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Fig. 1. DHFSlicer partitions complex input shapes into bounded-height double-height-field (DHF) slices (a,e) that once packed (d) and augmented with

automatically computed fixtures and registration patterns (f) can be milled out of fixed height slabs of material, and assembled to produce accurate replicas of

the input (g). It first partitions the inputs into coarse blocks that satisfy a local DHF (LDHF) criterion with respect to their respective axes (b), and then cuts

those into well-sized bounded-height slices (e). Using our DHF slices halves the milling time and reduces material waste by over 40% compared to using slices

produced by a state-of-the-art alternative [Muntoni et al. 2018] (c). We render slices belonging to the same block using alternating same hue colors.

3-axis milling enables cheap and precise fabrication of target objects from

precut slabs of materials such as wood or stone. However, the space of

directly millable shapes is limited since a 3-axis mill can only carve a height-

field (HF) surface during each milling and their size is bounded by the

slab dimensions, one of which, the height, is typically significantly smaller

than the other two for many typical materials. Extending 3-axis milling

of precut slabs to general arbitrarily-sized shapes requires decomposing

them into bounded-height 3-axis millable parts, or slices, which can be
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individually milled and then assembled to form the target object. We present

DHFSlicer, a novel decomposition method that satisfies the above constraints

and significantly reduces both milling time and material waste compared to

alternative approaches. We satisfy the fabrication constraints by partitioning

target objects into double height-field (DHF) slices, which can be fabricated

using two milling passes: the HF surface accessible from one side is milled

first, the slice is then flipped using appropriate fixtures, and then the second,

remaining, HF surface is milled. DHFSlicer uses an efficient coarse-to-fine

decomposition process: It first partitions the inputs into maximally coarse

blocks that satisfy a localDHF criterionwith respect to per-blockmilling axes,

and then cuts each block into well-sized DHF slices. It minimizes milling time

and material waste by keeping the slice count small, and maximizing slice

height. We validate our method by embedding it within an end-to-end DHF

milling pipeline and fabricating objects from slabs of foam, wood, and MDF;

demonstrate that using the obtained slices reduces milling time and material

waste by 42% on average compared to existing automatic alternatives; and

highlight the benefits of DHFSlicer via extensive ablation studies.
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1 INTRODUCTION

3-axis CNC milling, in which a computer-controlled rotary cutter

is constrained to travel along the principal axes without a change

in orientation and gradually removes material from a workpiece, is

a widely available and robust fabrication method. This technology

allows users to cheaply and precisely fabricate objects from com-

mercially available precut fixed-size slabs of material, such as wood

or stone, at a large range of scales; however, 3-axis CNC milling

imposes strict constraints on the fabricated geometries. Since each

milling pass can only carve a single height-field (HF) surface ac-

cessible along the milling direction, millable geometries are limited

to a union of HF surfaces that can be appropriately oriented using

suitable fixtures. Fabricating generic geometric objects using this

approach requires decomposing them into millable and assemblable

parts, or slices, whose sizes are bounded by the dimensions of the

material slabs (Figure 1). We propose DHFSlicer, a new fully auto-

matic technique for decomposing general complex 3D objects into

such bounded-size, millable and assemblable slices (Figure 1a).

While most prior methods satisfy millability constraints by using

approximately cylindrical or single height-field slices, we satisfy mil-

lability by constraining each slice to be a double-height-field (DHF)

surface. We characterize a DHF surface as a union of two height-

field surfaces, defined with respect to the two opposite directions of

the same axis. A DHF slice can be accurately milled using a standard

3-axis CNC milling machine by first milling it along one of the axis

directions to generate the first HF surface, then flipping the slice

over using appropriate fixtures, and milling it from the opposite

direction to generate the second HF surface (Figure 2, top). From a

fabrication perspective, DHF slices are almost as easy to fabricate

as HF slices, but encompass a much larger class of geometries. We

use the additional degrees of freedom enabled by DHF surfaces as

a basis for a novel decomposition approach that outperforms both

automatic and manual alternatives (Section 2, Figure 5). DHFSlicer

produces significantly fewer slices, and much taller slices, than pre-

vious work, reducing both milling time and material waste by 42%

compared to prior automatic approaches, and by 22% compared to

semi-manual ones.

For most commercially available millable materials, one of the

precut slab dimensions Ð which we refer to as height Ð is signifi-

cantly smaller than the others. To facilitate fixture placement and to

reduce material waste we place the slabs into the milling chamber

vertically, aligning the milling axis with the slab height. Notably,

this placement requires bounding the height of each slice along

the DHF axis to be below the slab height. We allow the slice-axes

with respect to the decomposed geometry to vary arbitrarily, and

compute the slice-axes that promote compactness and maximize

slice height as part of the decomposition process (Figure 5d).

We produce an assemblable, bounded-height DHF decomposition

by leveraging the following observations.

Millability requires both the interior (shared with other slices)

and exterior (shared with the input object) surfaces of each slice to

satisfy the DHF requirement with respect to a common axis. We

note that convex shapes satisfy the DHF constraints for any axis

(Figure 4a); consequently a slice defined by intersecting an open

top

bottom

axis

Fixture

Fig. 2. DHF surface milling (along the vertical axis) (left to right): input

DHF surface, surface portion milled from the top starting from a precut slab,

portion milled from the bottom after flipping (purple lines show fixtures).

milling axis

max
thickness

Hmax
P1

P0

P1

P0

milling axis milling axis

Fig. 3. The shape on the left is not a DHF surface with respect to the

horizontal axis, but satisfies the LDHF criterion with respect to this axis ś

cutting it into slices with the illustrated or narrower heights is guaranteed

to produce DHF slices with respect to this axis, as for any point on a slice

either the left or right occluder will always be on another slice.

(a)

toptop

bottom bottom

axis

(b)

Fig. 4. (a) A convex shape is a DHF surface for any choice of axis (here

illustrated for two choices). (b) An intersection of a DHF shape (blue) and a

convex shape (orange) remains DHF.

or closed convex shape with a DHF surface remains DHF with re-

spect to the surface’s axis (Figure 4b). We thus adopt a binary-space

partition (BSP) strategy as a key element of our decomposition algo-

rithm; as each BSP tree cell is convex, a volumetric decomposition

produced by slicing the input object using a sequence of cut planes

is guaranteed to satisfy the DHF requirement as long as the exterior

surface of each slice satisfies this requirement for some axis (Fig. 4b).

BSP decompositions are also guaranteed to be assemblable [Luo

et al. 2012].

We further observe that the slice height constraint Hmax allows

us to predict which portions of an object’s surface can be guaranteed

to satisfy the the DHF requirement with respect to a given axis once

sliced, without pre-slicing them: a surface point may violate the

DHF requirement with respect to an axis after slicing only if the

sum of distances from said point to the just-above and just-below

occluders along the axis is below Hmax (Figure 2, bottom surface).

We refer to surfaces that satisfy this property as Locally DHF, or

LDHF (Figure 3); see Section 3.2 for details.

This observation motivates our two-step decomposition process:

we first apply cuts to form large volumetric blockswhose surfaces sat-

isfy the LDHF requirement with respect to a corresponding axis (Fig-

ure 1b), then cut each LDHF block into as-tall-as-possible bounded-

height slices that satisfy the DHF criterion with respect to that axis

(Figure 1ac). Separating block slicing from block computation en-

ables us to better control the height and number of the individual

slices, reducing overall slice count and producing taller slices, and

in turn reducing milling time and material waste.

We enable an end-to-end computational milling pipeline by algo-

rithmically packing the slices to fit into themillingmachine chamber,

and computing fixtures that hold the packed slices in place during

milling and flipping (Figure 1c, Section 6).

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.
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We demonstrate the applicability of our method by manufactur-

ing six different artifacts using precut slabs of wood, foam, and

medium-density fibreboard (MDF). We showcase its adaptivity by

creating decompositions with different user-specified properties.

Finally, we perform a range of ablation studies highlighting the

advantages of our method over prior art and baseline alternatives.

These studies demonstrate that our method produces decomposi-

tions with on average 43% fewer slices and 70% taller median slices.

Our milling simulation demonstrates that these improvements re-

duce fabrication time and material waste by over 42% on average

(Section 9).

2 RELATED WORK

Decomposition for Fabrication. Volumetric partitioning has been

extensively used to overcome a range of manufacturing hardware

constraints and to widen the range of fabrication techniques applica-

ble to a given input [Bickel et al. 2018; Livesu et al. 2017; Medeiros e

Sá et al. 2016]. Most methods seek to minimize part count since

decreasing it typically decreases fabrication time and material waste.

They also seek to avoid generating parts that are smaller than nec-

essary: thin parts can be fragile [Livesu et al. 2017; Muntoni et al.

2018] and milling parts which are significantly shorter than the

workpiece height increases milling time [Rattat 2017].

Several methods seek to minimize part count while satisfying

an upper bound on part size stemming from the need to fit these

parts into a a machining chamber [Alemanno et al. 2014; Hao et al.

2011; Luo et al. 2012; Medellín et al. 2007; Song et al. 2016, 2015; Yao

et al. 2015]. Our setting requires the slices to both satisfy maximal

sizing constraints and be millable; none of these methods account

for millability constraints. Mahdavi-Amiri et al [2020] decompose

volumes into carvable elements: starting with a slab of material,

elements are carved away by milling the slab from different carving

directions, leaving the target object. They assume that these objects

can fit into a single material slab smaller than the milling chamber.

Assemblability. The ability to assemble parts together to form the

target model is a critical requirement when decomposing models

for subsequent fabrication. Existing methods use a wide range of

strategies to satisfy this requirement [Bickel et al. 2018; Livesu

et al. 2017; Medeiros e Sá et al. 2016]. Models partitioned using

cut-through planes [Attene 2015; Chen et al. 2015; Hildebrand et al.

2013; Hu et al. 2014; Luo et al. 2012] can always be assembled using

an assembly order that reverses the cutting order. By employing

cut-through planes we guarantee assemblability as a byproduct of

decomposing our input shape into DHF slices.

Surface to Volume Segmentation. Recent methods [Araújo et al.

2019; Yao et al. 2017] partition shapes into assemblable parts whose

exterior boundaries are defined by an input surface segmentation.

They compute parts whose interior boundaries satisfy height field

constraints with respect to axes computed based on assemblability

considerations. Starting from an HF surface segmentation [Cook

1984; Doggett and Hirche 2000] these methods can produce parts

consisting of two HF surfaces, albeit with different HF axes. Such

parts are not suited for double sided milling and it is not clear how to

design fixtures to mill them. Forcing the interior boundaries gener-

ated by such methods to satisfy HF requirements with respect to the

same axis as the exterior surface would likely violate assemblability.

Convex Decomposition. Convex objects are DHF by definition;

thus exact convex decompositions satisfy the DHF constraint. While

computingminimal exact convex decompositions is NP-hard [Chazelle

1984], numerous methods [Asafi et al. 2013; Kraevoy et al. 2007; Lien

and Amato 2007] compute coarse approximately convex decompo-

sitions. Convexity is a much stricter constraint than required for

milling purposes (see Figure 2; while the object in this figure satis-

fies the DHF constraints as-is, it is far from convex); enforcing it is

likely to require a lot more slices.

Cylindrical Decomposition. Layered manufacturing research uses

parallel planes to cut objects into maximally tall slices whose ge-

ometry is well-approximated by generalized cylinders [Houtmann

et al. 2007; Jun et al. 1998; Tyberg and Bohn 1998]. Hildebrand et

al. [2013] decompose objects into equal thickness slices that approx-

imate generalized cylinders using cuts aligned with one of three

orthogonal directions. While generalized cylinders satisfy the DHF

constraints, cylindricity is a more stringent constraint; enforcing

it is unnecessarily restrictive and leads to needless fragmentation

(while the shape in Figure 2, top is DHF, it is far from cylindrical). It

is unclear how to extend these strategies to DHF slicing.

Uniform Parallel Slicing. Commercial tools [Autodesk 2020; Cirtes

1991; Schmidt and Singh 2010] enable users to slice objects using

evenly-spaced parallel cuts (Figure 5a). As the cut density grows,

this strategy becomes increasingly likely to produces slices which

approximately satisfy HF or DHF constraints with respect to the

cutting plane normal. Some of the tools, e.g. [Cirtes 1991], auto-

matically compute a slicing direction expected to lead to a smaller

slice count, and allow users to manually decompose shapes into

blocks with different manually-specified slicing directions. Auto-

matically achieving a desirable DHF approximation precision using

this method often requires forming slices which are much thinner

than the input material slabs; in our experiments the median slice

height using this method was half of the height-bound used. This

results in excessive slice counts, significant material waste, and high

milling times (Figure 5a, Section 9). Our method employs differently

oriented cutting planes for different parts of the models; it computes

these plane orientations automatically, producing both fewer and

better-sized slices than the alternatives (Figure 5d).

Single Height-Field Decomposition. Pyramidal, or height-field de-

composition of general volumes, produces parts millable using a

single milling pass. Exact pyramidal decomposition into a minimal

number of parts is NP-hard [Fekete and Mitchell 2001]. Early ap-

proaches for approximate HF decomposition [Hu et al. 2014] cannot

control the degree to which the resulting parts satisfy the height-

field constraints; their milled outputs can uncontrollably deviate

from the target geometry, making the method unsuitable for milling.

Alemanno et al. [2014] use semi-manual decomposition and expect

users to employ sophisticated modeling tools such as Blender to

create the base structures that define the decomposition. Hernholz

et al. [2015] generate HF shells rather than volume decompositions,

and may produce non-assemblable parts. Gao et al. [2015] propose

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.
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(a) Uniform Parallel Slicing 17 slices (b) [Muntoni et al. 2018] 9 slices (c) [Muntoni et al. 2019] 10 slices (d) Ours 6 slices

Fig. 5. Alternative decomposition approaches for milling (a-c): (a) uniform parallel slicing, (b) HF decomposition [Muntoni et al. 2018], (c) semi-manual HF

decomposition [Muntoni et al. 2019]. Our method (d) produces fewer slices when using the same maximal slice height and milling precision (allowed deviation

from perfect DHF/HF slices) thresholds, and avoids tiny slices (highlighted in red in a). See Table 3 for full statistics.

an HF partition method only suitable for shapes that can be de-

scribed by a union of height fields defined over the faces of a cuboid.

Muntoni et al. [2018] automatically compute assemblable HF de-

compositions of general shapes, overcoming the shortcomings of

prior techniques. Unfortunately, their method often produces very

fine decompositions with multiple tiny parts (Figure 5b), motivating

the semi-manual approach of [Muntoni et al. 2019]. While this latter

method allows expert users to obtain coarser outputs (Figure 5c), the

authors report that users spend half an hour or more using their in-

terface to decompose even medium complexity shapes, and require

dedicated training to do so. By replacing the single HF constraints

with the more general DHF ones, our fully automatic method is

able to produce coarser decompositions with much taller slices on

average than those of both Muntoni et al. [2018] and Muntoni et al.

[2019], given similar milling precision and slice height constraints;

see Figure 5 and Section 9. These improvements lead to significant

material and fabrication time savings (Section 9).

Fixtures. Keeping workpieces stable during milling and manipu-

lating them between milling passes require fixtures [Bakker et al.

2013; Bi and Zhang 2001; Trappey and Liu 1990]. Our fixture design

(Section 6, Figure 1, f (top)) follows milling practices designed for

DHF shapes with plane-separable upward and downward pointing

surfaces, extending them to handle more general DHF shapes.

3 PROBLEM STATEMENT AND OVERVIEW

3.1 Problem Statement

The input to our method is a closed surface represented using a

triangle mesh. Our goal is to create a physical copy of the shape en-

closed by this surface using 3-axis CNC milling, starting from slabs

of material with a fixed height Hmax . Satisfying this goal requires

solving a constrained volumetric partitioning problem where the

produced parts, or slices, must satisfy the following requirements:

Milling Axis: Each slice has an associated milling axis.

Bounded Height: The height of each slice along the milling axis

is at most Hmax .

Double Height-Field: Each slice is millable using two passes along

the milling axis - one from above and one, from below. In other

words, each point p on the slice surface is accessible from either the

above or below direction along the milling axis (Figure 2, top).

Coverage: The outer surface of the union of the slices must cover

the surface of the input model.

Assemblability: There should exist an assembly order that we can

follow to assemble separately manufactured slices into the desired

union.

Subject to these constraints, we want the output partition to

optimize the following objectives:

Count: To speed up processing and reduce material waste, we want

the number of slices produced by the decomposition to be small.

Size:Milling thinner slices requires removing more material, and

consequently requires more milling time; such slices are also more

likely to break during processing. We seek to maximize slice height

and reduce the prevalence of very thin slices whose height is below

a user-provided threshold Hmin .

These two objectives may argue for different solutions. We pri-

oritize slice count minimization over the formation of tall slices,

as slice count typically impacts milling time and waste more than

slice height; however, we let slice count increase if doing so allows

us to reduce the number of extra-thin slices. As minimal coverage

problems are NP-hard [Cormen et al. 2001], we cannot expect to

achieve the smallest possible slice count.

Finally, we note that it makes no sense to require the decomposi-

tion precision to be more accurate than the resolution supported by

the milling machine, and that users want to control the precision

Amax to which the DHF property is satisfied. For the remainder of

the text, references to DHF slices will refer to slices which satisfy

the DHF requirements within Amax tolerance.

3.2 Algorithm Overview

We develop a slicing method (Figure 6) accounting for these con-

siderations by leveraging the key observations discussed in Sec-

tion 1. Recall that an object defined by the intersection of a convex

shape (i.e. an intersection of half-spaces) with a DHF surface defined

with respect to a given axis, remains DHF with respect to this axis

(Figure 4b). We also recall that slices formed using a sequence of

cut-through planar cuts can always be assembled using an assembly

order that reverses the the cutting order [Luo et al. 2012]. We conse-

quently use the intersections of half-spaces formed by cut-through

planes to define the interior boundaries of the DHF slices.

Slicing DHF Shapes into Bounded-Height Slices. Before discussing

our algorithm in its entirety, we first consider the simpler case of

an input shape that satisfies the DHF constraints for some axis A

(Figure 7). In this scenario, our goal can be cast as cutting the shape

into a minimal number of tall slices whose height along the axis is

at most Hmax .
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(b) LDHF Partitions (c) Slicing (d) Packing(a) Input

axis axis

axis

axis

Fig. 6. DHFSlicer overview: Our first stage (Section 5) incrementally partitions the input (a) into LDHF blocks (b) defined with respect to the illustrated axes.

The second stage (c, Section 4) slices each block into well-sized, bounded height slices, which are subsequently packed for double-sided milling (e, Section 6).

(a) Naive Partitioning (b) Even Spacing (c) Ours

8 slices 6 slices 4 slices

Fig. 7. Naively partitioning a DHF shape into slices by placing cuts atHmax

intervals starting from the front-most (or back-most) point along the DHF

axis (a), or evenly spacing them (b), can produce both very thin (in red) and

redundant slices; (c) our discrete-continuous optimization generates fewer

(4 slices versus eight (a) or six (b) in this example) and taller slices.

(a) 26 slices (b) 18 slices

Fig. 8. Using LDHF blocks (b) instead of DHF ones (a) keeping the rest of

the process the same introduces significantly fewer slices (18 vs 26 in this

example), and reduces the prevalence of thin slices.

HmaxDue to the maximal height constraint, for most

inputs the slice count in this setting is minimized

when the cutting planes used are orthogonal to the

axis (see inset and Appendix A). We therefore cast

our goal as slicing the shape using planes orthogonal

to the axis A at Hmax or smaller intervals while

minimizing slice count and avoiding shorter than necessary slices.

12 slicesHmax

6 slicesHmax

As the inset on the left and Figure 7 demon-

strate, this is nontrivial when the input shapes

have multiple height extrema along the axis

direction; sub-optimal choices of cut locations

can lead to formation of both extra short and re-

dundant slices. We produce a compact set of as-

tall-as-possible slices and avoid unnecessarily

thin slices by casting and solving the cut place-

ment problem as a mixed discrete-continuous

constrained optimization problem (Section 4, Figure 7c).

LDHF Blocks. We now consider the general case. A natural ap-

proach would be to first decompose general shapes into DHF blocks

using cutting planes, then slice those blocks using axis-aligned

planes as above. Since interior block boundaries formed by cut-

through planes satisfy the DHF constraints for any axis by construc-

tion, assessing if a block is DHF only requires us to evaluate whether

its exterior boundary is DHF. This suggests first identifying contin-

uous regions on the input surface that satisfy the DHF requirement

with respect to some axis and that are separable from the rest of the

shape using one or more planes, and then separating blocks bounded

by such regions from the input shape using these bounding planes,

one block at a time.
DHF

DHF

DHF

Hmax A major drawback of this approach is that, on

many models, both DHF surface regions and

their corresponding blocks are likely fairly

small (see inset). This approach results in a high

block count, leading in turn to a high final slice

count, limiting our ability to obtain well-sized slices during the

bounded-height slicing step (Figure 8a).

We overcome this challenge by utilizing blocks whose exterior

boundaries satisfy local, rather than global, DHF constraints with

respect to some axis. We define a point p as locally DHF (LDHF)

with respect to an axis if it is either (a) directly accessible along

this axis from either above or below (DHF), or (b) if the distances

from a point to its left and right occluders along the milling axis

sum to a value that is greater than Hmax (Figure 3). We note that

when slicing an object into slices whose height along the axis

is bounded by Hmax , any pair of points on the original surface

that are more than Hmax away from each other along the axis

are guaranteed to be on separate slices (Figure 3). Consequently,

any point that satisfies the LDHF criterion with respect to an

axis is guaranteed to be on a different slice than either one

or both of its occluders following bounded-height slicing. A

block whose outer boundary satisfies the LDHF constraints with

respect to an axis can therefore be sliced into DHF slices using the

same bounded-height slicing method (Section 4) as a DHF block.

LDHF axis

Hmax By replacing theDHF criterionwith the LDHF one,

we dramatically increase the size of the continu-

ous surface regions satisfying our block decom-

position criterion with respect to many potential

axes (the previous example in the inset is entirely

LDHF for the horizontal axis); this significant increase in region size

allows for coarser block decomposition with higher slice quality

(Figure 8b).

Iterative LDHF Decomposition. We perform LDHF block decom-

position using an iterative process. Each decomposition iteration

locates multiple potentially separable LDHF blocks. It then sepa-

rates the block whose separation is predicted to lead to the best

decomposition (Figure 6b). This process is repeated until the input

is fully separated into LDHF blocks. In selecting the block to sepa-

rate, we account for both the anticipated quality of the separated

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.
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(a) (b)8 slices13 slices12 slices 9 slices

Fig. 9. Greedy coarse decomposition where each iteration separates the block deemed best (a) produces increasingly fragmented blocks (and consequently

slices) as it proceeds. Our LDHF surface-segmentation-based method (b) balances the quality of current and future blocks (and slices), avoiding fragmentation.

(a)

axis

(b) (c)

Fig. 10. (a) LDHF block with local height extrema along the milling axis

highlighted in yellow; (b) Naive slicing produces an undesirably thin slice

(red); (c) Well-sized slicing output produced by our method.

block itself (slice count and height) and the estimated quality of

the predicted optimal partition of the remaining model. We predict

this optimal partition by segmenting the surface of the processed

models into balanced size LDHF charts designed to resemble the

exterior surfaces of the best potential output blocks (Figure 11); we

then separate the block whose exterior surface matches the best

chart in this partition.

Post-process. Once themodels are fully sliced, the slices are packed

and fixed in place for milling (Section 6), and are optionally aug-

mented with registration marks (Section 7). The following sections

discuss the core steps of the method in more detail.

4 BOUNDED-HEIGHT SLICING OF (L)DHF BLOCKS

Given a block which satisfies the DHF or LDHF requirements with

respect to a chosen axis, we aim to partition it into slices satisfying

the bounded height requirement (and recalling that on LDHF blocks

such slices satisfy the DHF requirement by construction). Among the

solutions satisfying this constraint, we prioritize ones that minimize

the prevalence of slices shorter than our minimal height threshold

Hmin , keep overall slice count low, and produce as-tall-as-possible

slices (we prioritize count over height). Since all cuts are performed

orthogonally to the milling axis, the computation of the slicing

locations we seek for can be formulated as a discrete-continuous

1D optimization problem, whose variables are the number of cuts,

and the locations of these cuts along the milling axis.

Fixed cut count. Before discussing our complete formulation, we

consider the case where the number of cuts k is known. We describe

the extension to the general case below. We formulate our goal of

avoiding extra short and redundant slices in terms of desirable and

undesirable cut locations. To assist the computation we define a

height function across the block surface by projecting the locations

of all surface vertices to the milling axis, and defining vertex height

using its 1D coordinate along this axis.

axis Our key observation is that the topology of our

height function, specifically its critical points,

provide us with strong cues as to which cut lo-

cation choices are likely to lead to the formation

of undesirable slices. We first note that away from height-function

saddles (green dots in inset) and convex extrema (red dots), the

only factor that impacts slice count is the number of cuts; changing

cut locations away from these critical points does not change slice

count.

We further note that if we minimize cut count and optimize for

cut spacing that maximizes the heights of all slices, the only practi-

cal scenario where avoidable extra thin slices can emerge is when a

cut is placed within a distance of Hmin or less below a convex local

height function maximum, or respectively above a local convex min-

imum (red slice in the inset). We can consequently reformulate our

goal of avoiding thin slices as one of avoiding cuts withinHmin wide

extremum intervals below, or respectively above, such extrema, com-

puted as described below. Notably, preventing cuts just below convex

maxima or just above convexminima is also likely to reduce the over-

all slice count. Lastly we observe that in the vicinity of saddle points

with upward (downward) pointing normals, avoiding cuts just above

(below) the saddle points is likely to further reduce slice count.

Specifically, we observe that given two connected mesh components

separated by an upward oriented saddle, consecutive cuts placed

above the saddle bound two separate slices (yellow in the inset);

axis in contrast if one cut is placed above and one

below the saddle, they bound only a single slice.

We promote cuts that form fewer slices by defin-

ing saddle intervals just above (below) upward

pointing (downward pointing) saddle points and discouraging cuts

within these intervals.

Forbidden Intervals. Using this heuristic to relate cut location

to slice count, we can formulate our goal as computing cutting

plane locations that produce as-tall-as-possible slices, subject to our

maximal height bound and constraints that prevent plane placement

inside extremum or saddle intervals. We detect extrema and saddles

using the basic formulation described in [Edelsbrunner and Harer

2008], which works well enough for our setting. Given the segment
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S = [sl , sh ] between the two farthest points on the block along

the axis, where sl < sh with respect to the up axis direction, we

define the set of forbidden intervals fm = [f lm , f
h
m ] ∈ F along

this segment as all intervals [h+ − Hmin ,h
+] of length Hmin below

convex height maxima h+, and above convex height minima h−,

[h−,h− +Hmin ], and all intervals of length Hmin above saddles s+

with upward pointing normals, and below saddles with downward

pointing ones s−, [s+, s+ +Hmin ] and [s
− −Hmin , s

−]. Note that by

construction this set always includes intervals of length Hmin next

to segment end points, [sl , sl + Hmin ] and [sh − Hmin , sh ]. Finally,

we merge any partially overlapping forbidden intervals into one.

We note that if any of the intervals produced by this merging

step are longer than Hmax (f hm − f lm > Hmax ) the slicing problem

becomes over-constrained, as it is no longer possible to compute

bounded-height slices without placing cuts inside these intervals.

If this situation occurs we locally relax the minimal slice height

requirement by halving the lengths of the intervals that jointly

formed the offending one and recomputing the combined intervals.

In our experience one halving step was sufficient to resolve all

offending intervals for all inputs tested.

Solution. Our goal of computing the best cut locations c0, . . . , ck−1
along the axis can now be formulated as:

min
{ci }

Fcut = ((c0 − sl ) − Hmax )
2
+ ((sh − ck−1) − Hmax )

2
+

+

k−1∑

i=0

((ci − ci−1) − Hmax )
2 (1)

subject to

0 ≤ c0 − sl ≤ Hmax , (2)

0 ≤ ci − ci−1 ≤ Hmax ∀i ∈ [1,k − 1], (3)

0 ≤ sh − ck−1 ≤ Hmax , (4)

ci < fm ∀i ∈ [0,k − 1], ∀fm ∈ F . (5)

Our solution needs to satisfy the non-convex constraints of pre-

venting the cuts being placed inside forbidden intervals. Solving

optimization problems with such constraints, in general, is known

to be NP-hard [Garey et al. 1976]. In our scenario the number of

cuts and the number of forbidden intervals are known to be small,

motivating us to adopt the following brute-force strategy. We first

convert the forbidden interval constraints into allowed interval con-

straints, by computing all intervals aj = [alj ,a
h
j ] ∈ A where cuts

can be placed. We set A = S \ F . We then observe that if we know

a priori which cuts should be placed in each allowed interval, then

the problem we seek to solve reduces to a constrained quadratic

minimization problem, which can be solved using standard methods:

min
ci

Fcut subj. to

0 ≤ c0 − sl ≤ Hmax , (6)

0 ≤ ci − ci−1 ≤ Hmax ∀i ∈ [0,k − 1], (7)

0 ≤ sh − ck−1 ≤ Hmax , (8)

al
j(i)

≤ ci ≤ ah
j(i)

∀ i ∈ [0,k − 1]. (9)

To obtain the best cuts to intervals assignment (for each i , defining

the allowed intervals j(i)), we consider each possible assignment of

cuts to allowed intervals, explicitly solve the minimization problem

for each assignment, and then select the solution minimizing Fcut
globally. We prune the search space by avoiding assignments violat-

ing the maximal slice height constraints, or cut order (equations 6

to 8). Since we enumerate all possible combinatorial possibilities,

and each fixed-assignment problem can be solved optimally, this

approach leads to an optimal solution.

Solving for Cut Count. The number of cuts k necessary to obtain

the desired set of slices is not a priori known. We solve for a slice

count k that satisfies the constraints with the smallest slice count

as follows: we first attempt to find a solution with k = ⌈(sh − sl )⌉ −

1 (the smallest cut count required to satisfy our maximal height

constraints) and increase k by one at a time until a solution is found.

To ensure termination, if even after doubling the original value of k ,

no solution is located, we return a naive solution where all slices

are set to have the same thickness. In practice, this condition was

never triggered in our experiments. We could potentially attempt

to further reduce slice count when the number of slices s is larger

than k + 1, by running the method with k + 1 as the cut count, and

using the resulting solution if it contains fewer slices. We found

that in practice this or similar extensions did not lead to further

improvement.

Figures 7 and 10 contrast slicing outputs computed using our

approach with naive cut placement.

5 COARSE LDHF PARTITION

Our partitioning method for general shapes is motivated by the

observation that the outer surfaces of most shapes are dominated

by large contiguous regions which satisfy the LDHF property with

respect to some axis. For example, in Figure 11, all non-red triangles

in (a) are LDHF for axisA1, and all non-red triangles in (b) are LDHF

for axisA2. Sub-regions of these LDHF regions that can be separated

from the rest of the model using cutting planes (e.g. the brown and

blue strips in Figure 11a) can serve as natural exterior boundaries for

LDHF blocks. Our goal is to select the sub-regions and planes that

would produce a compact decomposition of the input intomaximally

large LDHF blocks that, in turn, can be sliced into a small number of

slices.

We use a decomposition strategy centered around the use

of planar cuts that separate LDHF blocks from the rest of

the model one at a time. Specifically, we separate blocks

whose exterior surface satisfies the LDHF criterion with

respect to some axis using cutting planes orthogonal to

this axis (inset, bottom).

While using generically oriented planes as partition

boundaries may allow for formation of larger or more evenly sized

LDHF blocks (inset, top), even basic examples such as the one in the

inset show that using planes orthogonal to the axis (inset, bottom)

typically decreases the final overall slice count. The exterior surfaces

of such blocks are defined by LDHF strips: contiguous surface regions

bounded by axis-orthogonal planes that are entirely LDHF with

respect to the candidate axis (Figure 11a). Each strip can be turned

into a block by placing axis-orthogonal separating planes at its
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farthest points along the axis; if the strip has a single boundary it is

separable using one plane (Figure 11a, top), and is separable using

two planes otherwise (Figure 11a, bottom).

Our goal of selecting a best block to separate can now be recast

as selecting the best LDHF strip to use as the exterior surface of

such a block. When selecting the strip to use, we seek to balance

the quality of the block it encloses against the quality of the decom-

position of the remainder of the model (the connected components

left after cutting the block out), and more specifically on our abil-

ity to compactly decompose and then slice this remainder without

introducing unnecessary thin slices. The quality of each potential

block can be estimated by analyzing the surface of its correspond-

ing LDHF strip; however assessing the impact of our choice on

the decomposition of the remainder requires a global analysis of

the input being processed. We obtain a solution by approximating

the computation of the searched-for volumetric partition via sur-

face segmentation (Section 5.3). We compute a segmentation whose

charts are designed to correspond to the exterior surfaces of the

desired optimal blocks, and which is guided by the computed LDHF

surface strips (Figure 11c).

The key to the success of this strategy is our ability to reliably

predict the quality of the final decomposition output throughout

decomposition iterations. This prediction ability is well illustrated by

the similarity between the output of our first iteration segmentation

(Figure 11d) and our final decomposition output (Figure 6b), and

hinges both on our choices of segmentation criteria (Section 5.3)

and the inherent locality of the LDHF accessibility computation. We

explicitly note that this locality property does not hold for HF or

DHF decompositions.

We now describe the method in more detail.

5.1 Decomposition Flow

Each decomposition iteration checks if the currently processing

model is entirely LDHFwith respect to one or more axes in a densely

sampled set of possible axes, computed as described in Section 8 and,

if so, terminates and associates the model with the axis predicted to

require the minimal number of slicing cuts. Slice count is predicted

by measuring the axis-aligned diameter (the difference between the

maximum andminimum of the model’s height function defined with

respect to this axis): we expect to require fewer slices when cutting a

model orthogonally to a shorter axis. Otherwise, the decomposition

algorithm proceeds to identify LDHF stripes and corresponding

blocks that can be separated from the current model (Section 5.2),

and separates the block deemed best (Section 5.3). The method then

iterates separately on each remaining connected component. We

typically perform fewer than ten separation steps, producing under

a dozen blocks (full statistics in tables 1, 2). Note that for any given

input one can always locate at least one block to separate since

the immediate neighborhoods of the height-function extrema along

each axis always satisfy the LDHF criterion for this axis.

5.2 LDHF Strip Computation

At each iteration, we test each triangle on the current model to see

if it satisfies the LDHF criterion with respect to each of the densely

sampled axes (Section 8). We then compute the LDHF strips that

(a) (b) (c) (d) (e) (f)

axis

axis

Fig. 11. Single separation iteration: (a) LDHF strip computation: non-LDHF

regions (red), and LDHF strips (brown and blue) for a pair of axes A1 and

A2. Blocks formed by separating these strips using axis-orthogonal planes

are, by construction, LDHF. (b) Same LDHF strips, with triangle luminance

reflecting relative accessibility (Equation 11; lighter triangles are less acces-

sible). (c) Segmentation using per-axis labels (charts affiliated with A1 in

brown, and ones affiliated with A2 in blue). (d) Selected strip (affiliated with

A1). (e) LDHF decomposition, note the correspondence between the blocks

selected and the larger charts in (c). (f) Final slices.

define the exterior surfaces of maximal LDHF blocks that can be

separated from the current model. For each potential axis direction,

we first project to the axis all triangles that violate the LDHF prop-

erty and then identify intervals along the axis which are free from

LDHF-violating triangles. We define the maximal LDHF strips to

include all triangles whose projections lie within these free intervals

(Figure 11a).

Avoiding Thin Slices. We avoid the formation of excessively thin

remainder connected components following block separation. We

locate convex height function extrema along each axis and if the

distance from the top end of a free interval to the closest convex

maximum em above the interval, or from the bottom end of a free

interval to the closest convex minimum below the interval, are less

than Hmin , we move this interval endpoint inward, placing them

Hmin away from the corresponding extremum.

5.3 Surface Segmentation.

We seek a compact segmentation consisting of large contiguous

charts which satisfy the LDHF property with respect to some axis,

and which overlap with LDHF strips defined with respect to this axis.

We express these criteria via a classical graph-cut formulation. We

treat each potential axis direction as a label, define for each triangle

t ∈ T (where T is the set of original exterior surface triangles on

the currently processed mesh) a unary cost c(t) of associating it

with that label, and assign a binary compatibility cost c(t , t ′) to each

pair of triangles t and t ′ that share an edge (t , t ′) ∈ E. Our unary

cost reflects the suitability of associating this triangle with a strip

defined with respect to this axis, while the binary cost promotes

compactness. Using these costs our goal can be cast as minimizing

F =
∑

t ∈T

c(t) +
∑

(t,t ′)∈E

c(t , t ′)

We compute the labeling that minimizes F using the optimization

code of [Boykov et al. 2001; Boykov and Kolmogorov 2004] which

provides an approximate solution to this NP-hard problem. While
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in theory we could get a segmentation even more reflective of the

optimal solution by assigning per-strip instead of per-axis labels,

doing so would dramatically increase computation costs.

Unary Cost. We design the per-triangle labeling costs c(t) to pro-

duce a labeling which reflects a surface segmentation corresponding

to a likely and desirable volumetric partition of the input model.

This labeling cost accounts for both the impact on the overall seg-

mentation of associating each individual triangle t with a particular

axis A, denoted c(t ,A), as well as the overall quality C(A) of the

strips associated with this axis:

c(t) = c(t ,A) +C(A). (10)

We observe that we are likely to need to use one of the axes that

each triangle currently satisfies the LDHF property for to mill this

triangle. Consequently, the smaller the set of axes that a portion

of the surface is accessible from, the more likely we are to need to

use strips associated with one of these axes in our final partition.

Delaying the use of one of these axes can lead to undesirable output

fragmentation (Figure 9). We avoid such fragmentation by defining

the cost of a triangle within each strip associated with the axis A

based on the number of alternative milling axes that can be used to

mill this individual triangle:

c(t ,A) = w(t) · Ar (t)/(
∑

t

Ar (t) ·w(t)) (11)

Ar (t) is the area of the triangle t andw(t) is the number of directions

the triangle is not LDHF for normalized by the average of these

numbers across all triangles.

We prefer forming larger blocks, as using them is likely to pro-

duce fewer final slices, and thus prefer axes with larger associated

strips; we also prefer axes with shorter corresponding diameters,

as blocks formed using them are likely to require less slicing. To

reduce fragmentation we bias the area component of the axis cost

to account for the number of axes that can be used to mill each

triangle, and formulate the overall axis cost as:

C(A) = α ·(1−(
∑

t ∈Sl (A)

Ar (t)·w(t))/(
∑

t

Ar (t)·w(t)))+(1−α)·L (12)

Here L is the ratio of the object’s diameter along the axis to its

bounding box diameter and Sl(A) are the triangles in the strips

associated with the axis A. The first term prioritizes axis choices

that lead to larger charts and incorporate fewer accessible triangles.

The second term serves as a proxy for the number of slices we expect

each block to be cut into: we expect to need fewer slices when the

diameter along the milling axis is smaller. We set the weight α = 0.9

to ensure that the cost is dominated by the area term, and that

diameter differences only come into play when the area terms are

nearly identical. We use an infinite unary cost (in practice 10, 000)

for assigning a triangle to an axis if it is outside the LDHF strips

associated with this axis.

Binary Cost. The compatibility cost c(t , t ′) of two triangles is set

to 0 if the two triangles are associated with the same label, and

l(t , t ′) (the length of the edge between t and t ′, normalized by the

average edge length) otherwise. This choice is designed to minimize

chart boundary length, thus indirectly minimizing the number of

charts and labels used in the output segmentation. Since charts

slices        membrane        gaps        frame

Fig. 12. Typical slice pack virtual and milled with fixtures, with a close-up

of the registration patterns added to internal slice surfaces.

are used as proxies for blocks, minimizing chart count indirectly

minimizes the number of output blocks.

Figures 11b and 11c show the per-triangle costs resulting from

this computation and a typical surface segmentation obtained using

this graph-cut framework.

Charts to Blocks. At each partition iteration we select the strip

which maximizes the overlap area between the strip and the seg-

mentation charts corresponding to the strip’s axis, and separate its

corresponding block from the model.

6 PACKING AND FIXTURES

We complete the digital fabrication pipeline by packing the slices

and fixing them in place to enable stable double-sided milling and

flipping the packs in-between the two milling passes. We orient

all slices so that their axes are aligned with the vertical axis of the

milling machine, and pack them into one or more rectangular packs

using the method of [Lévy et al. 2002]. The width and length of

each pack are determined by the smaller between the respective

milling bed and milled slab dimensions. To enable unobstructed

milling access to the slices and to accommodate fixtures, we space

the slices during packing to leave sufficient gaps between them, and

add additional space between slices and the sides of the milled slab.

The size of these gaps, as well as all subsequent sizing decisions, are

guided by machine and material specifications.

Our fixture computation generalizes the standard approach used

for doublesided milling of DHF shapes. Like these methods, we first

generate silhouette loops, or surface curves that separate areas on

the slice accessible only from below from those accessible only from

above, on each slice, and use these as a basis for our fixtures. We

form a membrane surface by first offsetting the silhouette loops

horizontally using a fixed distance, forming an offset surface, and

then minimally offsetting this surface up and down to form the

membrane. To enable easy slab flipping, we leave a fixedwidth frame

around the perimeter of each milled slab; the height of the frame is

the original slab height. We preserve the input slab geometry as-is

inside all gaps between the membrane surfaces, and between the

membrane and the frame. Fig. 12 illustrates the resulting fixtures.

These fixtures provide a good balance between stability, milling time,

and ease of removal. For most materials, the resulting membrane

surfaces are thin enough to be cut off using scissors or a saw; surface

bits that remain attached to the slices can then be sanded off. Leaving

the material as-is once a small distance away from the slices reduces

milling time and strengthens the fixtures.
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Silhouette Loops. Our challenge when computing the fixture sur-

face is tomaintain access to the slices duringmilling; areas accessible

from each side must remain accessible from that side. Traditional

DHF milling settings assume that these areas can be separated using

horizontal loops, and expect users to specify those loops manually.

We compute the loops automatically and support inputs that do

not satisfy the horizontality assumption. The loops we compute are

designed to have minimal height oscillations, as such oscillations

can make the slices and the membrane harder to mill. We generate

maximally flat silhouette loops by formulating loop computation

as a min-cut problem. Specifically, we associate each of the slice’s

triangles with either the above or below labels, and then use the

boundary between the two labeled sets as the silhouette loop. We

aim for triangles accessible from only one side to be associated with

that side’s label, and for the boundary to be as short, and thus as

smooth, as possible. We formulate these goals as minimizing

min
l (t )

Fb =
∑

t ∈T

c(l(t)) +
∑

(t,t ′)∈E

c(l(t), l(t ′)),

where l ∈ a,b is the label assigned to the triangle t . c(l(t)) is set

to infinity (10, 000 in practice) if the triangle is not accessible with

respect to the label’s direction dl , and to 1 − n · dL otherwise (here

n is the triangle normal). We set c(l(t), l(t ′)) = 0 if l(t) = l(t ′) and

set it to 1 otherwise. We compute the labeling that minimizes Fb
using the optimization code of [Boykov et al. 2001; Boykov and

Kolmogorov 2004]. We apply Laplacian smoothing to the extracted

loops to further reduce local oscillations.

7 REGISTRATION PATTERNS

Milled parts need to be accurately aligned and con-

nected when assembling the final object. Many de-

composition methods use protruding pin-like con-

nectors that achieve both goals at once [Delebecque

et al. 2008; Koyama et al. 2015; Luo et al. 2012]. Un-

fortunately the pin holes required to accommodate standard con-

nectors between pairs of adjacent slices may be unmillable for many

combinations of slice milling axes (see inset: inaccessible area high-

lighted in red). Even when millability can be satisfied, milling slices

with tall protruding connectors out of fixed height slabs would re-

quire substantially reducing the height of the actual slices, leading to

large increases in milling time and material waste. Instead, we help

users accurately align milled slices prior to gluing them together

by providing them with the option to compute subtle registration

patterns (Figure 12a). The pattern we use consists of protrusions

and concavities, and can accommodate the vast majority of pairwise

slice axis combinations along interior boundaries shared by pairs

of slices. We accommodate the extra height needed for forming

registration patterns by subtracting the pattern height Hr from the

maximal slice height Hmax during decomposition.

Let us consider two slices with milling axes A1 and A2, sharing

a common interface plane that we want to deform to generate a

pattern that helps the registration of the slices. Without loss of

generality, we assume that this slicing plane is orthogonal to the Z

axis. We use a sine-wave deformation function:

F (x ,y) = f · Hr · sin(x/Hr ) (13)

whereHr controls the amplitude of the pattern (how prominent it is),

and f determines its frequency. In the models we fabricated we used

Hr = Hmax /25, resulting in patterns which were prominent enough

for good registration without significantly increasing material waste.

We set f = tan(15◦), which creates a pattern which is sufficient for

registration, and can be applied to all milling axis pairs A1 and A2

for which the maximum angle ϕ that A1 and A2 form with Z is less

than α = 75
◦ (see Appendix A for the corresponding derivation).

To avoid deforming the outer surface of the model, we apply

the pattern only in the interior of the surfaces shared by adjacent

slices, and use a smooth linear transition between undeformed exte-

rior boundary vertices and the deformed interior, using a similarly

computed gradual slope that satisfies our slope constraints. In the

rare case where ϕ > α we do not apply the patterns. This would,

for instance, be the case if one or both milling directions (A1,A2)

is (near)-orthogonal to the normal of the common interface plane.

Adding registration patterns only increases milling times by 5% to

10% in simulation (measured using Autodesk Fusion360 [Autodesk

2020], using our default milling settings.)

8 IMPLEMENTATION

Potential Axis Set. We discretize the set of possible milling direc-

tions using spherical Fibonacci sampling [Keinert et al. 2015]. We

use 50 directions, and augment them with the three principal axes

of each input model; this augmentation is motivated by the obser-

vation that many models are meaningfully oriented with principal

axes, and hence those axes provide a potentially optimal milling

direction choice.

Measuring The LDHF Property. We determine accessibility with

respect to each axis using raytracing from uniformly sampled points

across the surface, tracing five samples per unit of triangle area, and

at least one sample per triangle. For each sample, we measure the

distance to its nearest occluders along the up and down direction

of the axis in question. A triangle is denoted as LDHF with respect

to a given axis if, for all samples within this triangle, either no

above or below occluders exist, or the sum of distances to those

occluders is above Hmax (when measuring the DHF property we

only test for occluder existence). We accommodate the precision

threshold Amax conservatively by offsetting each sample along the

outward normal direction byAmax before performing the occlusion

test (we constrain the offset samples to remain outside the object).

The input meshes we process may contain tiny but

deep concavities which are accessible from very few

directions (such as the areas between the Gargoyle’s

toes in the inset). While such surface patches are

often too small for a milling machine to mill accu-

rately, forming slices that allow mill access to such patches may

lead to a significant increase in slice count and decrease slice size.

We avoid unnecessary fragmentation when assessing if a model or a

slice are DHF/LDHF and when computing LDHF strips by ignoring

surfaces patches that do not satisfy the DHF/LDHF criterion with

respect to an axis if their area is below a fixed tiny percentage ps
of the original model’s surface (we use ps = 0.00025, unless indi-

cated otherwise) The measurement choices and parameters above

were chosen empirically, accounting for both computation time and
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(c)(a) (b)

Fig. 13. Additional fabricated results. For each input we show the DHF

slice decomposition, packed slices, and fabricated model. Statistics for the

models are listed in Table 2.

output quality. Section 9 discusses the impact of changing these

parameter values.

Mesh Processing. We use the libigl [Jacobson et al. 2018] imple-

mentation of exact Boolean operations [Zhou et al. 2016] to perform

the cuts. To facilitate registration pattern formation we generate

conforming surface meshes for all slices by remeshing all slices

using Tetwild [Hu et al. 2018], labeling tetrahedra based on the slice

their barycenter is in, and projecting all shared interface vertices to

their common cutting planes.

9 RESULTS

Throughout the paper we demonstrate a range of fabrication-ready,

bounded-height DHF decompositions on 21 models of varying geo-

metric complexity decomposed with different parameter settings

(Tables 1, 2, 3). These include high-genus models (fertility, kitten,

chair), models with high-frequency fine details (e.g. the hair on

David, the scales on the dragon), relatively smooth objects (fertil-

ity, knot), organic shapes (kitten, bimba), decorative objects (bumpy

sphere, Julia statuette), furniture (chair), engineered shapes (rocker

arm), and decompositions computed with both lax (Figures 15, 16)

Hmax Amax #blocks #slices min. height med. height precision

maxplank (Fig.9) 10% 0.50% 2 8 0.076 0.08 0.10%
lincoln (Fig.9) 10% 0.50% 2 9 0.057 0.09 0.33%
sapphoshead (Fig.11) 10% 0.50% 4 11 0.016 0.06 0.40%
dragon (Fig.14) 10% 0.50% 31 39 0.009 0.06 0.38%
feline (Fig.14) 10% 0.50% 11 27 0.002 0.06 0.40%
fertility (Fig.14) 10% 0.50% 7 19 0.037 0.08 0.35%
rockerarm (Fig.14) 10% 0.50% 3 5 0.056 0.07 0.15%
julia (Fig.15a) 3% 0.50% 1 28 0.024 0.03 0.10%
julia (Fig.15b) 10% 0.50% 4 11 0.081 0.09 0.10%
julia (Fig.15c) 20% 0.50% 4 9 0.065 0.13 0.10%
julia (Fig.15d) 10% 0.50% 4 11 0.081 0.09 0.10%
julia (Fig.15e) 10% 0.05% 11 21 0.014 0.08 0.03%
julia (Fig.15f) 10% 5% 1 8 0.088 0.09 1.08%
vaselion (Fig.19) 10% 0.50% 19 31 0.032 0.07 0.48%

Table 1. Statistics for results shown across the paper. Left to right: model,

height bound Hmax , precision tolerance Amax , number of output blocks,

number of output slices, minimal and median output slice height, output

precision. Since we operate on virtual models whose scale is essentially

arbitrary, for consistency we express all distance metrics as percentages of

object’s bounding box diagonal. All outputs satisfy the precision tolerance.

and tight (Figure 1) slice height bounds. An additional collection

of nine comparative examples is included in the supplementary

material. We visualize the computed fixtures and the optional regis-

tration patterns in Figures 1 and 12, and include examples of slice

packs with fixtures in the supplementary.

Parameters and User Control. In a typical milling setting users

expect to control three core parameters: the maximal slice height

Hmax , the DHF precisionAmax , and the minimal slice heightHmin .

The first is determined by the thickness of the workpieces used, the

second is directly related to the specifications of the milling machine

as well as the user’s desired reproduction accuracy, and the third is

typically impacted by material fragility. Since we operate on virtual

models whose scale is essentially arbitrary, for virtual testing we

specify and report these numbers as percentages of the length of the

diagonal of the input model’s bounding box. For consistency when

reporting data for fabricated models, we convert user specified ab-

solute height and precision values into percentages by normalizing

with respect to the user specified target object diagonal length.

The typical ratios between low-end milling machine bed diagonal

length to off-the-shelf reasonably priced material height is in the

10:1 to 30:1 range, motivating the choice of the typical height bounds

Hmax we test with. Assuming that users want to pack between 1

and 6 slices to process in one milling pass, the slice thickness should

be in the range of 3% to 10% of the object’s bounding box diago-

nal. On the examples shown, we set Hmax to 10% of the bounding

box diagonal and Amax to 0.5% unless specified otherwise. We use

Hmin = 0.15×Hmax as the default minimal slice height. We demon-

strate the impact of changing this and other parameters on the slice

count, and minimal slice dimensions for the Julia model in Figure 15.

Our method seamlessly adjusts to different parameter combinations,

with slice count predictably increasing as maximal slice height or

DHF precision decreases. Increasing Hmin (Figure 15d) predictably

increases the height of the shortest slice, resulting in more even

slice sizing, at the expense of an increase in slice count.

Evaluation. In evaluating decompositions for milling, the key

metrics are the number of slices, the dimensions of the minimal

slices produced, and the final DHF precision. We measure precision

using the sampling-based occlusion test in Section 8. All our outputs
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Hmax Amax

#slices min. height med. height precision waste milling time

M18 PS
Ours

M18 PS Ours M18 PS Ours M18 PS Ours M18 PS Ours M18 PS Ours
(Blocks)

Bimba (fabricated) 0.10 0.5% 42 34 11(4) 0.0003 0.0001 0.0612 0.06 0.03 0.08 1.1% 0.4% 0.4% 7.52 32.73 4.84 05:40:48 09:59:42 03:56:11
Bumpy (fabricated) 0.10 0.5% 86 14 11(4) 0.0022 0.0030 0.0627 0.03 0.05 0.09 0.8% 0.3% 0.5% 5.20 4.11 2.22 33:53:13 18:40:41 15:31:15
Bunnies (fabricated) 0.08 0.8% 148 25 19(4) 0.0002 0.0006 0.0154 0.02 0.05 0.06 0.5% 0.6% 0.7% 6.03 3.89 3.18 39:01:35 10:42:16 09:12:40
Chair (fabricated) 0.08 0.5% 42 10 14(6) 0.0063 0.0310 0.0419 0.03 0.05 0.06 0.4% 0.4% 0.1% 22.82 10.45 7.47 15:04:11 02:49:59 03:08:13
Julia (fabricated) 0.05 0.3% 89 24 26(2) 0.0060 0.0477 0.0320 0.04 0.05 0.05 0.3% 0.2% 0.1% 5.29 2.26 2.85 20:22:23 07:14:06 08:50:58
Kitten (fabricated) 0.13 0.5% 27 15 4(1) 0.0183 0.0010 0.1050 0.06 0.04 0.10 0.8% 0.2% 0.2% 9.72 8.70 3.26 19:46:46 12:06:03 05:42:33
Buddha2 (Fig.10) 0.15 0.5% 15 25 5(3) 0.0073 0.0012 0.0941 0.11 0.03 0.11 0.7% 0.4% 0.3% 5.31 14.42 5.66 13:17:14 18:41:18 07:51:59
David (Fig.17) 0.10 0.5% 39 56 28(18) 0.0026 0.0001 0.0393 0.06 0.01 0.08 2.0% 0.3% 0.4% 3.67 15.01 4.74 21:02:45 57:18:53 21:38:43
Gargoyle (Fig.17) 0.10 0.5% 64 51 22(7) 0.0003 0.0005 0.0150 0.03 0.01 0.08 0.9% 0.4% 0.4% 6.06 14.43 2.99 34:56:47 52:53:13 15:52:10
Guaje (Fig.7) 0.13 0.5% 15 6 4(1) 0.0012 0.0082 0.0883 0.07 0.10 0.10 0.0% 0.0% 0.0% 3.28 3.01 1.07 08:07:19 05:16:58 05:02:24
Knot (Fig.8) 0.08 0.5% 98 20 18(4) 0.0002 0.0695 0.0407 0.04 0.08 0.07 0.3% 0.0% 0.1% 16.45 5.40 6.44 21:10:36 07:30:17 07:58:57
Lionleft (Fig.11) 0.10 0.5% 13 18 12(4) 0.0101 0.0093 0.0651 0.09 0.03 0.09 0.6% 0.3% 0.4% 1.68 5.28 2.48 09:36:30 21:36:42 11:31:16

Average 0.7% 0.3% 0.3% 7.75 9.97 3.93 20:10:00 18:44:10 09:41:26

Table 2. Comparison vs. [Muntoni et al. 2018] and against parallel slicing. Left to right: maximal height Hmax , precision tolerance Amax , number of output

slices (for our method, block count in brackets), minimal and median output slice height, output precision, material waste, and simulated milling time.

Hmax Amax

#slices min. height med. height precision waste milling time

M18 M19 PS
Ours

M18 M19 PS Ours M18 M19 PS Ours M18 M19 PS Ours M18 M19 PS Ours M18 M19 PS Ours
(Blocks)

airplane (supp) 0.16 0.1% 7 4 2 3(2) 0.05 0.09 0.07 0.10 0.09 0.15 0.07 0.11 1.0% 0.1% 0.1% 0.1% 28.4 19.3 21.0 17.7 3:20:47 1:59:25 2:08:23 2:07:22
batman (supp) 0.18 0.4% 8 8 2 2(1) 0.11 0.09 0.17 0.17 0.14 0.14 0.17 0.17 0.3% 0.4% 0.3% 0.3% 4.2 3.7 3.4 3.4 6:58:31 6:41:50 4:53:30 4:54:01
bimba (Fig. 16) 0.31 1.2% 17 9 6 2(2) 0.01 0.03 0.10 0.18 0.09 0.15 0.10 0.24 1.7% 1.2% 1.1% 1.1% 11.1 9.5 9.3 4.9 19:42:53 18:16:10 18:41:43 10:13:38
bu (supp) 0.17 1.3% 12 9 7 6(2) 0.02 0.02 0.08 0.06 0.11 0.11 0.08 0.10 0.8% 1.3% 1.0% 0.8% 9.0 7.0 8.1 5.9 6:34:49 5:18:17 6:11:52 4:19:52
buddha (Fig. 5) 0.22 0.9% 9 10 17 6(5) 0.08 0.01 0.04 0.11 0.14 0.09 0.04 0.16 0.9% 0.9% 0.8% 0.7% 4.9 6.0 13.8 5.1 13:21:59 15:03:28 33:43:01 13:13:12
chinese_lion (Fig. 16) 0.23 1.8% 44 15 14 8(7) 0.00 0.01 0.05 0.07 0.05 0.08 0.05 0.15 1.7% 1.8% 1.7% 1.5% 10.5 7.3 14.8 8.9 23:23:05 17:17:23 28:42:27 19:57:43
dea (supp) 0.24 0.4% 5 5 8 4(2) 0.04 0.05 0.06 0.22 0.15 0.14 0.06 0.22 0.2% 0.4% 0.2% 0.3% 5.7 4.4 9.6 4.2 9:12:58 7:50:52 12:40:12 7:04:38
kitten (supp) 0.23 0.8% 24 17 2 2(1) 0.01 0.02 0.22 0.21 0.04 0.09 0.22 0.21 2.0% 0.8% 0.7% 0.6% 11.3 8.3 3.6 3.3 17:26:16 13:13:12 6:01:42 5:56:32
laurana (supp) 0.30 1.4% 13 7 12 3(2) 0.00 0.02 0.09 0.21 0.04 0.13 0.09 0.21 0.8% 1.3% 1.0% 0.9% 11.2 11.2 12.4 5.0 16:15:17 16:07:32 16:16:32 8:58:51
lincoln (supp) 0.19 0.7% 15 8 10 6(3) 0.00 0.03 0.07 0.12 0.04 0.14 0.07 0.16 1.6% 0.7% 0.3% 0.4% 6.7 6.0 6.1 5.5 12:33:35 10:42:55 10:32:56 9:25:54
maxplank (supp) 0.23 1.1% 6 7 7 3(1) 0.01 0.03 0.07 0.16 0.09 0.16 0.07 0.20 1.8% 1.1% 0.4% 0.5% 4.6 4.2 7.8 3.2 9:07:47 8:47:51 14:02:58 6:27:22
moai (supp) 0.20 0.5% 4 2 2 2(1) 0.01 0.18 0.19 0.19 0.16 0.19 0.19 0.19 0.4% 0.5% 0.1% 0.1% 2.4 2.0 2.0 2.0 3:47:20 3:07:32 3:23:26 3:26:19

Average 1.08% 0.87% 0.63% 0.61% 9.2 7.4 9.3 5.8 11:48:46 10:22:12 13:06:33 8:00:27

Table 3. Comparison vs. the works of Muntoni et al. [Muntoni et al. 2018, 2019] and against parallel slicing, on the data set used in [Muntoni et al. 2019]. Left

to right: model, maximal height Hmax , precision tolerance Amax , number of output slices (our block count in brackets), minimal and median output slice

height, output precision, material waste, and simulated milling time.

39 slices27 slices 19 slices 5 slices

Fig. 14. Additional decomposition results. Decomposition statistics listed in Table 1. Our method works equally well on relatively smooth models such as the

rocker arm, high genus ones such as fertility, as well as on highly complex models such as the feline or dragon.

(a)

28 slices 11 slices 9 slices 11 slices 21 slices 8 slices

precision
0.001

precision
0.001

precision
0.001

precision
0.001

precision
0.00025

precision
0.0107

min. height
0.025

min. height
0.081

min. height
0.065

min. height
0.081

min. height
0.014

min. height
0.088

(b) (c) (d) (e) (f)

Fig. 15. Decomposing the Julia model with different parameters (default

values used when not listed): (a) extra thin slices (Hmax = 3%); (b) de-

fault Hmax ; (c) thick slices (Hmax = 20%); (d) high minimal thickness

(Hmin = Hmax /2), (e) tight DHF precision (Amax = 0.05%); (f) lax preci-

sion (Amax = 5%). Our method satisfies the hard constraints, increasing

the slice count when necessary.

satisfy the input precision tolerance Amax . The statistics for the

results generated using our method are provided in Table 1. We

note that even though we prioritize precision over minimal slice

height, the vast majority of our outputs satisfy this bound; among

all examples included only the feline and the dragon have two extra

thin slices each. Measurement of the median slice height confirms

that over half of our slices are taller than 80% of the Hmax bound.

Ultimately the definitive metrics for assessing decomposition

methods that target fabrication are fabrication time and material

waste. These metrics, however, depend on material choices and

machine settings and parameters. To provide comparable measure-

ments across the entire data set and to enable cross-method com-

parison, we estimate material waste as described in Appendix B.

To provide comparable time measurements across all inputs and

methods we measure simulated milling time, as detailed in Appen-

dix B. We cannot directly estimate operator time for assembly using

a simulator; however we note that slice count (lower is better) and

slice size (larger is better) are the main factors affecting operator

time. For the models we milled, we also report actual fabrication

times as detailed below.
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Fabrication. We fabricated six real-life replicas of the models

tested (Figs 1, 13) from standardized precut slabs of material, us-

ing several different commercially available CNC milling machines.

Kitten (4 slabs), bimba (5 slabs), and bumpy (11 slabs) were manufac-

tured on a Roland SRM-20 from polystyrene foam blocks of 25mm

thickness, with a maximum work piece size of 203.2 (X) × 152.4 (Y)

mm. The chair (1 slab) and bunny (3 slabs) were manufactured from

poplar wood slabs of 605 (X) × 285 (Y) × 25 (Z) mm with a ShopBot

desktop. The Julia (1 slab) model was manufactured on a Precix

CNC Router from a light-weight MDF work piece, with dimensions

1112 (X) × 989 (Y) × 18 (Z) mm. The decomposition parameters for

all these models were selected so as to maximize output object size,

subject to acceptable milling time; we set the height bound Hmax

for these models to accommodate the desired size and material slab

height (see Table 1), use a tighter precision bound Amax = 0.3%

for Julia and a more lax Amax = 0.75% for the bunnies, and set

the size of the ignorable regions for DHF precision evaluations to

ps = 0.0005 (Section 8). Our results demonstrate the applicability of

our method to real-life milling settings.

Fabrication Time. Fabrication time can be broken down into two

components: raw milling time and operator time. These times vary

with user skill (in our case, CS graduate students), and the tools and

milling technology available. Our milling times using the setting

described in Appendix C ranged from 5 hours for the kittenmodel to

14 hours for the bimba. Assembly and gluing a model took between

15 and 60 minutes. SandingMDF and woodmodels to remove fixture

traces took up to 3 hours with a manual sanding block. Looking

back on the fabrication process, we note that sanding time could

be significantly shorted by either using thinner fixtures, or by re-

moving portions of the fixture surface to leave small tabs to hold

slices in place. We opted for conservative fixtures due to limited

mill time. Fixture removal times would also have been decreased

with professional tooling; our fabrication results were generated

by graduate students with no previous fabrication or woodworking

experience, and little access to professional woodworking tools.

Comparison to Prior Art. We focus our comparisons on three

prior methods: slicing using evenly-spaced parallel cut-through

planes [Cirtes 1991], the automatic HF decomposition method of

[Muntoni et al. 2018], and the semi-manual HF decomposition ap-

proach of [Muntoni et al. 2019].

There are no available implementations of the industrial methods

for parallel slicing, such as [Cirtes 1991]). We compare to these

approaches by evenly slicing models using the shortest axis of their

object-aligned bounding box, and using the minimal slice count

necessary to satisfy the required DHF precision (Figures 5, 17, Tables

3, 2). For simple inputs, such as the guaje (Figure 7) the number

of slices this method produces is comparable to ours, and for a

couple of models (chair, julia) it produces fewer slices. For the vast

majority of inputs, however, we produce significantly fewer slices.

In particular, on more complex models such as bimba (Figure 13),

david, or gargoyle, we produce about half the number of slices.

We also note that the slices obtained using the industry-employed

method are consistently significantly thinner than the maximal

thickness threshold we use. While our median slice thickness is

on average about 80% of the maximal height bound, the median

Relative Max Relative Mean milling time
1/4ž 1/8ž 1/16ž 1/4ž 1/8ž 1/16ž 1/4ž 1/8ž 1/16ž

bimba 0.016 0.016 0.016 0.002 0.001 0.001 3:11:38 3:54:41 4:01:38
buddha 0.033 0.033 0.033 0.002 0.002 0.002 6:55:45 7:49:28 7:58:28
bumpy 0.019 0.019 0.019 0.001 0.001 0.001 13:19:16 15:25:30 15:43:17
bunnies 0.005 0.003 0.003 0.001 0.001 0.001 10:56:32 10:17:04 10:41:26
kitten 0.021 0.02 0.021 0.001 0.001 0.001 4:54:00 5:42:26 5:47:10
lion 0.016 0.016 0.016 0.001 0.001 0.001 11:09:46 11:31:02 11:52:56

Table 4. Comparison between different milling tip sizes. Left to right: model,

maximum Hausdorff distance as a percentage of bounding box diagonal,

mean Hausdorff distance as a percentage of bounding box diagonal, and

simulated milling times.

for this method is about 50%. Given that in real-life settings this

threshold is motivated by material thickness, milling such thin slices

would result in a tremendous waste of material. Our measurements

confirm that on average our method is 43% faster and wasted 49%

less material.

We run the method of [Muntoni et al. 2018] using the same slice

height constraint Hmax as our method. We adjust their angle based

HF precision threshold to achieve comparable precision to ours

when using our metric. Our method produces on average three times

fewer slices than [Muntoni et al. 2018]. In some cases the ratio is even

more drastic: for instance, [Muntoni et al. 2018] requires 27 slices to

decompose the kitten (Figure 13) model, which we accomplish using

just four. Using our method leads to a 43% reduction in material

waste and a 42% reduction in milling time on average compared to

this method, representing significant savings over closest automatic

prior art.

Since the outputs of the interactive method of [Muntoni et al.

2019] depend on user choices, we use their existing outputs for

comparison. We consequently use their results to determine the

maximal slice thickness Hmax and the accuracy bound Amax pa-

rameters to execute our method with. We first measure the shortest

side of each slice in the Muntoni et al. [2019] results, and use the

maximum of these as Hmax ; consequently, our slices are at most

as thick as the slices we compare to. Similarly, we measured the

precision of their results and used the maximal value obtained per

model as our precision bound Amax for that model. In all but one

case, our method produced fewer slices than [Muntoni et al. 2018];

it produced the same minimal number (2 slices) on the moai, an

object which is already a DHF, on which only the height bound pre-

vents us from creating a single slice. We waste 19% less material and

require 18% less time to mill our slices on average compared to this

method on this data. These numbers indicate that our framework

performs better than human experts operating a semi-manual HF

decomposition framework. Full statistics for all these experiments

are provided in Table 3.

Additional Ablation Studies. We compare our results to several

simple baselines throughout the paper. The importance of using

the LDHF criterion rather than the DHF one for block decomposi-

tion is demonstrated in Fig. 8; as shown, our approach drastically

reduces the output slice count and increases the slice height. Fig. 9

showcases the difference between greedy block computation and

our prediction-based approach. Finally, the importance of our size

optimization and slice positioning is shown by Figs. 7 and 10.

Tip Size. We measured the impact of tip size on the accuracy and

milling time of DHFSlicer outputs by using the Autodesk Fusion360
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6 slices 17 slices 9 slices 2 slices

14 slices 45 slices 15 slices 8 slices

(a) Uniform Parallel Slicing (b) [Muntoni et al. 2018] (c) [Muntoni et al. 2019] (d) Ours

Fig. 16. Our framework (d) produces fewer slices, and taller slices, than parallel slicing (a), and the methods of [Muntoni et al. 2018] (b) and [Muntoni et al.

2019] (c).

51 slices 64 slices 22 slices

56 slices 39 slices 28 slices
(a) Uniform Parallel Slicing (b) [Muntoni et al. 2018] (d) Ours

Fig. 17. Our framework (right) produces fewer and more evenly sized slices

than parallel slicing (left) and [Muntoni et al. 2018] (center).

simulator with 1/4ž, 1/8ž, and 1/16ž finishing tips to generate simu-

lated output slices. We then computed the maximum Hausdorff dis-

tances between the input surface and the simulated output slices. As

expected, as tip size increases, the simulator predicted milling time

decreases while the Hausdorff distance increases. Still, all measured

Hausdorff distances were below the prescribed precision tolerances

Amax ; see Table 4 for more details.

Stress Tests. We tested our method on several highly challenging

inputs including the feline (27 slices) and dragon (39 slices) models.

These objects contain fine features and have high genus. Ourmethod

successfully partitioned these inputs into slices that satisfy the DHF

precision tolerance, forming largely well-sized slices whose median

height is 60% of Hmax . Both outputs satisfy our precision threshold.

On both models, only two slices do not satisfy our soft minimal

height threshold; as Section 4 discusses, a solution satisfying this

threshold may not always exist.

Runtimes. Total runtime for our method is, on average, around

six minutes (ranging from 0.5 minutes for kitten to 9 minutes for

julia. This time does not include the remeshing step performed prior

to registration pattern creation - the external library we use [Hu

et al. 2018] takes about five minutes to remesh our inputs. Timings

were measured on a Intel Core I7-9700k 3.60GHz with 32GB of

rockerarm

ps #blocks #slices #dir #blocks #slices #samples #blocks #slices

0.0125% 3 5 25 3 7 3 2 4
0.025% 3 5 50 3 5 5 3 5
0.05% 2 4 75 2 5 10 3 6
0.075% 2 4 100 3 7 20 3 6

gargoyle

ps #blocks #slices #dir #blocks #slices #samples #blocks #slices

0.0125% 12 29 25 8 23 3 8 22
0.025% 7 22 50 7 22 5 7 22
0.05% 8 22 75 8 24 10 7 22
0.075% 8 21 100 8 22 20 8 20

Table 5. Parameter sensitivity: halving, doubling, and even quadrupling our

discrete parameters has limited impact on the results. The only exception

is decrease in ignored area for the Gargoyle mesh that contains collapsed

triangles, our default threshold value ps is set to avoid this sensitivity (see

discussion in text).

system memory running Windows 10. We note that the total time

to fabricate a model is heavily dominated by milling time which, as

reported above, takes hours. Thus our computation cost is negligible

compared to the milling and assembly times.

Parameter Sensitivity. We experimented with doubling, quadru-

pling, and halving the number of possible milling directions, the

number of samples chosen for ray tracing, and the size of the ig-

norable regions for precision evaluations ps , as described in Section

8, for two representative inputs: the rockerarm and the gargoyle.

The vast majority of changes led to minimal change in slice count.

The only exception is the halving the ignore region area ps on the

high-detail gargoyle model, where reducing these regions requires

the decomposition to respect minuscule details (see inset in Sec. 8).

Limitations. While our framework successfully reduces the preva-

lence of extra thin slices, one could potentially reduce their preva-

lence further. We observe that such slices are most likely to be

formed on inputs with prominent narrow concavities, where the

distance between opposite sides of the concavities is below the

maximal slice height (e.g. lion’s mouth and chin in Figure 18). The

opposite sides of such concavities act as one another’s occluders

across multiple axis choices, preventing formation of reasonably
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sized LDHF blocks. Using our default framework the resulting par-

titions on such inputs can contain many undesirably small slices

(Figure 18a). One possible approach for addressing such scenarios,

once detected, is to cut the models using planes that separate the

opposite sides of such concavities. We experimented with triggering

such exposure cuts during LDHF decomposition when the height

of all LDHF strips drops below 1

2
Hmax . We position an exposure

plane inside the deep concavity by instantiating it at the centers of

regions not covered by any LDHF strips (yellow in Figure 18c). This

placement is designed to maximally reduce the percentage of the

surface area not covered by such strips. We then perform an exhaus-

tive search over a finite set of possible plane orientation, using the

same set of directions as the one used for our axis selection (Section

8). We execute each cut and compute new LDHF strips, then we

finally select the cut that maximizes the area covered by these strips.

While this exhaustive search is computationally expensive, it can

improve the performance on such pathological inputs.

Our method is not guaranteed to obtain, and is not geared to-

ward obtaining, the most compact decomposition; doing so requires

solving a NP-hard problem, whose complexity is a function of the

size of the input mesh. It does, as demonstrated above, produce

decompositions that are more compact than those produced using

any existing alternatives. While on average we produce significantly

better results than previous work, we note that parallel slicing pro-

duces fewer slices than our method on the chair and Julia models.

One consequence of our decision to maximize slice height rather

than volume is that models may exhibit slices that look small from a

front view. Our method’s accuracy is limited by the resolution of the

input mesh, since our discrete computations operate on triangles.

Refining the input meshes to a sufficient resolution would eliminate

this constraint. Furthermore, while we account for the main factors

that impact fabrication and assembly, users in a practical scenario

may want to consider other factors such as physical material proper-

ties, milling path efficiency, or milling tip size. These considerations,

while important, are outside the scope of our work. Our method

does not explicitly optimize for dihedral angles between planar slice

sides, which may introduce problems during milling if pieces termi-

nate at an infinitely thin edge. In practice, the minimum dihedral

angle across all slices produced by our method is 13 degrees; the

median minimal angle across models is 32 degrees, and we encoun-

tered no problems during fabrication. Finally, while most of our cuts

are orthogonal to the slice milling direction and are not affected by

aliasing, aliasing may be an issue for cuts separating LDHF blocks

when a larger milling tip is used. Our computations assume a zero-

radius milling tip; in future work it would be interesting to consider

mesh decompositions that take advantage of multiple milling tip

sizes to enable faster milling speeds on areas of the mesh where

increased precision is not necessary.

10 CONCLUSIONS

Wepropose a new, robust, end-to-end computationalmilling pipeline

that allows high-fidelity fabrication of complex 3D shapes from off-

the-shelf precut slabs of material whose height is significantly lower

than the desired object dimensions. We enable this pipeline by for-

mulating and efficiently solving a new volumetric decomposition

(a) 88 slices (f) 31 slices(b) 15 blocks (e) 19 blocks(c) (d)

Fig. 18. (a) Default decomposition of the Lion vase contains 88 slices in-

cluding numerous tiny ones around the lion’s mouth (b-e) Partition using

exposure cuts: After generating 15 blocks (b) , the remaining connected com-

ponent of the Lion vase model (c) does not allow for well-sized LDHF strips

(the yellow area is not part of any LDHF strip). Using the best exposure cut

(dashed line), produces four fully LDHF blocks (d), completing the block

decomposition (e). The final output (f) has 31 slices.

problem: partitioning a volume into a compact set of assemblable,

bounded-height, well-sized DHF slices. Our key technical insight

is that DHF slice decomposition can be recast as computing a com-

pact coarse LDHF decomposition, then slicing LDHF blocks into a

small number of well-sized slices. We efficiently compute locally

near-optimal solutions to both problems by casting both as classical

optimization problems. As demonstrated, our method outperforms

existing alternatives and is validated using both virtual and real

examples.

Our work introduces several interesting follow-up questions.

While ourmethod produces compact decompositions, the slice count

we obtain can potentially be further reduced (e.g. the chair in Fig-

ure 13). Fixtures play a critical role in enabling efficient milling and

subsequent assembly; while necessary during milling, removing

fixtures after milling requires extra user time. Designing fixtures

that are as effective at milling time as our surface based solution

while simplifying their removal is an important practical question.
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Appendix A MATHEMATICAL DERIVATIONS

Cutting Plane Orientation for DHF Shape Volume Slicing. We ob-

served in Section 3.2 that when slicing a DHF shape into slices

satisfying the maximal height constraint Hmax , for most inputs the

slice count is minimized when the cutting planes are orthogonal

to the DHF axis. To show this, consider two slices separated by a

non-axis aligned plane. Since each slice is at most Hmax high, the

distance between the plane’s maximum and minimum points along

the axis is below Hmax . For this solution to be better than an or-

thogonal one, the region between the plane’s max/min points must

contain at least one local maximum and one local minimum of the

height function; since Hmax is fairly small, this is a rare occurrence.

If the interval contains no extrema, an orthogonal plane at the min-

ima or maxima will produce the same slice count as the slanted one;

if it contains only maxima (resp. minima), one can place the plane

at the location of the highest maximum (lowest minimum), without

increasing the height of either slice.

Derivation of Frequency Scale for Registration Patterns. We derive

the value k = tan(15◦) for the frequency of the registration patterns

as follows. After applying the registration pattern, the deformed

surface must remain DHF with respect to the milling direction

(without loss of generality, assumed to be the axis Z ).

Recall that our deformation function is F (x ,y) = k ·Hr ·sin(x/Hr )).

The gradient of F is ∇F = k cos(x/Hr ) and is therefore bounded

by k . In order for the deformed surface to remain DHF, since ∇F is

bounded by k , it suffices that F is a height field for any direction

that forms an angle with respect to Z less than 90
◦ − arctan(k). To

understand this intuitively, consider the extrema cases: if F is flat

(k = 0), then ∇F is zero everywhere and is trivially a height field

for any direction (arctan(0) = 0). Conversely, if F is very steep, ∇F

approaches k , and consequently F is only a height field for those

directions whose angle with Z is close to 0.

Appendix B MEASUREMENTS

The exact amount of wasted material for each specific milling task

depends on factors such as packing method, the length and width

of the slabs, and machine and material properties (which dictate

the amount of intra-slice spacing required to facilitate machining

access). We use a metric that is agnostic, by design, to the first two

factors, and which accounts for the intra-slice spacing necessary

for milling success.

We compute packing-algorithm independentmaterial waste, while

accommodating the need to space slices for milling, as follows. We
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project all slices to the plane orthogonal to the milling axis, and

compute, for each slice, a tight bounding box. To account for the

need to space slices during milling, we extend each box along both

dimensions by 15% of the object’s bounding box diagonal. We then

measure the wasted material by multiplying the area of the bound-

ing rectangle of the pack by Hmax , and measuring the difference

between this volume and the slice volume. We sum these values

across all slices to obtain the waste per model.

To provide comparable time measurements across all inputs and

methods, we pack the slices produced for each input using the

same packing method (assuming infinite milling bed dimensions),

spacing them at 15% of the bounding box diagonal away from one

another, and setting the fixture offset to 10% of this diagonal. We

then measure simulated milling time using the milling simulator

in Autodesk Fusion 360 [Autodesk 2020], using the same settings

(number of passes, milling tips assignments) for all inputs: all timings

were estimated using two passes (pocket clearing with a 1/8" flat

endmill, followed by scalloping with a 1/8" round endmill) per side.

Appendix C FABRICATION DETAILS

We used the following processes for milling the fabricated models.

Kitten: Adaptive clearing on both sides with a 1/8" flat end mill

followed by fine step-down of 0.2mm. Bimba: Adaptive clearing on

both sides with a 1/8" flat end mill followed by fine step-down of

0.3mm. Airplane: Adaptive clearing on both sides with a 1/8" flat

end mill followed by fine step-down of 0.4mm. Bumpy: 2 passes per

side (adaptive then scalloping) adaptive clearing using a 1/4" flat

end mill and a fine step-down of 0.5mm, and scalloping using a 1/4"

ball end mill. Finer details were done with a 1/8" ball end mill. Chair:

2 passes per side (pocketing then parallel), both with a 1/4" flat end

mill. Bunny: 2 passes per side, pocketing using a 1/4" flat end mill,

and scalloping using a 1/4" ball end mill.
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