a common domain [Kraevoy and Sheffer 2004; Lee et al. 1998;
Praun et al. 2001], functional maps [Ovsjanikov et al. 2012], and
generalized barycentric coordinates [Hormann and Sukumar 2017].
However, the problem is not fully solved, as all existing methods, as
we discuss in greater detail in Section 2, often fail to achieve bijec-
tivity and/or sufficient quality of the resulting maps when applied
to complex geometries. Our focus is on correspondences between
meshes obtained during a remeshing procedure, instead of solving
the more general problem of processing arbitrary mesh pairs.

In this work, we propose a general construction designed to
enable attribute mapping between geometrically close (in a well-
defined sense) meshes by jointly constructing: (1) a shell S around
triangle mesh 7~ spanned by a set of prisms, inducing a volumetric
vector field V in its interior and (2) a projection operator # that
bijectively maps surfaces inside the shell to 77, as long as the dot
product of the surface face normals and V is positive (we call such a
surface a section of S). Given a surface mesh 7~ and its shell S, it is
now possible to exploit the bijection induced by ¥ in many existing
remeshing algorithms by adding to them an additional constraint
ensuring that the generated surface is a section of a given shell.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:2 « Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

As long as the generated mesh is a section, the projection oper-
ator P can be used to transfer application-specific attributes. At a
higher level, the middle surface of our shell can be seen as a com-
mon parametrization domain shared by sections within the shell:
differently from other methods that map the triangle meshes to a
disk, region of a plane, a canonical polyhedron, or orbifolds, our
construction uses an explicit triangle mesh embedded in ambient
space as the common parametrization domain. This provides addi-
tional flexibility since it is adaptive to the density of the mesh and
naturally handles models with high genus, while being numerically
stable under floating-point representation (and exact if evaluated
with rational arithmetic). The downside is that it is defined only
for sections contained within the shell. The construction and op-
timization of our shell, and corresponding bijective mapping, is
computationally more expensive than remeshing-only methods: our
algorithms takes seconds to minutes on small and medium sized
models, and might take hours on the large models in our tests.

We evaluate the robustness of the proposed approach by con-
structing shells for a subset of the models in Thingi10k [Zhou and
Jacobson 2016] and in ABC [Koch et al. 2019] (Section 4). We also in-
tegrate it in six common geometry processing algorithms to demon-
strate its practical applicability (Section 5):

(1) Proxy. The creation of a proxy, high-quality remeshed sur-
face to solve PDEs (e.g., to compute geodesic distances or
deformations), avoiding the numerical problems caused by
a low-quality input in commonly used codes. Bijective pro-
jection operators associated with a shell enable us to transfer
boundary conditions to the proxy mesh, compute the solu-
tion on the proxy, and then transfer the solution back to the
original geometry.

(2) Boolean operations. The remeshing of intermediate results
of Boolean operations, to ensure high-quality intermediate
meshes while preserving a bijection to transfer properties
between them.

(3) Displacement Mapping. The automatic conversion of a dense
mesh into a coarse approximation and a regularly sampled
displacement height map. Our method generates a bijection
that allows us to bake the geometric details in a displacement
map.

(4) Tetrahedral Meshing. The conversion of a surface mesh of low
quality into a high-quality tetrahedral mesh, with bijective
correspondence.

(5) Geometric Textures. Generation of complex topological struc-
tures using volumetric textures mapped to the volumetric
parametrization of a simplified shell defined by #. Our anal-
ysis on the initial shell also complements the literature on
shell maps.

(6) Nested Cages. A robust approach to generate a coarse ap-
proximation of a surface for collision checking, cage-based
deformation, or multigrid approaches.

Our contributions are:

(1) An algorithm to build a prismatic shell and the correspond-
ing projection operator around an orientable, manifold, self-
intersection free triangle mesh with arbitrary quality;

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

(2) A new definition of bijective maps between close-by discrete
surfaces;

(3) A reusable, reference implementation provided at https://
github.com/jiangzhongshi/bijective-projection-shell.

2 RELATED WORKS

We review works in computer graphics spanning both the realiza-
tion of maps for attribute transfer (Section 2.1), and the explicit
generation of boundary cages (Section 2.2), which are closest to our
work.

2.1 Attribute Transfer

Transferring attributes is a common task in computer graphics to
map colors, normals, or displacements on discrete geometries. The
problem is deeply connected with the generation of UV maps, which
are piecewise maps that allow to transfer attributes from the planes
to surfaces (and composition of a UV map with an inverse may allow
transfer between surfaces). We refer to [Floater and Hormann 2005;
Hormann et al. 2007; Sheffer et al. 2006] for a complete overview,
and we review here only the most relevant works.

Projection. Modifying the normal field of a surface has roots in
computer graphics for Phong illumination [Phong 1975], and tes-
sellation [Boubekeur and Alexa 2008]. Orthographic, spherical, and
cage based projections are commonly used to transfer attributes,
even if they often leads to artifacts, due to their simplicity [Commu-
nity 2018; Nguyen 2007]. Projections along a continuously-varying
normal field has been used to define correspondences between
neighbouring surfaces [Ezuz et al. 2019; Kobbelt et al. 1998; Lee
et al. 2000; Panozzo et al. 2013], but it is often discontinuous and
non-bijective. While the discontinuities are tolerable for certain
graphics applications (and they can be reduced by manually edit-
ing the cage), these approaches are not usable in cases where the
procedure needs to be automated (batch processing of datasets) or
when bijectivity is required (e.g., transfer of boundary conditions
for finite element simulation). These types of projection may be
useful for some remeshing applications to eliminate surface details
[Ebke et al. 2014], but it makes these approaches not practical for
reliably transferring attributes. Our shell construction, algorithms,
and associated projection operator, can be viewed as guaranteed
continuous bijective projection along a field.

Common Domains. A different approach to transfer attributes is
to map both the source and the target to a common parametrization
domain, and to compose the parametrization of the source domain
with the inverse parametrization of the target domain to define a
map from source to target. In the literature, there are methods that
map triangular meshes to disks [Floater 1997; Tutte 1963], region of
a plane [Aigerman et al. 2014, 2015; Campen et al. 2016; Fu and Liu
2016; Gotsman and Surazhsky 2001; Jiang et al. 2017; Litke et al. 2005;
Maron et al. 2017; Miiller et al. 2015; Rabinovich et al. 2017; Schmidt
et al. 2019; Schiiller et al. 2013; Smith and Schaefer 2015; Surazhsky
and Gotsman 2001; Weber and Zorin 2014; Zhang et al. 2005], a
canonical coarse polyhedra [Kraevoy and Sheffer 2004; Praun et al.
2001], orbifolds [Aigerman et al. 2017; Aigerman and Lipman 2015,

2016], Poincare disk [Jin et al. 2008; Kharevych et al. 2006; Spring-
born et al. 2008; Stephenson 2005], spectral basis [Ovsjanikov et al.
2012, 2017; Shoham et al. 2019], and abstract domains [Kraevoy and
Sheffer 2004; Pietroni et al. 2010; Schreiner et al. 2004]. While these
approaches allow mappings between completely different surfaces,
this is a hard problem to tackle in full generality fully automatically,
with guarantees on the output (even some instances of the problem
of global parametrization, i.e. maps from a specific type of almost
everywhere flat domains to surfaces, lack a fully robust automatic
solution).

Our approach uses a coarse triangular domain embedded in am-
bient space as the parametrization domain, and uses a vector field-
aligned projection within an envelope to parametrize close-by sur-
faces bijectively to the coarse triangular domain. Compared to the
methods listed above, our approach has both pros and cons. Its
limitation is that it can only bijectively map surfaces that are sim-
ilar to the domain, but on the positive side, it: (1) is efficient to
evaluate, (2) guarantees an exact bijection (it is closed under ratio-
nal computation), (3) works on complex, high-genus models, even
with low-quality triangulations, (4) less likely to suffer from high
distortion (and the related numerical problems associated with it),
often introduced by the above methods. We see our method not as
a replacement for the fully general surface-to-surface maps (since
it cannot map surfaces with large geometric differences), but as a
complement designed to work robustly and automatically for the
specific case of close surfaces, which is common in many geometry
processing algorithms, as well as serve as a foundation for generat-
ing such close surfaces (e.g., surface simplification and improvement,
see Section 5)

Attribute Tracking. In the specific context of remeshing or mesh
optimization, algorithms have been proposed to explicitly track
properties defined on the surface [Cohen et al. 1997; Dunyach et al.
2013; Garland and Heckbert 1997] after every local operation. By
following the operations in reverse order, it is possible to resam-
ple the attributes defined on the input surface. These methods are
algorithm specific, and provide limited control over the distortion
introduced in the mapping. Our algorithm provides a generic tool
that enables any remeshing technique to obtain such a map with
minimal modifications.

2.2 Shell Generation

The generation of shells (boundary layer meshes) around triangle
meshes has been studied in graphics and scientific computing.

Envelopes. Explicit [Cohen et al. 1997, 1996] or implicit [Hu et al.
2016] envelopes have been used to control geometric error in planar
[Hu et al. 2019a], surface [Cheng et al. 2019; Guéziec 1996; Hu et al.
2017], and volumetric [Hu et al. 2019b, 2018] remeshing algorithms.
Our shells can be similarly used to control the geometric error intro-
duced during remeshing, but they offer the advantage of providing
a bijection between the two surfaces, enabling to transfer attributes
between them without explicit tracking [Cohen et al. 1997]. We
show examples of both surface and volumetric remeshing in Sec-
tion 5. Also, [Bajaj et al. 2002; Barnhill et al. 1992] utilize envelopes

Bijective Projection in a Shell « 1:3

for function interpolation and reconstruction, where our optimized
shells can be used for similar purposes.

Shell Maps. 2.5D geometric textures, defined around a surface,
are commonly used in rendering applications [Chen et al. 2004;
Huang et al. 2007; Jin et al. 2019; Lengyel et al. 2001; Peng et al. 2004;
Porumbescu et al. 2005; Wang et al. 2003, 2004]. The requirement is
to have a thin shell around the surface that can be used to map an
explicit mesh copied from a texture, or a volumetric density field
used for ray marching. Our shells are naturally equipped with a
2.5D parametrization that can be used for these purposes, and have
the advantage of allowing users to generate coarse shells which
are efficient to evaluate in real-time. The bijectivity of our map
ensures that the volumetric texture is mapped in the shell without
discontinuities. We show one example in Section 5.

Boundary Layer. Boundary layers are commonly used in com-
putational fluid dynamics simulations requiring highly anisotropic
meshing close to the boundary of objects. Their generation is consid-
ered challenging [Aubry et al. 2017, 2015; Garimella and Shephard
2000]. These methods generate shells around a given surface, but
do not provide a bijective map suitable for attribute transfer.

Collision and Animation . Converting triangle meshes into coarse
cages is useful for many applications in graphics [Sacht et al. 2015],
including proxies for collision detection [Calderon and Boubekeur
2017] and animation cages [Thiery et al. 2012]. While not designed
for this application, our shells can be computed recursively to create
increasingly coarse nested cages. We hypothesize that a bijective
map defined between all surfaces of the nested cages could be used
to transfer forces from the cages to the object (for collision proxies),
or to transfer handle selections (for animation cages). [Botsch and
Kobbelt 2003; Botsch et al. 2006] uses a prismatic layer to define vol-
umetric deformation energy, however their prisms are disconnected
and only used to measure distortion. Our prisms could be used for
a similar purpose since they explicitly tesselate a shell around the
input surface.

2.3 Robust Geometry Processing

The closest works, in terms of applications, to our contribution
are the recent algorithms enabling black-box geometry processing
pipelines to solve PDEs on meshes in the wild.

[Dyer et al. 2007; Liu et al. 2015] refines arbitrary triangle meshes
to satisfy the Delaunay mesh condition, benefiting the numerical
stability of some surface based geometry processing algorithms.
These algorithms are orders of magnitude faster than our pipeline,
but, since they are refinement methods, cannot coarsen dense input
models. While targeting a different application, [Sharp et al. 2019]
offers an alternative solution, which is more efficient than the ex-
trinsic techniques [Liu et al. 2015] since it avoids the realization
of the extrinsic mesh (thus naturally maintaining the correspon-
dence to the input, but limiting its applicability to non-volumetric
problems) and it alleviates the introduction of additional degrees of
freedom. [Sharp and Crane 2020] further generalizes [Sharp et al.
2019] to handle non-manifold and non-orientable inputs, which our
approach currently does not support.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:4 « Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

§084

Fig. 2. Overview of our algorithm. We start from a triangle mesh, find
directions of extrusion, build the shell, and optimize to simplify it.

TetWild [Hu et al. 2019b, 2018] can robustly convert triangle
soups into high-quality tetrahedral meshes, suitable for FEM anal-
ysis. Their approach does not provide a way to transfer boundary
conditions from the input surface to the boundary of the tetrahedral
mesh. Our approach, when combined with a tetrahedral mesher
that does not modify the boundary, enables to remesh low-quality
surface, create a tetrahedral mesh, solve a PDE, and transfer back the
solution (Figure 1). However, our method does not support triangle
soups, and it is limited to manifold and orientable surfaces.

2.4 Isotopy between surfaces

[Chazal and Cohen-Steiner 2005; Chazal et al. 2010] presents condi-
tions for two sufficiently smooth surfaces to be isotopic. Specifically,
the projection operator is a homeomorphism. [Mandad et al. 2015]
extends this idea to make an approximation mesh that is isotopic to a
region. However, they did not realize a map suitable for transferring
attributes.

3 METHOD

Our algorithm (Figure 2) converts a self-intersection free, orientable,
manifold triangle mesh 7 = {Vg, F7-}, where Vg are the vertex
coordinates and Fg- the connectivity of the mesh, into a shell com-
posed of generalized prisms S = {(Bg,Mg,Ts), Fs}, where Bg,
Mg, Tg are bottom, middle, and top surfaces of the shell, consisting
of bottom, middle, and top triangles of the prisms, and Fg is the
connectivity of the prisms (Figure 3). The algorithm initially gener-
ates a shell S whose middle surface M g has the same geometry as
the input surface 7~ (possibly with refined connectivity), and then
optimizes it while ensuring that 7~ is contained inside and projects
bijectively to M g. The shell induces a volumetric vector field V and
a projection operator P in the interior of each of its prisms (Section
3.1). This output can be used directly in many geometry processing
tasks, as we discuss in detail in Section 5.

We first introduce the definition of our projection operator # and
the conditions required for bijectivity of its restrictions to sections
of the shell (Section 3.1). We then define shell validity (Section 3.2),
present our algorithm for creating an initial shell (Section 3.3) and
optimizing it to decrease the number of prisms (Section 3.4). To
simplify the exposition, we initially assume that our input triangle
mesh does not contain singular points (defined in Section 3.3) and
boundary vertices, and we explain how to modify the algorithm to
account for these cases in sections 3.5 and 3.6.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

Thingiverse #4166787

g

Top Surface (Outer)
Input Surface (Inner)

Input Surface (Outer)
Bottom Surface (Inner)

Fig. 3. Example of the top (left, outer) and bottom (right, inner) surface of
the prismatic shell.

my

P(z)

/ —n,
b3 Botttom

Fig. 4. A prism A (left) is decomposed into 6 tetrahedra (middle, for clarity,
we only draw the 3 tetrahedra of the top slab). Each tetrahedron has a
constant vector field in its interior (pointing toward the top surface), which
is parallel to the only pillar of the prism that contains the point.

3.1 Shell and Projection

Let us consider a single generalized prism A in a prismatic layer S
(Figure 4 left). The generalized prism A is defined by the position
of the vertices of three triangles, one at the top, with coordinates
t1, I, t3, one at the bottom, with coordinates b1, by, b3, and one in
the middle, implicitly defined by a per-vertex parameter «; € [0, 1],
with coordinates m; = ajt; + (1 — a;)b;,i = 1,2,3. We will call
the top (bottom) “half” of the prism top (bottom) slab (we refer to
Appendix E for an explanation on why we need two slabs). For
brevity, we will refer to a generalized prism as a prism.

Decomposition in Tetrahedra. We decompose each prism A into 6
tetrahedra (3 in the top slab and 3 in the bottom one, Figure 4 middle),
using one of the patterns in [Dompierre et al. 1999, Figure 4]. The
patterns are identified by the orientation (rising/falling) of the two
edges cutting the side faces of the prism. While, for a single prism,
any decomposition would be sufficient for our purposes, we need a
consistent tetrahedralization between neighboring prisms to avoid
inconsistencies in the projection operator. To resolve this ambiguity,
we use the technique proposed in [Garimella and Shephard 2000]:
we define a total ordering over the vertices of the middle surface
of A (naturally, we use the vertex id) and split (for each half of the
prism) the face connecting vertices v1 and v, with a rising edge if
v1 < vz and a falling edge otherwise.

“Top Surface

A \H" \H]

Middle Surface

Pillar
2
Uy

Fig. 5. A point p (left) is traced through <V inside the top part of the shell. A
ray with p as origin and V as direction is cast inside the orange tetrahedron
(middle). The procedure is repeated (on the blue tetrahedron) until the ray
hits a point in the middle surface (right).

Top
-

Section

N— - Mid

“ Not[Section

Bot

Fig. 6. A 2D illustration for the normal dot product condition. The blue
arrows agrees with the background vector field (white arrows), while the
red arrows do not agree.

Forward and Inverse Projection. We define a piecewise constant
vector field V inside the decomposed prism, by assigning to each
tetrahedron TJA, Jj=1,...,6,the constant vector field defined by the

only edge of TJ@ which is a oriented pillar of A connecting the bottom
surface to the top surface passing through the middle surface). That
is, for any p € TJA
V(p) =ti — b, (1)

where i is the index of the vertex corresponding to the pillar edge
of TJA. Note that 7V is constant on each tetrahedron and might be
discontinuous on the boundary: we formally define the value of
V on the boundary as any of the values of the incident tetrahedra.
This choice does not affect our construction. There is exactly one
integral (poly-)line passing through each point of the prism if all
the decomposed tetrahedra have positive volumes (Theorem 3.2).
This allows us to define the projection operator P (p) for a point
P € A as the intersection of the integral line f,(t) of the vector
field V passing through p, with the middle surface of A (Figure 5).
Intuitively, we can project any mesh that does not fold in each prism
(Figure 6) to the middle surface. Formally, we introduce the following
definition, to describe this property in terms of the triangle normals
of the mesh.

With a slight abuse of the notation, for meshes and collections
of prisms A and B, we use AN B to denote the intersection of their
corresponding geometry.

Definition 3.1. A section 7 ofa prism A is a manifold triangle
mesh whose intersection with A is a simply connected submesh
7" N A whose single boundary loop is contained in the boundary
of A, excluding its top and bottom surface, and such that for every
point p € 7~ N A the dot product between the face normal n(p) and
the vector field V (p) is strictly positive. Similarly, a triangle mesh
7 is a section of a shell S, if it is a section of all the prisms of S.

Bijective Projection in a Shell « 1:5

T i
- —y
M 7
S5 M S
T | 1
B 51 B S
Psl (1") P‘;l (Ps, (2))

Fig. 7. The composition szl(Psl (x)) with x € 8y, of a direct and an

inverse projection operator defines a bijection between two sections S; and
S,.

Note that this definition implies that all sections are contained
inside the shell. Additionally, the definition implies that the section
does not intersect with either bottom or top surface. However, our
definition allows for the bottom or top surface to self-intersect.
The intersection of the shell does not invalidate the local definition
of projection since it is defined per prism. Allowing intersections
is crucial to an efficient implementation of our algorithm since it
allows us to take advantage of a static spatial data structure in later
stages of the algorithm (Section 3.4).

THEOREM 3.2. Ifall 6 tetrahedra TJA in a decomposition of a prism A
have positive volume, then the projection operator P defines a bijection
between any section T of A and the middle triangle of the prism (M
in Figure 7).

Proor. We prove this theorem in Appendix A.1. O

The inverse projection operator P! is defined for a section T as
the inverse of the forward projection restricted to 7.1t can be simi-
larly computed by tracing the vector field in the opposite direction,
starting from a point in the middle surface of the prism. Note that,
differently from the inverse Phong projection [Kobbelt et al. 1998;
Panozzo et al. 2013], whose solution depends on the root-finding
of a quadric surface, our shell has an explicit form for the inverse
and does not require a numerical solve. The combination of forward
and inverse projection operators allows to bijectively map between
any pair of sections, independently of their connectivity (Figure
7). An interesting property of our forward and inverse projection
algorithm, which might be useful for applications requiring a prov-
ably bijective map, is that our projection could be evaluated exactly
using rational arithmetic.

3.2 Validity Condition

Shell, projection operator, section definitions, and the bijectivity
condition (Theorem 3.2) are dependent on a specific tetrahedral
decomposition, which depends on vertex numbering.

To ensure that our shell construction is independent from the
vertex and face order, we define the validity of a shell by accounting
for all 6 possible tetrahedral decompositions [Dompierre et al. 1999,
Figure 4].

Definition 3.3. We say that a prismatic shell S is valid with respect
to a mesh 7~ if it satisfies two conditions for each prism.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:6 + Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

I1 Positivity. The volumes of 24 tetrahedra (Appendix A.2) cor-
responding to 6 tetrahedral decompositions are positive.
12 Section. 7 is a section of S for all 6 decompositions.

If a shell is valid, from I1, 12, then by Theorem 3.2, it follows that
any map between sections induced by the projection operator P is
bijective.

12 ensures that the input mesh is a valid section independently from
the decomposition, that is, we require the dot product to be positive
with respect to all three pillars of a prism inside the convex hull. An
interesting and useful side effect of this validity condition is that it
ensures the bijectivity of a natural nonlinear parametrization of the
prism interior (Appendix D, Figure 25).

3.3 Shell Initialization

We now introduce an algorithm to compute a valid prismatic shell
S = {(Bs.Ms,Ts), Fs} with respect to a given triangle mesh
T = {Vq, Fg} such that 7 is geometrically identical to the middle
surface of S. We assume that the faces of the triangle mesh are
consistently oriented.

Extrusion Direction. The first step of the algorithm is the com-
putation of an extrusion direction for every vertex of 7 . These
directions are optimized to be pointing towards the outside of the
triangle mesh (which we assume to be orientable), that is, they must
have a positive dot product with the normals of all incident faces.
More precisely, for a vertex v, we are looking for a direction d;, such
that dy, - ny > 0 for each adjacent face f with normal ny. We can
formulate this as the optimization problem

max min nf~dv,

dy f€N,
st. np-dy 2 €, Vf e Ny (2)
ldoll? = 1.

A solution, if it exists, can be found solving the following qua-
dratic programming problem (Appendix C)

min ||x||?

st. Cx >1,

®)

with d, = x/||x|| and C the matrix whose rows are the normals ng
of the faces in the 1-ring Ny, of vertex v. Solutions not satisfying
[lx|| < 1/€e needs to be discarded (Appendix C). The QP can be solved
with an off-the-shelf solver[Cheshmi et al. 2020; Stellato et al. 2017],
and in particular it can be solved exactly [Gértner and Schonherr
2000] to avoid numerical problems. Note that the Problem (2) is
studied in a similar formulation in [Aubry and Léhner 2008] but
their solution requires tolerances in multiple stages of the algorithm
to handle cospherical point configurations.

The admissible set of (2) might be empty for a vertex v, that is, no
vector d,, satisfies Cdy, > e. In this case we call v a singularity. For
example, Figure 12 shows a triangle mesh containing a singularity:
there exist no direction whose dot product with the adjacent face
normals is positive. To simplify the explanation, we assume for the
remainder of this section that 7~ does not contain singularities and
also that it does not contain boundaries: we postpone their handling
to sections 3.5 and 3.6.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

PROPOSITION 3.4. Let T be a closed (without boundary) triangle
mesh without singularities and N be a per-vertex displacement field
satisfying CNj > 0 for every vertexv; of T . Then there exist a strictly
positive per-vertex thickness &; such that verticest; and b; obtained by
displacing v; by §; in the direction of Nj and in the opposite direction,
define a shell that satisfies invariant I1.

Proor. We provide a proof in Appendix A.2. o

Initial Thickness. We first show that a strictly positive per-vertex
thickness § exists for a shell S with 7~ as its middle surface, and
then discuss a practical algorithm to realize it.

THEOREM 3.5. Given a closed, orientable, self-intersection free tri-
angle mesh T~ such that for all its vertices Problem (2) has a solution,
a shell S exists such that T is the middle surface and there exist a
strictly positive per-vertex thickness J.

Proor. We provide a proof in Appendix A.3. O

To find a valid per-vertex thickness §; to construct the top surface,
we initially cast a ray in the direction of N for each vertex and
measure the distance to the first collision with 7~ (and cap it to a
user-defined parameter d, 4y if no collision is found). An initial top
mesh is built with this extrusion thickness; then we test whether any
triangle in the top surface intersects 7, through triangle-triangle
overlap test [Guigue and Devillers 2003], and iteratively shrink
d; in this triangle by 20% until we find a thickness that prevents
intersections between the input and the top surface. Analogously,
we build the bottom shell along the opposite direction. Note that the
thickness of a vertex for the top and bottom surface can be different.

Validity of the Initial Shell. Proposition 3.4 and Theorem 3.5 en-
sure that the initial shell constructed using a displacement field N
obtained by solving (3), satisfies property I1. However, 7 might
not formally satisfy the conditions for being a section of S, despite
being identical to the middle surface of S, due to our definition of
the projection operator P. The reason for this can be seen in Figure
8. After the initialization, the middle surface is the input mesh. Thus
every prism A corresponds to a triangle Ty of 7. The intersection
A N T, required to check if 7 is a section of A (Definition 3.1)
contains points from both T and its 1-ring neighborhood.

The projection operator (and thus the definition of the section)
is based on all tetrahedral decompositions of A; it is possible that
multiple tetrahedra (with different vector field values in V) overlap
on the boundary of A.

Depending on the dihedral angles in the mesh 77, it is possible
that the dot product between one of the pillars (orange in Figure 8)
and the face normals of some of the triangles from 1-ring neigh-
borhood (green in Figure 8) is negative. While it may seem that
this problem could be addressed by changing the definition so that
each edge is assigned to one of the incident triangles, so that the
field direction only in one incident tetrahedron needs to be consid-
ered, this problem is more significant than it may seem, as it leads
to instability under small perturbations (e.g., due to floating-point
rounding of coordinates). Such small perturbations can change the
set of triangles intersecting a prism and thus violate the validity of
the shell and, consequently, the bijectivity of . We propose instead

Fig. 8. The vector field aligned with the pillar edge (orange) has a negative
dot product with the green triangle normal; the tetrahedron with this field
direction meets the green triangle at the red vertex. As a consequence, the
mid-surface is not a section. After topological beveling, the shell becomes
valid since the dot product between the green normal and the new pillar
(purple) is positive.

o
L 1 ® o
@ W) ” ©

Fig. 9. The beveling patterns used to decompose prisms for which 7~ is not
a section.

to refine 7, without changing its geometry, so that the shell corre-
sponding to the refined mesh satisfies 12 (i.e., its middle surface is a
section).

Topological Beveling. We identify a prism A, for which I2 does not
hold and use a beveling pattern [Conway et al. 2016; Coxeter 1973;
Hart 2018] to decompose Ay, in a way that 7~ becomes a section for
all 6 decompositions (I2). We refer to this operation as topological
beveling, as it does not change the geometry of the mesh, only its
connectivity (Figure 10). We use the pattern in Figure 9a for A, and
we use the other two patterns (b) and (c) on the adjacent prisms to
ensure valid mesh connectivity. The positions of the vertices are
computed using barycentric coordinates (we used ¢ = 0.2, i.e., the
orange dot is at 1/5 of the horizontal edge), and the normals of the
newly inserted vertices are copied from the closest vertex (in Figure
9, the internal vertices have the normal of the triangle corner with
the same color).

THEOREM 3.6. Suppose T is the middle surface of S, and neither
Ts or Bg intersects with T . After topological beveling, I2 holds, that
is, T~ is a section of the shell S for all 6 decompositions.

Proor. We provide a proof in Appendix A.4. O

Output. The output of this stage is a valid shell with respect to
T (Section 3.2), that is, it satisfies I1 and 12.

3.4 Shell Optimization

During shell optimization, we perform local operations (Figure 11)
on a valid shell to reduce its complexity and increase the quality.
Before applying every operation, we check the validity of the opera-
tion to ensure that: (1) the resulting middle surface will be manifold
[Dey et al. 1999] and (2) the shell will be valid with respect to 7~ (to

Bijective Projection in a Shell « 1:7

le Surface imi
[F|=6786 |F|=10470 |F|=394

Screw

(input)

Fig. 10. Our algorithm refines the input model (left) with beveling patterns
(middle) to ensure the generation of a valid shell. The subsequent shell
optimizations gracefully remove the unnecessary vertices (right).

ensure a bijective projection). We forbid any operation that does
not pass these checks. We would like to remark that, while there
are different choices to guide the shell modification, we experimen-
tally discovered that allowing shell simplification and optimization
consistently leads to thicker shells with a richer space of sections.

THEOREM 3.7. Let S be a valid shell with respect to a mesh T~ and
let C = {Aj}ier € S be a collection of prisms such that the middle
surface Mc of C is a simply connected topological disk.

Let O be an operation replacing C with a new collection of prisms
C" = {A}}ier, preserving both geometry and connectivity of the sides
of the prism collection C, and ensuring that M¢» is a simply connected
topological disk.

If these three assumptions hold:

(1) property I1 holds for C’,
(2) the top and bottom surfaces of C’ do not intersect T (Tcr N T~ =
BoNT =),
(3) the dot product condition n(p) - V(p) > 0 is satisfied for all
pointsp e T N A; for all pillars of every prism A; of C/,
then, Vi € I', T 0 A} is a simply connected topological disk. In other
words, T is a section of the new shell 8’ obtained by applying the
operation O to S.

Proor. We prove this theorem in Appendix A.5. O

We note that assumption (2) in Theorem 3.7 prevents the input
surface from crossing the bottom/top surface, thus avoiding it to
move in the interior of a region covered by more than one prism.

Our local operations (satisfying the definition of O in Theorem
3.7) are translated from surface remeshing methods [Dunyach et al.
2013] since our shell can be regarded as a triangle mesh (middle
surface) extruded through a displacement field N. All the local
operations described below directly change the middle surface, and
consequently affect the extruded shell. After every operation, the
middle surface is recomputed by intersecting 7~ with the edges of
the prisms in S.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:8 + Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

Edge Split

Vertex Smooth (Zoom)_

Vertex Smooth (Rotate)

Fig. 11. Different local operations used to optimize the shell. Mesh editing
operations translate naturally to the shell setting. For vertex smoothing, we
decompose the operation into 3 intermediate steps: pan, zoom, and rotate.

Shell Quality. We measure the quality of the shell S using the
MIPS energy [Hormann and Greiner 2000] of its middle surface Mg.
For each triangle T of the middle surface, we build a local reference
frame, and compute the affine map J transforming the triangle
into an equilateral reference triangle in the same reference frame.
The energy is then measured by

tr(JLJ7)

réats detUr)

This energy is invariant to scaling, thus allowing the local opera-
tions to coarsen the shell whenever possible while encouraging the
optimization to create well-shaped triangles. Good quality of the
middle surface decreases the chances, for the subsequent operations,
to violate the shell invariants.

Shell Connectivity Modifications. We translate three operations
for triangular meshes to the shell settings (Figure 11 top). Edge col-
lapse, split, and flip operations can be performed by simultaneously
modifying the top and bottom surfaces and retrieve the positions
for the middle surface through the intersection. We only accept the
operations if they pass the invariant check.

Vertex Smoothing. Due to the additional degree of freedom on
vertex-pairs (position, direction, and thickness), we decompose the
smoothing operations into three components (Figure 11 bottom).
Pan moves the positions of the top and bottom vertex at the same
time, minimizing the MIPS quality of the middle surface. Neither
the thickness or direction will be changed. Rotate re-aligns the local
direction to be the average of the neighboring ones while keeping
the position of the middle vertex fixed. Zoom keeps the direction
and position of the middle vertex, and set the thickness of both top
and bottom to be 1.5 times of the neighbor average, capped by the
input target thickness.

Invariant Check. We use exact orientation predicates [Shewchuk
1997] to make sure all the prisms satisfy positivity (I1). Further, we
ensure that the original surface 7~ is not intersecting with the bottom
and top surface, except at the prescribed singularities. The check is
done using the triangle-triangle overlap test [Guigue and Devillers
2003], accelerated using a static axis-aligned bounding box tree
constructed from 7. To accelerate the checks for normal condition,
for each prism A;, we maintain a list triangles overlapping with its
convex hull (an octahedron), and check their respective normals

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

[F|=20846

Fig. 12. A model with 48 singularities and a close up around one (left). Our
shell is pinched around each of them without affecting other regions (right).

against all the three pillars of A;. These three checks ensure that
the three conditions in Theorem 3.7 are satisfied. Note that the
vertex smoothing operation is continuous, in the sense that any
point between the current position and the optimal one improves
the shell. We, however, handle it as a discrete operation to check
our conditions: we attempt a full step, and if I1 is not satisfied, we
perform a bisection search for a displacement that does. We avoid
bisection for the other two conditions since they are expensive to
evaluate.

Projection Distortion. An optional invariant to maintain (not nec-
essary for guaranteeing bijectivity, but useful for applications), is
a bound on the maximal distortion Dp (A) of P for a prism A. We
measure it as the maximal angle between the normals of the set C
containing the faces of 7~ intersecting A and V:

Dp(A) = max £(np, V (p)),
peC
where / is the unsigned angle in degrees. This quantity is bounded
from below by the smallest dihedral angle of 7, making it impossible
to control exactly. However, we can prevent it from increasing by
measuring it and discarding the operations that increase it. In our
experiments, we use a threshold of 89.95 degrees.

Scheduling and Termination. Our optimization algorithm is com-
posed of two nested loops. The outer loop repeats a set of local
operations until the face count between two successive iteration
decreases by less than 0.01%. In the inner loop we: (1) flip every edge
of S decreasing the MIPS energy and avoiding high and low vertex
valences [Dunyach et al. 2013]; (2) smooth all vertices which include
pan, zoom, and rotate; and (3) collapse every edge of S not increas-
ing the MIPS energy over 30. Note that for every operation, we check
the invariants, the projection distortion, and manifold preservation
and reject any operation violating them. After the outer iteration
terminates (i.e. the shell cannot be coarsened anymore), we further
optimize the shell with 20 additional iterations of flips and vertex
smoothing.

3.5 Singularities

Singularities, i.e. vertices of 7~ for which the constraints set of prob-
lem (2) is empty, are surprisingly common in large datasets (Fig-
ure 12 shows an example). For instance, in our subset of Thingi10k
[Zhou and Jacobson 2016], although only 0.01% vertices are sin-
gular, 8% of the models have at least one singular point. This has
been recently observed as a limitation for the construction of nested
cages [Sacht et al. 2015, Appendix A], and it is a well-known issue
when building boundary layers [Aubry et al. 2017, 2015; Garimella

2

Fig. 13. Left to right: examples of a singularity as a feature point and as a
meshing artefact; and illustration of the degenerate prism with a singularity
(red) and its tetrahedral decomposition made of only four tetrahedra.

and Shephard 2000]. There are two main situations that give rise to
singular points. The first one naturally generates a singular point
when more than two ridge-lines meet (e.g., figures 12 and 30), thus
making the point a feature point. The second one is a pocket-like
mesh artifact, often produced as a result of mesh simplification
(Figure 13).

While singularities might seem fixable by applying local smooth-
ing or subdivision as a pre-process, it is not desirable in the case
of a feature point, and is likely to introduce self-intersection or
more serious geometric inconsistency. Therefore, due to the above
reasons and observing that they are very uncommon, we propose
to extend our theory (Appendix B) and algorithm to handle isolated
singularities by pinching the thickness of the shell. Note that in the
rare case where two singular points are sharing the same edge, they
are automatically separated by our topological beveling.

Pinching. We extend our definition of the shell by allowing it to
have zero thickness on singularities, thus tessellating the degenerate
prism with 4 instead of 6 tetrahedra (Figure 13). We further remark
that these isolated points must be excluded from Definition 3.1. In
the implementation, this requires to change the intersection predi-
cates to skip the singular vertices. With this change, the singularity
becomes a trivial point of the projection operator #, and the rest of
our shell can still be used in applications without further changes.
Since singularities tends to be isolated (they are usually located
at the juncture of multiple sharp features), this solution has min-
imal effects on applications: for example, when our shell is used
for remeshing, pinching the shell at singularities will freeze the
corresponding isolated vertices while allowing the rest of the mesh
to be freely optimized.

The topological beveling algorithm is
changed most significantly: for singular-
ities, there is no pillar to copy from. In
this case, we apply an additional edge
split, to use the pattern in the inset (with
the singularity marked by a white dot)
in the one-ring neighborhood of the sin-
gularity. The newly inserted vertices lie
either inside a triangle (uncircled red and orange dots), or in the
interior of an edge (circled red and orange dots). Therefore, we as-
sign to the orange vertices the average normal of the two adjacent
triangles, and to red the pillar of the connected orange one.

Bijective Projection in a Shell « 1:9

Side View

Top View

D
7
.

Fig. 14. AA’ is a direction with positive dot product with respect to all
its neighboring faces. However, no valid shell can be built following that
direction.

Fig. 15. An example of a mesh with boundary.

Additionally, the edges connecting singularities will always be
beveled/split after beveling. Therefore no prism will contain more
than one singular point. We discuss the technical extensions for our
proofs to shells with pinched prisms in Appendix B.

3.6 Boundaries.

We introduced our algorithm, assuming that the input mesh does
not have boundaries. We will now extend our construction to handle
this case, which requires minor variations to our algorithm.

For some vertices on the boundary, it might be impossible to
extrude a valid shell (Figure 14), even if problem (2) has a solution,
as Theorem 3.5 does not apply in its original form. We identify such
cases by connecting every edge in the 1-ring neighborhood of the
boundary vertex to the extruded point and check if they collide with
the existing 1-ring triangles (e.g., the triangle A’AB intersects the
existing input triangle in Figure 14). If it is the case, we consider
this vertex as a singularity, and we pinch the shell. Note that this is
an extremely rare case and, in our experiments, we detected it only
for models where the loss of precision in the STL export introduces
rounding noise on the boundary.

Once we pinch all boundary singularities, our construction ex-
tends naturally to the boundary. The only necessary modification
is in the shell optimization (Section 3.4), where we skip all oper-
ations acting on boundary vertices to maintain the bijectivity of
the induced projection operator (Figure 15). We thus freeze these
vertices and never allow them to move or be affected by any other
modification of the shell. Note that, in certain applications, it might
also be useful to freeze additional non-boundary vertices to ensure
that these remain on the middle surface during optimization (e.g.,
to exactly represent a corner of a CAD model).

4 RESULTS

Our algorithm is implemented in C++ and uses Eigen [Guennebaud
et al. 2010] for the linear algebra routines, CGAL [The CGAL Project

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:10 + Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

]

501 I] -

g \ T

& 1

1 oor

=

%

2

-

x

E \

B ,/—\ j/—\ a '\\ }/\) <
£ 1007 20/ | X \02/

" |F| =676 \F\ =698 F| = 1034 h [F| =7776

Fig. 16. The effect of different target thickness on the number of prisms |F|
of the final shell, and distribution of final thickness (shown as the box plots
on the top).

2020] and Geogram [Lévy 2015] for predicates and spatial search-
ing, and libig] [Jacobson et al. 2016] for basic geometry processing
routines. We run our experiments on cluster nodes with a Xeon E5-
2690 v2 @ 3.00GHz. The reference implementation used to generate
the results is attached to the submission and will be released as an
open-source project.

Robustness. For each dataset, we selected the subset of meshes
satisfying our input assumptions: intersection-free, orientable, man-
ifold triangle meshes without zero area triangles (tested using a
numerical tolerance 1071¢). We test self-intersections by two cri-
teria: a ball of radius 1071° around each vertex does not contain
non-adjacent triangles; and all the dihedral angles are larger than
0.1 degrees.

We tested our algorithm on two datasets: (1) Thingi10k dataset
[Zhou and Jacobson 2016] containing, after the filtering due to our
input assumptions, 5018 models; and (2) the first chunk of for the
ABC dataset [Koch et al. 2019] with 5545 models. The only user-
controlled parameter of our algorithm is the target thickness of our
shell; in all our experiments (unless stated otherwise), we use 10%
of the longest edge of the bounding box. In Figure 16, we show
how the target thickness influences the usage of the shell: a thicker
shell provides a larger class of sections, thus accommodates more
processing algorithms, while a thinner one offers a natural bound
on the geometric fidelity of the sections.

Our algorithm successfully creates shells for all 5018 models for
Thingi10k and 5545 for ABC. We show a few representative exam-
ples of challenging models for both datasets in Figure 17, including
models with complicated geometric and topological details. In all
cases, our algorithm produces coarse and thick cages, with a bijec-
tive projection field defined.

We report as a scatter plot the number of output faces, the timing,
and the memory used by our algorithm (Figure 18). In total, the
number of prisms generated by our algorithm is 7% and 2% of the
number of input triangles for the Thingil0k and ABC dataset respec-
tively and runs with no more than 4.7 GB of RAM. The generation
and optimization of the shell takes 5min and 59s in average and
up to 8.6 hours for the largest model. 50% of the meshes finish in 3
minutes and 75% in 6 minutes and 15 seconds.

Comparison to Simple Baselines. In Figure 19 we compare to two
baseline methods based on [Garland and Heckbert 1998]. For each
method, we generate a coarse mesh, uniformly subdivide it for vi-
sualization purposes, and query the corresponding spatial position

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

Thingi10k

Fig. 17. Gallery of shells built around models from Thingi10k [Zhou and
Jacobson 2016] and ABC [Koch et al. 2019].

Thingi10k

Output F|
Output |

|F| [El

Time(s)

E)
]
£
Euw

Memory(MB) _

Fig. 18. Statistics of 5018 shells in Thingi10k dataset [Zhou and Jacobson
2016] (left) and 5545 in ABC Dataset [Koch et al. 2019] (right).

UV based
F| = 3828

Thai Statue
F| = 79970

Naive Cage
F| = 1950

Fig. 19. The UV based method cannot simplify the prescribed seams, and
introduces self-intersections. The projection induced by the Naive Cage
method is not continuous and not bijective; it leads to visible spikes in the
reconstructed geometry.

on the original input to form the subdivided mesh. The UV based
method is a conventional way of establishing correspondence in
the context of texture mapping. However, the robust generation of
a UV atlas satisfying a variety of user constraints is still an open
problem. We use the state-of-the-art methods [Jiang et al. 2017;
Li et al. 2018] to generate a low-distortion bijective parametriza-
tion, and use seam-aware decimation technique [Liu et al. 2017] to
generate the coarse mesh. Due to the complex geometry and the
length of the seam (Figure 19 second figure), the simplification is not
able to proceed beyond the prescribed seam while maintaining the
bijectivity, making the pipeline inadequate especially for building
computational domains.

We also set up a baseline of the Naive Cage method by creating
a simplified coarse mesh with [Garland and Heckbert 1998] and
use Phong projection to establish the correspondence [Kobbelt et al.
1998; Panozzo et al. 2013]. Such attribute transfer is not guaranteed
to be bijective; some face may not be projected (Figure 19 third
image). With our method, we can generate a coarse mesh while
having a low-distortion bijective projection (Figure 19 fourth image).

Numerical accuracy. To evaluate the numerical error introduced
by our projection operator when implemented with floating-point
arithmetic, we transfer the vertices of the input mesh to the middle
surface and inverse transfer them from the middle surface back to
the input mesh. We measure the Euclidean distance with respect to
the source vertices (Figure 20). We compare the same experiment
with the Phong projection [Kobbelt et al. 1998]. This alternative
approach exhibits distance errors up to 107> even after ruling out
the outliers for which the method fails due to its lack of bijectivity.
The maximal error of our projection is on the order of 107%; this
error could be completely eliminated (for applications requiring an
exact bijection) by implementing the projection operator and its
inverse using rational arithmetic.

Bijective Projection in a Shell « 1:11

Shark (input) Phong Projection

Fig. 20. Our projection is three orders of magnitude more accurate than the
baseline method, and bijectively reconstructs the input vertex coordinates.

Rockerarm [F|=20088

Fig. 21. We attempt to simplify rockerarm (top left) from 20088 triangles to
100. QSlim [Garland and Heckbert 1998] succeeds in reaching the target
triangle count (top right) but generates an output with a self-intersection
(red) and flipped triangles (purple). With our shell constraints (bottom left),
the simplification stagnates at 136 triangles, but the output is free from
undesirable geometric configurations. Note that both examples use the
same quadratic error metric based sceduling [Garland and Heckbert 1998].

5 APPLICATIONS

Using our shell S, we implement the following predicates and func-
tions:

is_inside(p): returns true if the point p € R3 is inside S.
is_section(7"): returns true if the triangle mesh 7~ is a section
of S.

o P(p): returns the prism id (pid), the barycentric coordinates
(@, P) in the corresponding triangle of the middle surface, and
the relative offset distance from the middle surface (h, which
is -1 for the bottom surface, and 1 for the top surface) of the
projection of the point p

p-1 (pid, @, B, h) is the inverse of P (p).

Pq(tid, a, f) = P(q), where q is the point in the triangle tid
of the mesh 7~ , with barycentric coordinates «, f.

. P(;_l (pid, a, p) is the inverse of Pg-.

L]

As explained in Section 3, our shell may self-intersect and we
opted to simply exclude the overlapping regions. In practice this
affects only the function is_inside(p) which needs to check if p is
contained in two or more non-adjacent prisms.

These functions are sufficient to implement all applications below,
demonstrating the flexibility of our construction and how easy it is
to integrate in existing geometry processing workflows.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:12 « Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

Thingi10k #121868

o [F|-22848

Heat Method

Exact Geodesic

A e,
’(/(-("(-. ‘él/’//,
~ o

N

Shell
F|=3294

Section
[F]=15448 Heat Method on Section

Transfer to Input

Fig. 22. The heat method (right top) produces inaccurate results due to a
poor triangulation (left top). We remesh the input with our method (left
bottom), compute the solution of the heat method [Crane et al. 2013] on
the high-quality mesh (middle bottom) and transfer the solution back to
the input mesh using the bijective projection (bottom right). This process
produces a result closer to the exact discrete geodesic distance [Mitchell
et al. 1987] (top middle, error shown in the histograms).

Shell
[F|=7210

Knot) Tetrahedralized
[T|=1,497,488) IT=176,190

Fig. 23. Knot simplified with our method and tetrahedralized with TetGen.
The original model is converted to 1,503,428 tetrahedra (left) while the
simplified surface is converted to only 176,190 tetrahedra (right).

Remeshing. We integrated our shell in the meshing algorithm pro-
posed in [Dunyach et al. 2013] by adding envelope checks ensuring
that the surface is a section after every operation. After simplifi-
cation, we can use the projection operator to transfer properties
between the original and remeshed surface (e.g., figures 22, 23). Since
the remeshed surface is a section, a very practical side effect of our
construction is that the remeshed surface is guaranteed to be free of
self-intersections, As shown in Figure 21, the constraints enforced
through our shell prevents undesirable geometric configurations
(intersections, pockets, or triangle flips).

Proxy. A particularly useful application of our shell is the con-
struction of proxy domains for the solutions of PDEs on low-quality
meshes. Additionally, by specifying the target thickness parame-
ter (Figure 16), we are able to bound the geometry approximation

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

Fig. 24. The union of two meshes is coarsened through our algorithm, while
preserving the exact correspondence, as shown through color transfer.

error to the input as well. Using our method, we can (1) convert a
low-quality mesh to a proxy mesh with higher quality and desired
density, (2) map the boundary conditions from the input to the proxy
using the bijective projection map, (3) solve the PDE on the proxy
(which is a standard mesh), and (4) transfer back the solution on the
input surface (Figure 22). Our algorithm can be directly used to
solve volumetric PDEs. by calling an existing tetrahedral meshing
algorithm between steps 2 and 3 (figures 1, 23). In this case, we
control the geometric error by setting the target thickness (we use
2% of the longest edge of the bounding box).

Boolean Operations. The mesh arrangements algorithm enables
the robust and exact (up to a final floating-point rounding) compu-
tation of Boolean operations on PWN meshes [Zhou et al. 2016].
However, the produced meshes tend to have low triangle quality
that might hinder the performance of downstream algorithms. By
interleaving a remeshing step performed with our algorithm af-
ter every operation, we ensure high final quality and more stable
runtime. The composition of the bijections enables us to transfer
properties between different nodes of the CSG tree (Figure 24).

Displacement Mapping. The middle surface of the shell is a coarse
triangular mesh that can be directly used to compress the geometry
of the input mesh, storing only the coarse mesh connectivity and
adding the details using normal and displacement maps (Figure 25).
A common way to build such displacement is to project [Collins
and Hilton 2002; Kobbelt et al. 1998] the dense mesh on the coarser
version. As shown in Appendix D, our method guarantees that this
natural projection is also bijective as long as the coarse mesh is a
section. This alleviates the loss of information even on challenging
geometry configurations, and our shell can thus be used to automate
the creation of projection cages and displacement maps.

Geometric Textures. The inverse projection operator provides a
2.5D parametrization around a given mesh and can be used to apply
a volumetric texture (Figure 26). Note that we build the volumetric

Ours + Displacement Map

Fig. 25. Top: an input mesh decimated to create a coarse base mesh, and
the details are encoded in a displacement map (along the normal) with
correspondences computed with Phong projection [Kobbelt et al. 1998].
Bottom: the decimation is done within our shell while using the same
projection as above. With our construction, this projection becomes bijective
(Appendix D), avoiding the artifacts visible on the ears of the bunny in the
top row.

I Input [F|=39040 5

i Shell [Fl=1584

Fig. 26. Two volumetric chainmail textures (right) are applied to a shell
(bottom left) constructed from the Animal mesh (top left). The original UV
coordinates are transferred using our projection operator.

texture on the simplified shell, while still being able to bijectively
transfer the texture coordinates.

6 VARIANTS

Input with Self-Intersections. Up to this point, we assumed that
our input meshes are without self-intersections. This requirement
is necessary to guarantee a bijection between any section (e.g., the
input mesh) and the middle surface. Such bijection is essential for
a key target application, the transfer of boundary conditions for
solving PDEs on meshes or mesh-bounded domains.

However, our method can be easily extended to meshes containing
self-intersections, broadening the class of meshes it can be applied to,
at the cost of making the resulting shell usable in fewer application
scenarios: for example, if it is used for remeshing, it will likely
generate a new surface that still contains self-intersections.

If 7 contains self-intersections, our algorithm can be trivially
extended to generate a shell which will be locally injective, and the
bijectivity of the mapping between sections still holds but with
respect to the immersion. The only change required is to modify
the invariance checks (Section 3.4): we have to replace the global
intersection check with checking whether local triangles overlap

Bijective Projection in a Shell « 1:13

Leg w/ Self-Intersection
[F| = 13230

Fig. 27. An example of a shell built around a self-intersecting mesh.

Fig. 28. The Armadillo model with four nested cages. We create a shell from
the original mesh, and then rerun our algorithm on the outer shell to create
the other three layers. Note that all layers are free of self-intersections, and
we have an explicit bijective map between them.

with the current prisms. Figure 27 shows an example of a mesh
7 with self-intersections, the generated shell, and the isolines of
geodesic transferred on the coarser middle surface.

Resolving Shell Self-Intersections. For certain applications it might
be preferable to have a shell whose top and bottom surfaces do
not self-intersect: for example, in the construction of nested cages
[Sacht et al. 2015] (useful for collision proxies and animation cages),
we want to iteratively build nested shells while ensuring no inter-
sections between them (Figure 28). With a small modification, our
algorithm can be used to generate nested cage automatically and
robustly, with the additional advantage of being able to map any
quantity bijectively across the layers and to the input mesh. In con-
trast, [Sacht et al. 2015] does not provide guarantees on the success
(e.g., the reference implementation of [Sacht et al. 2015] fails on
Figure 19, probably due to the presence of a singularity).

To resolve the self-intersections of the top (bottom) surface, we
identify the regions covered by more than one prism by explicitly
testing intersections between the tetrahedralized prisms, accelerated
using [Zomorodian and Edelsbrunner 2000]. For every detected
prism, we reduce the thickness by 20%, and iterate until no more
intersections are found. Differently from the procedure in Section
3.3, where reducing the thickness of the shell always maintains the
validity of the shell, at this stage, the shrinking of the shell may
make the shell invalid, since 7" may not be contained anymore
in S. Whenever this happens, we perform one step of red-green
refinement [Bank et al. 1983] on the regions we wish to thin, and we
iterate until we succeed. This procedure is guaranteed to terminate
since, on the limit of the refinement, the middle surface will be
geometrically identical to 77, and thus Theorem 3.5 holds. In the
worst case, the procedure terminates when the size of triangles on
the middle surface is comparable to the input; then no refinement
is required to shrink below the minimum separation of the input.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:14 « Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

Camel w/ Self Intersecting Top Surface Self Intersection Resolved

Fig. 29. After optimization, the shell may self-intersect (left). Our postpro-
cessing can be used to extract a non-selfintersecting shell, which is easier
to use in downstream applications (right).

Fig. 30. We generate a pinched shell for a model with a singularity (left).
Optionally, we can complete the shell using our Boolean construction.

Figure 29 shows how the intersecting shell between the legs of the
camel can be shrunk to generate an intersection-free shell.

Pinching Alternative. For certain applications, such as boundary
layer meshing, it is necessary to have a shell with non-zero thickness
everywhere, including at singularities, and it is tolerable to lose
bijectivity at the vicinity of a singularity. For these cases, we propose
a Boolean construction to fill the shell around singularities, and to
extend the projection operator P inside these regions. That is, every
point in the filled region will project to the singularity.

Without loss of generality, let us assume that 7~ has a single sin-
gularity (Figure 30). We initially construct a pinched shell, with zero
thickness at the singularity, construct a valid shell (Section 3), and
then perform a corefinement [Loriot et al. 2020] between a tetrahe-
dron (centered at the singularity and whose size is smaller than the
minimal thickness of the neighboring vertices) and the shell. The
result of the corefinement operation (Figure 30 middle) consists of
triangles belong to the tetrahedron, or the shell surface. The remain-
ing part of the tetrahedron is a star-shaped polyhedron with the
singularity in its kernel, and sharing a part of its boundary with the
shell. This polyhedron can be easily tetrahedralized by connecting
its triangulated boundary faces (one of them is highlighted in red
in Figure 30 middle) with the singularity. For every point p in these
tetrahedra, the projection operator # projects p to the singularity.
The remaining triangles are divided into two groups: the triangles
with only one new vertex complete the degenerate prisms (one of
them is highlighted in blue in Figure 30 middle), while the others
map to the edges they are attached to.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

7 LIMITATIONS

Currently, our algorithm is limited to manifold and orientable sur-
faces: its extension to non-manifold and/or non-orientable meshes
is a potential venue for future work. With such an extension, the in-
tegration of shells with robust tetrahedral meshers [Hu et al. 2019b,
2018] would allow to solve PDEs on imperfect triangle meshes with-
out ever exposing the user to the volumetric mesh, allowing them to
directly work on the boundary representation to specify boundary
conditions and to analyze the solution of the desired PDE. Since
we rely on the additional checks for the bijective constraints, our
method is slower than classical surface mesh adaptation algorithms
and it is not suitable for interactive applications.

Integrating our approach into existing mesh processing algo-
rithms might lose some of their guarantees or properties since our
shell might prevent some local operations. Other surface process-
ing algorithms guarantee some properties under some regularity
assumptions on the input, which might not hold when our bijective
constraints are used. For example, QSlim [Garland and Heckbert
1997] might not be able to reach the desired target number of vertices
and [Dey and Ray 2010] might not be able to achieve the bounded
aspect ratio. A practical limitation is that integrating our approach
into existing remeshing or simplification implementations requires
code level access.

Our shell is ideal for triangle remeshing algorithms employing
incremental changes: not every geometry processing algorithm
requiring a bijective map can use our construction. For example, it
is unclear how isosurface-extraction methods [Hass and Trnkova
2020] could use our shell or how global parametrization algorithms
[Alliez et al. 2003; Bommes et al. 2013; Kraevoy and Sheffer 2004;
Schreiner et al. 2004] could benefit from our method since they
already compute a map to a common domain.

8 CONCLUDING REMARKS

We introduce an algorithm to construct shells around triangular
meshes and define bijections between surfaces inside the shell. We
proposed a robust algorithm to compute the shell, validated it on a
large collection of models, and demonstrated its practical applicabil-
ity in common applications in graphics and geometry processing.

We believe that many applications in geometry processing could
benefit from bijectively mapping spatially close surfaces, and that
the idea of using an explicit mesh as a common parametrization
domain could be extended to the more general case of comput-
ing cross-parametrizations between arbitrary surfaces. To foster
research in this direction, we will release our reference implementa-
tion as an open-source project.

ACKNOWLEDGMENTS

The authors thank all the reviewers for their constructive feedback.
This work was supported in part through the NYU IT High Perfor-
mance Computing resources, services, and staff expertise. This work
was partially supported by the NSF CAREER award 1652515, the
NSF grants I1S-1320635, DMS-1436591, DMS-1821334, OAC-1835712,
OIA-1937043, CHS-1908767, CHS-1901091, a gift from Adobe Re-
search, a gift from nTopology, and a gift from Advanced Micro
Devices, Inc.

REFERENCES

Noam Aigerman, Shahar Z. Kovalsky, and Yaron Lipman. 2017. Spherical Orbifold
Tutte Embeddings. ACM Trans. Graph. 36, 4, Article Article 90 (July 2017), 13 pages.
https://doi.org/10.1145/3072959.3073615

Noam Aigerman and Yaron Lipman. 2015. Orbifold Tutte Embeddings. ACM Trans.
Graph. 34, 6, Article Article 190 (Oct. 2015), 12 pages. https://doi.org/10.1145/
2816795.2818099

Noam Aigerman and Yaron Lipman. 2016. Hyperbolic Orbifold Tutte Embeddings.
ACM Trans. Graph. 35, 6, Article Article 217 (Nov. 2016), 14 pages. https://doi.org/
10.1145/2980179.2982412

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2014. Lifted Bijections for Low
Distortion Surface Mappings. ACM Trans. Graph. 33, 4, Article Article 69 (July 2014),
12 pages. https://doi.org/10.1145/2601097.2601158

Noam Aigerman, Roi Poranne, and Yaron Lipman. 2015. Seamless Surface Mappings.
ACM Trans. Graph. 34, 4, Article Article 72 (July 2015), 13 pages.

Pierre Alliez, Eric Colin De Verdire, Olivier Devillers, and Martin Isenburg. 2003.
Isotropic surface remeshing. In 2003 Shape Modeling International. IEEE, 49-58.

R Aubry, S Dey, EL Mestreau, and BK Karamete. 2017. Boundary layer mesh generation
on arbitrary geometries. Internat. . Numer. Methods Engrg. 112, 2 (2017), 157-173.

Romain Aubry and Rainald Lohner. 2008. On the ‘most normal'normal. Communications
in Numerical Methods in Engineering 24, 12 (2008), 1641-1652.

R Aubry, EL Mestreau, S Dey, BK Karamete, and D Gayman. 2015. On the ‘most
normal’ normal—Part 2. Finite Elements in Analysis and Design 97 (2015), 54-63.
Chandrajit L Bajaj, Guoliang Xu, Robert J Holt, and Arun N Netravali. 2002. Hierarchical
multiresolution reconstruction of shell surfaces. Computer Aided Geometric Design

19, 2 (2002), 89-112.

Randolph E Bank, Andrew H Sherman, and Alan Weiser. 1983. Some refinement algo-
rithms and data structures for regular local mesh refinement. Scientific Computing,
Applications of Mathematics and Computing to the Physical Sciences 1 (1983), 3-17.

Robert E. Barnhill, Karsten Opitz, and Helmut Pottmann. 1992. Fat surfaces: a trivariate
approach to triangle-based interpolation on surfaces. Computer Aided Geometric
Design 9, 5 (1992), 365-378. https://doi.org/10.1016/0167-8396(92)90030-s

David Bommes, Bruno Lévy, Nico Pietroni, Enrico Puppo, Claudio Silva, Marco Tarini,
and Denis Zorin. 2013. Quad-mesh generation and processing: A survey. In Computer
Graphics Forum, Vol. 32. Wiley Online Library, 51-76.

Mario Botsch and Leif Kobbelt. 2003. Multiresolution surface representation based on
displacement volumes. In Computer Graphics Forum, Vol. 22. Wiley Online Library,
483-491.

Mario Botsch, Mark Pauly, Markus H Gross, and Leif Kobbelt. 2006. PriMo: coupled
prisms for intuitive surface modeling. In Symposium on Geometry Processing. 11-20.

Tamy Boubekeur and Marc Alexa. 2008. Phong tessellation. In ACM Transactions on
Graphics (TOG), Vol. 27. ACM, 141.

Stéphane Calderon and Tamy Boubekeur. 2017. Bounding Proxies for Shape Ap-
proximation. ACM Trans. Graph. 36, 4, Article Article 57 (July 2017), 13 pages.
https://doi.org/10.1145/3072959.3073714

Marcel Campen, Claudio T. Silva, and Denis Zorin. 2016. Bijective Maps from Simplicial
Foliations. ACM Trans. Graph. 35, 4, Article 74 (July 2016), 15 pages.

Frédéric Chazal and David Cohen-Steiner. 2005. A condition for isotopic approximation.
Graphical Models 67, 5 (2005), 390-404.

Frédéric Chazal, André Lieutier, Jarek Rossignac, and Brian Whited. 2010. Ball-map:
Homeomorphism between compatible surfaces. International Journal of Computa-
tional Geometry & Applications 20, 03 (2010), 285-306.

Yanyun Chen, Xin Tong, Jiaping Wang, Jiaping Wang, Stephen Lin, Baining Guo,
Heung-Yeung Shum, and Heung-Yeung Shum. 2004. Shell texture functions. In ACM
Transactions on Graphics (TOG), Vol. 23. ACM, 343-353.

Xiao-Xiang Cheng, Xiao-Ming Fu, Chi Zhang, and Shuangming Chai. 2019. Practical
error-bounded remeshing by adaptive refinement. Computers & Graphics 82 (2019),
163 - 173. https://doi.org/10.1016/j.cag.2019.05.019

Kazem Cheshmi, Danny M. Kaufman, Shoaib Kamil, and Maryam Mehri Dehnavi. 2020.
NASOQ: Numerically Accurate Sparsity-Oriented QP Solver. ACM Transactions on
Graphics 39, 4 (July 2020).

Philippe G Ciarlet. 1991. Basic error estimates for elliptic problems. Finite Element
Methods (Part 1) (1991).

Jonathan Cohen, Dinesh Manocha, and Marc Olano. 1997. Simplifying polygonal models
using successive mappings. In Proceedings. Visualization’97 (Cat. No. 97CB36155).
IEEE, 395-402.

Jonathan Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk, Hans Weber, Pankaj
Agarwal, Frederick Brooks, and William Wright. 1996. Simplification envelopes. In
Siggraph, Vol. 96. 119-128.

Gordon Collins and Adrian Hilton. 2002. Mesh Decimation for Displacement Mapping..
In Eurographics (Short Papers).

Blender Online Community. 2018. Blender - a 3D modelling and rendering package.
Blender Foundation, Stichting Blender Foundation, Amsterdam. http://www.blender.
org

John H Conway, Heidi Burgiel, and Chaim Goodman-Strauss. 2016. The symmetries of
things. CRC Press.

Bijective Projection in a Shell « 1:15

Harold Scott Macdonald Coxeter. 1973. Regular polytopes. Courier Corporation.

Keenan Crane, Clarisse Weischedel, and Max Wardetzky. 2013. Geodesics in heat: A
new approach to computing distance based on heat flow. ACM Transactions on
Graphics (TOG) 32, 5 (2013).

Tamal K Dey, Herbert Edelsbrunner, Sumanta Guha, and Dmitry V Nekhayev. 1999.
Topology preserving edge contraction. Publ. Inst. Math.(Beograd)(NS) 66, 80 (1999),
23-45.

Tamal K Dey and Tathagata Ray. 2010. Polygonal surface remeshing with Delaunay
refinement. Engineering with computers 26, 3 (2010), 289-301.

Julien Dompierre, Paul Labbé, Marie-Gabrielle Vallet, and Ricardo Camarero. 1999. How
to Subdivide Pyramids, Prisms, and Hexahedra into Tetrahedra. IMR 99 (1999), 195.

Marion Dunyach, David Vanderhaeghe, Loic Barthe, and Mario Botsch. 2013. Adaptive
remeshing for real-time mesh deformation.

Ramsay Dyer, Hao Zhang, and Torsten Moller. 2007. Delaunay mesh construction.
(2007).

Hans-Christian Ebke, Marcel Campen, David Bommes, and Leif Kobbelt. 2014. Level-
of-detail quad meshing. ACM Transactions on Graphics (TOG) 33, 6 (2014), 184.
Danielle Ezuz, Justin Solomon, and Mirela Ben-Chen. 2019. Reversible Harmonic Maps
between Discrete Surfaces. ACM Trans. Graph. 38, 2, Article Article 15 (March 2019),

12 pages. https://doi.org/10.1145/3202660

Michael Floater. 2003. One-to-one piecewise linear mappings over triangulations. Math.
Comp. 72, 242 (2003), 685-696.

Michael S. Floater. 1997. Parametrization and smooth approximation of surface trian-
gulations. Computer Aided Geometric Design 14 (1997), 231-250.

Michael S. Floater and Kai Hormann. 2005. Surface Parameterization: a Tutorial and
Survey. In In Advances in Multiresolution for Geometric Modelling, Mathematics and
Visualization. Springer Verlag, 157-186.

Xiao-Ming Fu and Yang Liu. 2016. Computing Inversion-free Mappings by Simplex
Assembly. ACM Trans. Graph. 35, 6, Article 216 (Nov. 2016), 12 pages.

Rao V Garimella and Mark S Shephard. 2000. Boundary layer mesh generation for
viscous flow simulations. Internat. J. Numer. Methods Engrg. 49, 1-2 (2000), 193-218.

Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. ACM Press/Addison-Wesley Publishing Co., 209-216.

Michael Garland and Paul S Heckbert. 1998. Simplifying surfaces with color and texture
using quadric error metrics. In Proceedings Visualization’98 (Cat. No. 98CB36276).
IEEE, 263-269.

Bernd Gértner and Sven Schonherr. 2000. An efficient, exact, and generic quadratic
programming solver for geometric optimization. In Proceedings of the sixteenth
annual symposium on Computational geometry. 110-118.

Craig Gotsman and Vitaly Surazhsky. 2001. Guaranteed intersection-free polygon
morphing. Computers & Graphics 25, 1 (2001), 67-75.

Gaél Guennebaud, Benoit Jacob, et al. 2010. Eigen v3.

André Guéziec. 1996. Surface simplification inside a tolerance volume. IBM TJ] Watson
Research Center.

Philippe Guigue and Olivier Devillers. 2003. Fast and robust triangle-triangle overlap
test using orientation predicates. Journal of graphics tools 8, 1 (2003), 25-32.

George W Hart. 2018. Conway notation for polyhedra. URL: http://www. gergehart.
co/virtual-polyhedra/conway_notation. html (2018).

J Hass and M Trnkova. 2020. Approximating isosurfaces by guaranteed-quality trian-
gular meshes. In Computer Graphics Forum, Vol. 39. Wiley Online Library, 29-40.

Kai Hormann and Giinther Greiner. 2000. MIPS: An efficient global parametrization
method. Technical Report. ERLANGEN-NUERNBERG UNIV (GERMANY) COM-
PUTER GRAPHICS GROUP.

Kai Hormann, Bruno Lévy, and Alla Sheffer. 2007. Mesh Parameterization: Theory and
Practice. In ACM SIGGRAPH 2007 Courses (San Diego, California) (SSGGRAPH ’07).
ACM, New York, NY, USA.

K. Hormann and N. Sukumar (Eds.). 2017. Generalized Barycentric Coordinates in
Computer Graphics and Computational Mechanics. CRC Press, Boca Raton, FL.

K. Hu, D. Yan, D. Bommes, P. Alliez, and B. Benes. 2017. Error-Bounded and Feature
Preserving Surface Remeshing with Minimal Angle Improvement. IEEE Transactions
on Visualization and Computer Graphics 23, 12 (Dec 2017), 2560-2573. https://doi.
0rg/10.1109/TVCG.2016.2632720

Kaimo Hu, Dong-Ming Yan, David Bommes, Pierre Alliez, and Bedrich Benes. 2016.
Error-bounded and feature preserving surface remeshing with minimal angle im-
provement. IEEE transactions on visualization and computer graphics 23, 12 (2016),
2560-2573.

Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin,
and Daniele Panozzo. 2019a. TriWild: robust triangulation with curve constraints.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 52.

Yixin Hu, Teseo Schneider, Bolun Wang, Denis Zorin, and Daniele Panozzo. 2019b. Fast
Tetrahedral Meshing in the Wild. arXiv preprint arXiv:1908.03581 (2019).

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4 (2018), 60-1.

Jin Huang, Xinguo Liu, Haiyang Jiang, Qing Wang, and Hujun Bao. 2007. Gradient-
based shell generation and deformation. Computer Animation and Virtual Worlds

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:16 « Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

18, 4-5 (2007), 301-309.

Alec Jacobson, Daniele Panozzo, C Schiiller, O Diamanti, Q Zhou, N Pietroni, et al. 2016.
libigl: A simple C++ geometry processing library, 2016.

Zhongshi Jiang, Scott Schaefer, and Daniele Panozzo. 2017. Simplicial complex aug-
mentation framework for bijective maps. ACM Transactions on Graphics 36, 6
(2017).

Xiangmin Jiao and Michael T Heath. 2004. Overlaying surface meshes, part I: Algorithms.
International Journal of Computational Geometry & Applications 14, 06 (2004), 379—
402.

M. Jin, J. Kim, F. Luo, and X. Gu. 2008. Discrete Surface Ricci Flow. IEEE Transactions
on Visualization and Computer Graphics 14, 5 (Sep. 2008), 1030-1043. https://doi.
0rg/10.1109/TVCG.2008.57

Yao Jin, Dan Song, Tongtong Wang, Jin Huang, Ying Song, and Lili He. 2019. A shell
space constrained approach for curve design on surface meshes. Computer-Aided
Design 113 (2019), 24-34.

Liliya Kharevych, Boris Springborn, and Peter Schréder. 2006. Discrete Conformal
Mappings via Circle Patterns. ACM Trans. Graph. 25, 2 (April 2006), 412-438.
https://doi.org/10.1145/1138450.1138461

Peter Knabner and Gerhard Summ. 2001. The invertibility of the isoparametric mapping
for pyramidal and prismatic finite elements. Numer. Math. 88, 4 (2001), 661-681.

Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. 1998. Interactive
multi-resolution modeling on arbitrary meshes. In Siggraph, Vol. 98. 105-114.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov,
Evgeny Burnaev, Marc Alexa, Denis Zorin, and Daniele Panozzo. 2019. ABC: A
Big CAD Model Dataset For Geometric Deep Learning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Vladislav Kraevoy and Alla Sheffer. 2004. Cross-parameterization and compatible
remeshing of 3D models. ACM Transactions on Graphics (TOG) 23, 3 (2004), 861—
869.

Aaron Lee, Henry Moreton, and Hugues Hoppe. 2000. Displaced subdivision surfaces.
In Proceedings of the 27th annual conference on Computer graphics and interactive
techniques. 85-94.

Aaron WF Lee, Wim Sweldens, Peter Schréder, Lawrence C Cowsar, and David P
Dobkin. 1998. MAPS: Multiresolution adaptive parameterization of surfaces. In
Siggraph, Vol. 98. 95-104.

Jerome Lengyel, Emil Praun, Adam Finkelstein, and Hugues Hoppe. 2001. Real-time
fur over arbitrary surfaces. In Proceedings of the 2001 symposium on Interactive 3D
graphics. ACM, 227-232.

Bruno Lévy. 2015. Geogram.

Minchen Li, Danny M Kaufman, Vladimir G Kim, Justin Solomon, and Alla Sheffer. 2018.
OptCuts: joint optimization of surface cuts and parameterization. ACM Transactions
on Graphics (TOG) 37, 6 (2018), 1-13.

Yaron Lipman. 2014. Bijective mappings of meshes with boundary and the degree in
mesh processing. SIAM Journal on Imaging Sciences 7, 2 (2014), 1263-1283.

Nathan Litke, Marc Droske, Martin Rumpf, and Peter Schréder. 2005. An image process-
ing approach to surface matching.. In Symposium on Geometry Processing, Vol. 255.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam I Gingold. 2017. Seamless:
seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Trans. Graph. 36, 6 (2017).

Yong-Jin Liu, Chun-Xu Xu, Dian Fan, and Ying He. 2015. Efficient construction and
simplification of Delaunay meshes. ACM Transactions on Graphics (TOG) 34, 6
(2015).

Sébastien Loriot, Mael Rouxel-Labbé, Jane Tournois, and Ilker O. Yaz. 2020.
Polygon Mesh Processing. In CGAL User and Reference Manual (5.0.3
ed.). CGAL Editorial Board. https://doc.cgal.org/5.0.3/Manual/packages.html#
PkgPolygonMeshProcessing

Manish Mandad, David Cohen-Steiner, and Pierre Alliez. 2015. Isotopic approximation
within a tolerance volume. ACM Transactions on Graphics (TOG) 34, 4 (2015), 64.

Haggai Maron, Meirav Galun, Noam Aigerman, Miri Trope, Nadav Dym, Ersin Yumer,
Vladimir G Kim, and Yaron Lipman. 2017. Convolutional neural networks on surfaces
via seamless toric covers. ACM Trans. Graph. 36, 4 (2017), 71-1.

Joseph SB Mitchell, David M Mount, and Christos H Papadimitriou. 1987. The discrete
geodesic problem. SIAM J. Comput. 16, 4 (1987), 647-668.

Matthias Miller, Nuttapong Chentanez, Tae-Yong Kim, and Miles Macklin. 2015. Air
Meshes for Robust Collision Handling. ACM Trans. Graph. 34, 4 (July 2015), 9.

Hubert Nguyen. 2007. Gpu gems 3. Addison-Wesley Professional.

Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas
Guibas. 2012. Functional Maps: A Flexible Representation of Maps between Shapes.
ACM Trans. Graph. 31, 4, Article Article 30 (July 2012), 11 pages. https://doi.org/10.
1145/2185520.2185526

Maks Ovsjanikov, Etienne Corman, Michael Bronstein, Emanuele Rodola, Mirela Ben-
Chen, Leonidas Guibas, Frederic Chazal, and Alex Bronstein. 2017. Computing
and Processing Correspondences with Functional Maps. In ACM SIGGRAPH 2017
Courses (SIGGRAPH ’17). Article Article 5. https://doi.org/10.1145/3084873.3084877

Daniele Panozzo, Ilya Baran, Olga Diamanti, and Olga Sorkine-Hornung. 2013. Weighted
averages on surfaces. ACM Transactions on Graphics (TOG) 32, 4 (2013), 60.

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

Jianbo Peng, Daniel Kristjansson, and Denis Zorin. 2004. Interactive modeling of
topologically complex geometric detail. In ACM Transactions on Graphics (TOG),
Vol. 23. ACM, 635-643.

Bui Tuong Phong. 1975. Illumination for computer generated pictures. Commun. ACM
18, 6 (1975), 311-317.

Nico Pietroni, Marco Tarini, and Paolo Cignoni. 2010. Almost Isometric Mesh Pa-
rameterization through Abstract Domains. IEEE Transactions on Visualization and
Computer Graphics 16, 4 (July 2010), 621-635. https://doi.org/10.1109/TVCG.2009.96

Serban D Porumbescu, Brian Budge, Louis Feng, and Kenneth I Joy. 2005. Shell maps.
In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 626-633.

Emil Praun, Wim Sweldens, and Peter Schroder. 2001. Consistent mesh parameter-
izations. In Proceedings of the 28th annual conference on Computer graphics and
interactive techniques. 179-184.

Michael Rabinovich, Roi Poranne, Daniele Panozzo, and Olga Sorkine-Hornung. 2017.
Scalable Locally Injective Mappings. ACM Trans. Graph. 36, 2, Article 16 (2017),
16 pages.

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Transac-
tions on Graphics (TOG) 34, 6 (2015), 170.

Patrick Schmidt, Janis Born, Marcel Campen, and Leif Kobbelt. 2019. Distortion-
minimizing injective maps between surfaces. ACM Transactions on Graphics (TOG)
38 (2019).

John Schreiner, Arul Asirvatham, Emil Praun, and Hugues Hoppe. 2004. Inter-Surface
Mapping. ACM Trans. Graph. 23, 3 (Aug. 2004), 870-877. https://doi.org/10.1145/
1015706.1015812

Christian Schiiller, Ladislav Kavan, Daniele Panozzo, and Olga Sorkine-Hornung. 2013.
Locally Injective Mappings. In Symposium on Geometry Processing. 125-135.

Nicholas Sharp and Keenan Crane. 2020. A Laplacian for Nonmanifold Triangle Meshes.
Computer Graphics Forum (SGP) 39, 5 (2020).

Nicholas Sharp, Yousuf Soliman, and Keenan Crane. 2019. Navigating intrinsic triangu-
lations. ACM Transactions on Graphics (TOG) 38, 4 (2019), 55.

Alla Sheffer, Emil Praun, and Kenneth Rose. 2006. Mesh Parameterization Methods and
Their Applications. Found. Trends. Comput. Graph. Vis. 2, 2 (2006), 105-171.

Jonathan Richard Shewchuk. 1997. Adaptive precision floating-point arithmetic and
fast robust geometric predicates. Discrete & Computational Geometry 18, 3 (1997).

Meged Shoham, Amir Vaxman, and Mirela Ben-Chen. 2019. Hierarchical Functional
Maps between Subdivision Surfaces. Computer Graphics Forum 38, 5 (2019), 55-73.
https://doi.org/10.1111/cgf.13789

Jason Smith and Scott Schaefer. 2015. Bijective Parameterization with Free Boundaries.
ACM Trans. Graph. 34, 4, Article 70 (July 2015), 9 pages.

Boris Springborn, Peter Schréder, and Ulrich Pinkall. 2008. Conformal Equivalence of
Triangle Meshes. ACM Trans. Graph. 27, 3 (Aug. 2008), 1-11. https://doi.org/10.
1145/1360612.1360676

B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd. 2017. OSQP: An
Operator Splitting Solver for Quadratic Programs. ArXiv e-prints (Nov. 2017).
arXiv:math.0C/1711.08013

Kenneth Stephenson. 2005. Introduction to circle packing: The theory of discrete analytic
functions. Cambridge University Press.

Vitaly Surazhsky and Craig Gotsman. 2001. Morphing stick figures using optimized
compatible triangulations. In Computer Graphics and Applications, 2001. Proceedings.
Ninth Pacific Conference on. IEEE, 40-49.

The CGAL Project. 2020. CGAL User and Reference Manual (5.0.3 ed.). CGAL Editorial
Board. https://doc.cgal.org/5.0.3/Manual/packages.html

Jean-Marc Thiery, Julien Tierny, and Tamy Boubekeur. 2012. CageR: Cage-Based
Reverse Engineering of Animated 3D Shapes. Comput. Graph. Forum 31, 8 (Dec.
2012), 2303-2316. https://doi.org/10.1111/j.1467-8659.2012.03159.x

W. T. Tutte. 1963. How to draw a Graph. Proceedings of the London Mathematical Society
13, 3 (1963), 743-768.

Lifeng Wang, Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-
Yeung Shum. 2003. View-dependent displacement mapping. In ACM Transactions
on graphics (TOG), Vol. 22. ACM, 334-339.

Xi Wang, Xin Tong, Stephen Lin, Shimin Hu, Baining Guo, and Heung-Yeung Shum.
2004. Generalized displacement maps. In Proceedings of the Fifteenth Eurographics
conference on Rendering Techniques. Eurographics Association, 227-233.

Ofir Weber and Denis Zorin. 2014. Locally Injective Parametrization with Arbitrary
Fixed Boundaries. ACM Trans. Graph. 33, 4, Article 75 (July 2014), 12 pages.

Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface
Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1-27.

Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh arrange-
ments for solid geometry. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1-15.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv preprint arXiv:1605.04797 (2016).

Afra Zomorodian and Herbert Edelsbrunner. 2000. Fast software for box intersections. In
Proceedings of the sixteenth annual symposium on Computational geometry. 129-138.

A PROOFS
A.1 Theorem 3.2

Consider the unique (up to symmetry) piece-wise affine map T
deforming A into a reference prismA ={u,v > 0lu+v < 1}x[-1,1],
identifying the bottom surface of A as z = —1, middle surface as
z = 0, and top surface as z = 1. Let T be the affine map mapping
tetrahedron T to the reference prism. Since the volume of all T
is positive by assumption, the map T is bijective and orientation
preserving. In particular, T transforms ¥V (p) to the const vector
ez = (0,0, 1) since the edges of the prism are mapped to axis aligned
edges of the reference prism. The projection operator £ (p) can thus
be equivalently defined as P (p) = T~H(P,(T(p))), where P, is the
projection over the z-axis in the reference prism. P, is bijective if the
piecewise linear mesh intersecting A is composed of triangles with
positive area (and the boundaries are mapped to the boundaries)
[Lipman 2014], after being mapped to the reference A and projected
by #. In the reference domain, having positive area after projection
(with a fixed boundary) is equivalent to that the dot product between
the projection direction and the normal of every face is positive.
In the top half of A, P; is bijective if for every point T(p),p € f
T(np)-[0,0,1] = T(np)-T(V(p)) > 0 which holds since np, -V (p) >
0 (from the definition of section) and the fact that T is orientation
preserving and thus not changing the sign of the dot product.

A.2 Proposition 3.4

For simplicity, we will show that a uniform lower bound § for
all vertices exists. By consider a triangle of T, extruded over the
displacement field NV, we obtain a generalized half prism with six
vertices 0, ey, ez, Ong, e1 + dny, ez + J ny, with § a positive constant.
The indices of the tetrahedra are:

(0.,2,3,4),(0,3,4,5),(0,1,5,3),(0,1,2,3),(1,2,3,4), (0,1, 2, 4),
0,1,5,4),(1,3,4,5),(1,2,3,5),(0,2,5,4),(0,1,2,5), (2.3, 4, 5).

For a sufficiently small J, the linear term will dominate the higher
power of &, which we omit. The dominant volume terms are listed
in the following table:

S(ez, no, e1)

8(ny, e1, e2)

6 (e1, €2, ng)

&(e1, ez, no)

(ez —e1, dng — ey, Sny)

= 5{es, —e€1, m1)

5er, ez, n1)

{e1, e2 + Ony, 6ny)

= &(e1, ez, n1)

8(6ng — ey, ny, e — e + Sny)
= 6(-e1, ni, ez)

(e; — ey, 8ng — ey, ex+ Sny — ;)
= 5(e; — e1, dng — ey, ny)

= &(ez, —ey, ny)

vol10(0, ey, e; + Sny, ey + Sny) 5(ez, nz, e1)

vol11(0, ey, ez, €3 + Onz) &(e1, ez, n2)

voll2(ez, Sng, €1 + Sny, e2 +8nz) | (Sng — ez, e1 + Sny — e, Snz)
= &(=ey, €1,)

vol1(0, e, Sng, €1 + Sny)
vol2(0, Sng, e; + Sny, ez + Sny)
vol3(0, ey, ez + dny, dng)
vol4(0, e, ez, Sng)

vol5(ey, ez, dng, €1 + Sny)

vol6(0, eq, ez, €1 + Sny)
vol7(0, ey, ez + Ony, e; + Sny)

vol8(ey, Sng, e + Sny, ey + dny)

V019(€1, ez, Sng, ey + Sny)

For all the 12 tetrahedra the linear term is multiplied by a deter-
minant containing the edges of the prism. We check directly that all
these determinants are positive due to the assumption that CN; > 0.

Bijective Projection in a Shell « 1:17

Fig. 31. Bevel patterns used in the proofs in Appendix A.4 and Appendix B

A.3 Theorem 3.5

Consider a ball around a point p of the middle face M of the prism. If
the radius r(p) > 0 is sufficiently small, it contains, at most, a single
vertex of M, and parts of incident faces. As M is compact, there is
a minimal value of r on M, and it is positive. The line along the
normal, passing through v, intersects incident faces at v so it cannot
intersect them at any other point. Thus, the top and bottom prism
vertices can be obtained by displacing V by r in either direction
along the normal. Consider the r-neighborhood of the M, i.e. the
union of all balls of radius r centered at points of M. This is a convex
set, containing only M and parts of vertex-adjacent faces. All top and
bottom prism vertices are in this set. Thus tetrahedra connecting
these vertices are also in the set, i.e., complete prisms. The fact that
tetrahedra are nondegenerate is established in Proposition 3.4.

A4 Theorem 3.6

To show that 7 is a section of S we need to show that (1) Mp =
7 N A is a simply connected patch for any prism of S and (2) for
each prism A and every point p € My the dot product between the
face normal n(p) and the pillars V;,i = 1, 2, 3 is strictly positive.

(1) is trivial since for every prism A of S, A contains exactly one
triangle of the topological bevel refinement face of 7.

To prove (2), consider the dot products of the normals of each
of the triangles in the beveled region sharing at least a vertex with
My, and the vectors along the pillars of Ma. We use colors to refer
to the triangles of beveled prisms as shown in Figure) 31 left.

The prism corresponding to the pink triangle covers only the
interior of the original triangle. It satisfies the dot product condition
since its pillars are copied from the solution of Problem (3) at each
vertex. A similar argument can be made for the green prisms: each
prism gets its pillars from the edges incident at two of the vertices,
which are compatible with the normal of the adjacent triangle (e.g.,
red and blue pillars have positive dot product with the normal of
Ti). Finally, the prisms corresponding to orange triangles cover the
same one ring that was used to compute the original pillars (e.g.,
red pillar is compatible with T; and T3). Since the same pillar is used
for each of the 3 vertices of the original prism, the dot product is
unchanged.

A.5 Theorem 3.7

We use A° to denote the interior of a set A. We first assert that the
topological disk patch 7~ N C coincides with 7~ N C’. To make the
notation more concise, we define 7c =7 NCand 7o =T NC’.
We show that 7¢ € C” by contradiction: assume there is p € T¢
but p ¢ C’. Choose a point g € d7¢, that belongs to single prisms

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

1:18 « Zhongshi Jiang, Teseo Schneider, Denis Zorin, and Daniele Panozzo

in C and C” and denote the enclosing prism in C as A4 and the
corresponding one in C’ as A,. It follows from the positivity of
the volumes of A4 and A"] (Assumption 1), that there is ¢ > 0 such
that the half-ball (for sufficiently small ¢) Ball(g, €) N A4 coincides
with Ball(g, €) N A(’]. Futhermore, the validity of the initial shell
guarantees that there exists an interior point g € Ball(g, &) N\AgNT",
andge A NT cC®NT.

Since neither p or g lies on the boundary side triangles of dC’
(since p, § ¢ dTc), therefore there exists an interior path P (i.e., a
path both in 7¢ and in 7¢) that connects p and g. By continuity the
path P it will cross dC’ at some point p; € 7¢. Since the d7¢cr = dT¢
is a fixed boundary loop (by the definition of O), and does not contain
interior points, p; can only cross on the top surface or bottom surface
of C’ which contradicts Assumption 2. The roles of C and C’ can be
inverted to complete the proof.

We then map Mc to a regular planar n-gon D, with vertices
on 0Mc mapped cyclically to the vertices of dD. It follows from
[Floater 2003, Corollary 6.2] that such a convex combination map-
ping ¢: Mc — D is bijective. Then, similarly to the construction in
Theorem 3.2, we define ¢: C — D x [—-1, 1] through affine mapping
induced by the thetrahedralization of the prisms A;. Similarly, we
define y: C’ — D x[-1, 1]. The mapping ¥ is also bijective because
of Assumption 1 and the definition of O it follows that the codomain
of ¢ is the same as ¢@. Note that in both cases, the map transforms
the vector field V (p) to the constant vector field e, = (0,0, 2), and
the projection is P, as defined in Appendix A.1.

The dot product condition (Assumption 3) ensures that . defines
a bijection between D and /(7¢); and further, the image satisfies
P (Y(A;NT)) = (M]) where M] is the middle surface (a single
triangle) of A; . Therefore, since ¥ and $, are both continuous and
bijective, they are homeomorphisms which preserve topology, thus
AP N T is a simply connected topological disk.

B EXTENSION TO MESHES WITH SINGULARITIES

Most of the proofs and definition in Section 3 easily extends to
meshes with singularity or pinched shells. For instance, both Theo-
rem 3.2 and Definition 3.3 apply to pinched shells by just considering
a prism made of 4 (2 for the top and 2 for the bottom slab) instead
of 6. Propositions 3.4 and 3.5 both rely on per-vertex properties; by
just excluding singular vertices (and neighboring prism) from the
statements the proofs (and our algorithm) still holds.

Theorem 3.7 requires some minor additional considerations. As a
consequence of beveling, no two singularities are adjacent. There-
fore, we can always find a point ¢ € 7¢ that belongs to a single
prism (Appendix A.5) since every prism will have a positive volume
because no singularities are adjacent.

Finally Proposition 3.6 requires a new proof since the beveling
pattern used for singularities is different.

Proor. In Figure 31 right, we highlight in red and orange the
triangles not covered by the discussion in Appendix A.4. The prism
corresponding to an orange middle triangle intersects the edge-
adjacent triangle. And since the new pillars are computed as the
average of the normals of the two adjacent triangles with dihedral
angle strictly less than 360° (Section 3.5 inset), each dot product is
positive. The prism for a pink middle triangle intersects only the

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

interior of the original triangle, and the dot product between the
pillars and the triangle normal are positive by construction. O

C REDUCTION TO A STANDARD QP

With slack variable ¢, Problem 2 can be rewritten as

mtaxt; dvnf >t ||doll =1, > €.
In the admissible region, substituting ¢ = 1/s,

min s; sdvnf > 1,||dy|l =1,0 <s < 1/e.
N

Substituting x = sdy, (thus ||x|]| = s||d|| = s), we obtain the QP
problem 3. Note that the lower bound on s is implied from sdyng > 1,
and the upper bound ||x|| < 1/e is checked a posteriori.

D BIJECTIVITY OF THE NONLINEAR PRISMATIC
TRANSFORMATION

In this section, we show that the isoparametric transformation of
prismatic finite element [Ciarlet 1991] is also bijective if I1 holds.

We follow the notation from Appendix A.2. The map is defined
as (for the top slab)

f(u,v,n) = uey + vey + nng + unnpi + vynoz,
det Jr = ((1 —u —v)ng + uny + vng, e1 + o1, €2 + Nnoz),
where 7 is the variable corresponding to the thickness direction, and
nij = nj — n;. Observe that det]f(u, v, o) is linear in u, v for fixed
1o, the extrema will only be achieved at the corner points [Knabner

and Summ 2001]. Therefore, it is sufficient to check the signs at
three edges (0,0, 1), (1,0, 1), (0,1,1) for n € [0, 1].

det]f(O, 0,7)

= (no, (1 = n)er + nler + n1 —no), (1 — n)ez + nlez + nz — no))

= (1-n)*(no, e1, e2) + (1 = Mnéng, e1, €2 + n2)

+ (1 —n)nlng, eq + ny,e2) + n¥(ng, eq + ny, ez + nz)

=(1- 17)2v014 + (1 = n)n(vols + voly) + Uzvolz > 0.

By symmetry, it is easy to verify that the following are positive,
detJp(1,0,n) = (1 - n)?vols + (1 — n)p(vol; + vols) + n?vols,
det]f(O, 1,0)=(1- r])zvoln + (1 = n)n(voly + volyp) + 172V0112,

E DOUBLE SLAB

In Section 3.1, we explain that we want to ensure that our shell
validity is independent from the enumeration of the faces; for this
reason, we require that the conditions I1 and I2 are satisfied for all
possible decompositions. Without using the double slab, different
decompositions of the prism will result in different intersections
with the middle surface. In other words, the projection operator will
project the input mesh to a different set of triangles on the middle
surface. The double slab makes the middle surface independent of
the decomposition by construction. We note that Theorem 3.6 is
valid only for double-slab prisms since the statement requires that
one prism contains only one triangle.

	Abstract
	1 Introduction
	2 Related Works
	2.1 Attribute Transfer
	2.2 Shell Generation
	2.3 Robust Geometry Processing
	2.4 Isotopy between surfaces

	3 Method
	3.1 Shell and Projection
	3.2 Validity Condition
	3.3 Shell Initialization
	3.4 Shell Optimization
	3.5 Singularities
	3.6 Boundaries.

	4 Results
	5 Applications
	6 Variants
	7 Limitations
	8 Concluding Remarks
	Acknowledgments
	References
	A Proofs
	A.1 Theorem 3.2
	A.2 Proposition 3.4
	A.3 Theorem 3.5
	A.4 Theorem 3.6
	A.5 Theorem 3.7

	B Extension to meshes with Singularities
	C Reduction to a Standard QP
	D Bijectivity of the Nonlinear Prismatic Transformation
	E Double Slab

