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Abstract

This paper proposes a new meta-learning method – named HARMLESS (HAwkes
Relational Meta LEarning method for Short Sequences) for learning heterogeneous
point process models from short event sequence data along with a relational net-
work. Specifically, we propose a hierarchical Bayesian mixture Hawkes process
model, which naturally incorporates the relational information among sequences
into point process modeling. Compared with existing methods, our model can
capture the underlying mixed-community patterns of the relational network, which
simultaneously encourages knowledge sharing among sequences and facilitates
adaptive learning for each individual sequence. We further propose an efficient
stochastic variational meta expectation maximization algorithm that can scale to
large problems. Numerical experiments on both synthetic and real data show that
HARMLESS outperforms existing methods in terms of predicting the future events.

1 Introduction
Event sequence data naturally arises in analyzing the temporal behavior of real world subjects
(Cleeremans and McClelland, 1991). These sequences often contain rich information, which can
predict the future evolution of the subjects. For example, the timestamps of tweets of a twitter user
reflect his activeness and certain state of mind, and can be used to show when he will tweet next time
(Kobayashi and Lambiotte, 2016). The job hopping history of a person usually suggests when he will
hop next time (Xu et al., 2017b). Unlike usual sequential data such as text data, event sequences are
always asynchronous and tend to be noisy (Ross et al., 1996). Therefore specialized algorithms are
needed to learn from such data.

In this paper, we are interested in short sequences, a type of sequence data that commonly appears
in many real-world applications. Such data is usually short for two possible reasons. One is that
the event sequences are short in nature, such as the job hopping history. Another is the observation
window is narrow. For example, we are interested in the criminal incidents of an area after a specific
regulation is published. Moreover, this kind of data usually appears as a collection of sequences,
such as the timestamps of many user’s tweets. Our goal is to extract information that can predict the
occurrence of future events from a large collection of such short sequences.
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Many existing literature considers medium-length or long sequences. They first model a sequence as
a parametric point process, e.g., Poisson process, Hawkes process or their neural variants, and apply
maximum likelihood estimation to find the optimal parameters (Ogata, 1999; Rasmussen, 2013).
However, for short sequences, their lengths are insufficient for reliable inference. One remedy is
that we treat the collection of short sequences as independent identically distributed realizations of
the same point process, since many subjects, e.g., Twitter users, often share similar behaviors. This
makes the inference manageable. However, the learned pattern can be highly biased against certain
individuals, especially the non-mainstream users, since this method ignores the heterogeneity within
the collection.

An alternative is to recast the problem as a multitask learning problem (Zhang and Yang, 2017) –
we target at multi-sequence analysis for multi-subjects. For each sequence, we consider a point
process model that slightly deviates from a common point process model, i.e., efj = f0 + fj , where
f0 is the common model that captures the main effect, efj is the model for the j-th sequence, and fj
is the relatively small deviation. Such an assumption that there exists a universal common model
cross all subjects, however, is still strong, since the subjects’ patterns can differ dramatically. For
example, the job hopping history of a software engineer and a human resource manager should
have distinct characteristics. Furthermore, such method ignores the relationship of the subjects that
usually can be revealed by side information. For example, a social network often shows community
pattern (Girvan and Newman, 2002) – across the communities the variation of the subjects is large,
while within the communities the variation is small. The connections in the social network, such as
"follow" or retweet relationship in Twitter data, can provide us valuable information to identify such
community pattern, but the aforementioned methods do not take into account such understanding to
help analyzing subjects’ behavior.

To this end, we propose a HAwkes Relational Meta LEarning method for Short Sequence (HARM-
LESS), which can adaptively learn from a collection of short sequence. More specifically, in a social
network, each user often has multiple identities (Airoldi et al., 2008). For example, a Twitter user can
be both a military fan and a tech fan. Both his tweet history and social connections are based on his
identities. Motivated by above facts, we model each sequence as a hierarchical Bayesian mixture of
Hawkes processes – the weights of each Hawkes process are determined jointly by the hidden pattern
of sequences and the relational information, e.g., social graphs.

We then propose a variational meta expectation maximization algorithm to efficiently perform
inference. Different from existing fully bayesian inference methods (Box and Tiao, 2011; Rasmussen,
2013; Xu and Zha, 2017), we make no assumption on the prior distribution of the parameters of
Hawkes process. Instead, when inferring for the Hawkes process parameters of the same identity
for all the subjects, we perform a model-agnostic adaptation from a common model for this identity
(Finn et al. (2017), see section 3 for more details). This is more flexible since it does not restrict to a
specific form. We apply HARMLESS to both synthetic and real short event sequences, and achieve
competitive performance.

Notations: Throughout the paper, the unbold letters denote vectors or scalars, while the bold letters
denote the corresponding matrices or sequences. We refer the k-th entry of vector ai as ai,k. We refer
the i-th subject as subject i.

2 Preliminaries
We briefly introduce Hawkes Process and Model-Agnostic Meta Learning.

Hawkes processes (Hawkes, 1971) is a doubly stochastic temporal point processH(✓) with condi-
tional intensity function � = �(t; ✓, ⌧ ) defined as

�(t; ✓, ⌧ ) = µ+
X

⌧ (j)<t

g(t� ⌧ (j); ⇠),

where ✓ = {µ, ⇠}, g is the nonnegative impact function with parameter ⇠, µ is the base intensity, and
⌧ = {⌧ (1), ⌧ (2), · · · , ⌧ (M)

} are the timestamps of the events occurring in a time interval [0, tend].
Function g indicates how past events affect current intensity. Existing works usually use pre-specified
impact functions in parametric form, e.g., the exponential function in Rasmussen (2013); Zhou et al.
(2013) and the power-law function in Zhao et al. (2015).

Hawkes process captures an important property of real-world events – self-exciting, i.e., the past
events always increase the chance of arrivals of new events. For example, selling a significant quantity
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of a stock can precipitate a trading flurry. As a result, Hawkes process has been widely used in many
areas, e.g., behavior analysis (Yang and Zha, 2013; Luo et al., 2015), financial analysis (Bacry et al.,
2012), and social network analysis (Blundell et al., 2012; Zhou et al., 2013).

Model-Agnostic Meta Learning (MAML, Finn et al., 2017) considers a set of tasks � =
{T1, T2, · · · , TN}, where each of the tasks only contains a very small amount of data which is
not enough to train a model. We want to exploit the shared structure of the tasks, to obtain models
that can perform well on each of the tasks. Specifically, MAML seeks to train a common model for
all tasks. From optimization perspective, MAML solves the following problem,

min
✓

X

Ti2�

FTi(e✓i) , min
✓

X

Ti2�

FTi(✓ � ⌘D(FTi , ✓)), (1)

where D(·, ·) is an operator, FTi is the loss function of task Ti, ✓ is the parameter of the common
model, and ⌘ is the step size. Here, D(FTi , ✓) represents one or a small number of gradient update of
✓. For example, in cases of one gradient step, we take D(FTi , ✓) = r✓FTi(✓). This optimization
problem aims to find the common model that is expected to produce maximally effective behavior on
that task after performing update ✓ � ⌘D(FTi , ✓).

Solving (1) using gradient descent involves computing the Hessian matrices, which is computationally
prohibitive. To alleviate the computational burden, First Order MAML (FOMAML) (Finn et al.,
2017) and Reptile (Nichol et al., 2018) are then proposed. FOMAML drops the second order term in
the gradient of (1). Reptile further simplifies the computation by relaxing the original update with
Hessian as a multi-step stochastic gradient descent updates. All three algorithms can be written in the
form of (1) with operator D defined differently for different methods. Due to space limit, we defer
the definition of D to Appendix B.

3 HAwkes Relational Meta LEarning for Short Sequences (HARMLESS)

Figure 1: Illustration of the suggested model.

We next introduce the meta learning method
for analyzing short sequences. Suppose we
are given a collection of sequences T =
{⌧1, ⌧2 · · · , ⌧N}. We also know some extra
relational information about the subjects. For
example, in social networks, we can have in-
formation on who is friend of whom; in crim-
inal data, we have the locations of the crimes,
and crimes happen near each other often have
Granger causality. Such relational information
can be described as a graph G = (E ,V), where
E is the node set, V is the edge set. Denote its
adjacency matrix as Y .

Such social graphs often exhibit community pat-
terns (Girvan and Newman, 2002; Xie et al.,
2013). Within the communities the variation of subjects are small, while across the communities
the variation is large. Moreover, the communities are overlapping with each other, i.e., each subject
may belong to multiple communities and thus have multiple identities. The behaviors of the subject
is based on the identities. Motivated by this observation, we first assign each subject a sum-to-one
identity proportion vector ⇡i 2 [0, 1]K , whose k-th entry represents the probability of subject i
having the k-th identity. In this way, we associate each subject with multiple identities rather than a
single identity so that its different aspects is captured, which is more natural and flexible.

For the k-th identity of subject i, we adopt Hawkes processH(e✓(i)k ) to model the timestamps of the
associated events. Denote the conditional intensity function ofH(e✓(i)k ) as �(t; e✓(i)k , ⌧i). For a Hawkes
processH(e✓(i)k ), the likelihood (Laub et al., 2015) of a sequence ⌧i to appear in time interval [0, tend]
is

L(e✓(i)k ; ⌧i) = exp
⇣
�

Z tend

0
�(t; e✓(i)k , ⌧i)dt+

X

⌧j<tend

log �(⌧j ; e✓(i)k , ⌧i)
⌘
. (2)
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Here, the parameter e✓(i)k is adapted from a common model with parameter ✓k using a relatively small
model-agnostic adaptation, which we will elaborate in next section.

↵ ⇡i

zi!j

YijB

⌧i

zi j

✓ ✓̃(i)1:K

Figure 2: Probabilisitic graph of
the suggested model. The yel-
low nodes are parameters, white
nodes are latent variables, and the
gray nodes are observed variables.
The solid arrows represent proba-
bilistic mapping, while the hol-
low arrows represent the deter-
ministic mapping.

The identity of the i-th subject is then a combination of the K
identities with identity proportion ⇡i, and the models for indi-
vidual sequences are essentially mixtures of Hawkes process
models. Denote Li(e✓(i)k ) = L(e✓(i)k ; ⌧i). The likelihood for the
i-th sequence ⌧i is

p(⌧i) =
KX

k=1

⇡i,kLi(e✓(i)k ). (3)

Moreover, the connections of the subjects are also based on their
identities. More specifically, for each connection to happen, one
subject i needs to approach another subject j, where the identities
of subjects i, j are based on ⇡i,⇡j respectively. Based on this
observation, we adopt a Mixed Membership stochastic Block-
model (MMB) (Airoldi et al., 2008) to model the connections of
the subjects. For each subjects pair (i, j), denote the identity of
subject i when subject i approaches subject j as random variable
zi!j , and the identity of subject j when j is approached by i as
zi j . The probability of zi!j represent the k-th identity is ⇡i,k,
and the probability of zi j represent the k-th identity is ⇡j,k.
The probability of whether subject i and j have a connection is
then a function dependent on this two identities - the random variable representing the existence of
connection Yij follows Bernoulli distribution with parameter zTi!jBzi j , where B is a learnable
parameter.

Generative process: The above model can be summarized as the following generative process.

• For each node i,
– Draw aK dimensional identity proportion vector ⇡i ⇠ Dirichlet(↵).
– Sample the i-th sequence ⌧i from the mixture of Hawkes processes described in (3).

• For each pair of nodes i and j,
– Draw identity indicator for the initiator zi!j ⇠ Categorical(⇡i)
– Draw identity indicator for the receiver zi j ⇠ Categorical(⇡j)

– Sample whether there is an edge between i and j, Yij ⇠ Bernoulli(zTi!jBzi j).

Here, the observed variables are ⌧i and Yij . The parameters are ↵, e✓(i)k , andB. The latent variables
are ⇡i, zi, zi!j and zi j . The graph model is shown in Figure 2.

4 Variational Meta Expectation Maximization
We now introduce our variational meta expectation maximization algorithm. This algorithm incorpo-
rates model-agnostic adaptation into variational expectation maximization. In the rest of the paper,
we denote z! = {zi!j}

N
i,j=1, z = {zi j}

N
i,j=1, e✓ = {e✓(i)k }

N,K
i=1,k=1.

To ease the computation we add one more latent variable z. For the i-th sequence, we sample
zi ⇠ Categorical(⇡i). We regard ⌧i as a Hawkes process with parameter ✓(i)zi . Note that this is
equivalent to the mixture of Hawkes process described in previous section, since p(⌧i) =

P
k p(zi =

k)Li(e✓(i)zi ) =
P

k ⇡i,kLi(e✓(i)k ). This can ease the computation because now the update for ⇡ has
close form.

Variational E step. The goal is to find an approximation of the following posterior distribution
p(z, z!, z ,⇡|T ,Y ,↵, e✓,B).

We aim to find a distribution q(z, z!, z ,⇡) that minimizes the Kullback-Leibler (KL) divergence
to the above posterior distribution. This can be achieved by maximizing the Evidence Lower BOund
(ELBO, Blei et al., 2017),

max
q2Q

Eq[log p(z, z!, z ,⇡,T ,Y )]� Eq[log q(z, z!, z ,⇡)], (4)
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where Q is a properly chosen distribution space. We adopt Q as the mean-field variational family, i.e.,

q(z, z!, z ,⇡) = q1(⇡)
Y

i

q2(zi)
Y

j

q3(zi!j)q4(zi j).

where q1(⇡i) is the Probability Density Function (PDF) of Dirichlet(�i), q2(zi) is the Probability
Mass Function (PMF) of Categorical(�i), q3(zi!j) is the PMF of Categorical(�ij), q4(zi j) is the
PMF of Categorical( ij), and �i, �i, �ij ,  ij are variational parameters. By some derivation (see
Appendix C for detail), the updates for the variational parameters for solving problem (4) are

�i,k  ↵k + �i,k +
NX

j=1

�ij,k +
NX

j=1

 ij,k, (5)

�i,k  eEq [log ⇡i,k]Li(e✓(i)k ), �i,k  
�i,kP
` �i,`

, (6)

�ij,k  eEq [log ⇡i,k]
KY

`=1

⇣
B

Yij

k` (1�Bk`)
1�Yij

⌘ ij,`

, �ij,k  
�ij,kP
` �ij,`

, (7)

 ij,`  eEq [log ⇡j,`]
KY

k=1

�
(Bk`)

Yij (1�Bk`)
1�Yij

��ij,k
,  ij,`  

 ij,`P
k  ij,k

, (8)

where Eq[log ⇡i,k] = fdg(�i,k)� fdg(
P

` �i,`), and fdg(·) is the digamma function.

Meta inference for ✓ and e✓. Recall that the Hawkes parameter of the k-th identity of subject i is
e✓(i)k . Instead of specifying that e✓(i)k is sampled from a prior distribution, we adapt the k-th common
modelH(✓k) to sequence i using MAML-type updates,

e✓(i)k = ✓k � ⌘D(logLi, ✓k). (9)
Since MAML-type algorithms only perform one or few updates from the common model, the adapted
individual models with parameter e✓(i)k within one community is close to each other, which meets our
expectation that the within-community variation should be small.

The gradient descent step on the log-likelihood of ✓ can then be written as

✓k  ✓k + ⌘✓r✓k

 
NX

i=1

�i,k logLi(✓k � ⌘D(logLi, ✓k))

!
, (10)

where ⌘✓ is the step size. In this algorithm, we only need to estimate the common models with
parameter ✓k, k = 1, 2, · · · ,K instead of all individual models. After we obtain ✓k, the individual
models can be easily obtained from Equation (9).

M step. We perform maximum likelihood estimation to ↵ and B, The updates are as follows,

↵k  ↵k + ⌘↵

 
N
�
fdg(

X

`

↵`)� fdg(↵k)
�
+

NX

i=1

�
fdg(�i,k)� fdg(

X

l

�i,`)
�
!
, (11)

Bk`  

P
ij Yij�ij,k ij,`P
ij �ij,k ij,`

, (12)

where ⌘↵ is the step size. The detailed derivation can be found in Appendix C.

Algorithm. We perform updates (5)-(8), (10)-(12) iteratively until convergence. Note that the
updates can also be implemented in stochastic fashion – at each iteration, we sample a mini-batch of
sequences, and update their associated parameters (Hoffman et al., 2013).

5 Experiments
We first briefly introduce oue experiment settings.

Impact function. Following Rasmussen (2013); Zhou et al. (2013), we choose exponential impact
function g(t; {�,!}) = �!e�!t. The conditional intensity function is

�(t; ✓, ⌧ ) = �(t; {µ, �,!}, ⌧ ) = µ+
X

⌧ (m)<t

�!e�!(t�⌧ (m)), (13)

5



where � and ! are parameters. Note that each Hawkes process model only contains three parameters,
µ, �, and !. This is because we target at short sequence. To avoid overfitting, each individual models
cannot have too many parameters.

Regularized likelihood function. Substitute Eq. (13) into Eq. (2), we have

L(✓; ⌧ ) = exp
⇣
� µtend �

X

⌧ (n)<tend

⇣
�(1� e�!(tend�⌧ (n)))� log

�
µ+

X

⌧ (m)<⌧ (n)

�!e�!(⌧ (n)�⌧ (m))
�⌘⌘

.

To keep the parameters non-negative, in practice we replace logLi(e✓(i)k ) with a regularized log-
likelihood in update (10),

Qi(e✓(i)k ) , logLi(e✓(i)k ) + ⌫R(e✓(i)k ) , logLi(e✓(i)k ) + ⌫
�
log(eµ(i)

k ) + log(e↵(i)
k ) + log(e!(i)

k )
�
, (14)

where e✓(i)k = {eµ(i)
k , e↵(i)

k , e!(i)
k } is the parameter of the i-th Hawkes process of the k-th identity, ⌫ is a

regularization coefficient.

Evaluation metric. We hold out the last timestamp of each sequence, and split the hold-out times-
tamps into a validation set and a test set. Another option to do validation and test on event sequence
data is to hold out the last two timestamps – we first use the former ones to do validation, then train a
new model together with the validation timestamps, and finally report the test result based on the later
ones. However, this is not suitable here. This is because the sequences we adopt for experiments are
usually very short, sometimes even no more than 5 events in one sequence. As a result, the models
trained without or with validation timestamps, e.g., using 3 or 4 timestamps, can be significantly
different, which makes the validation procedure very unreliable.

We report the Log-Likelihood (LL) of the test set. More specifically, for each sequence ⌧i =

{⌧ (1)i , ⌧ (2)i , · · · , ⌧ (Mi)
i } and parameter ✓, the likelihood of next arrival ⌧ (Mi+1)

i is

eLi =
KX

k=1

�i,k�
�
⌧ (Mi+1)
i ; e✓(i)k , ⌧i)

�
exp

⇣
�

Z ⌧
(Mi+1)
i

⌧
(Mi)
i

�(t; e✓(i)k , ⌧i) dt
⌘
.

The reported score is the averaged log eLi over subjects. More details can be found in Appendix D.

To estimate of the variance of the estimated log-likelihood, we adopt a multi-split procedure for
evaluation. First, we train m candidate models with different hyper-parameters. Then we repeat
the following procedure for 30 times: 1). Randomly split a validation set and a test set; 2). Pick a
model with highest log-likelihood on the validation set from them candidate models; 3). Compute
the log-likelihood on the test set. Accordingly, we obtain 30 estimates of the log-likelihood. We then
report the mean and standard error of the 30 estimates.

Baselines. We adopt four baselines as follows.

⇧MLE-Sep: We consider each sequence as a realization of an individual Hawkes process. We perform
Maximum Likelihood Estimation (MLE) on each sequence separately, and obtain N models for N
sequences.

⇧ MLE-Com: We consider all sequences as realizations of the same Hawkes process and learn a
common model by MLE.

⇧ DMHP (Xu and Zha, 2017): We model sequences as a mixture of Hawkes processes with a Dirichlet
distribution as the prior distribution of the mixtures.

⇧ MTL: We perform multi-task learning as described in Section 1. More specifically, we adopt
Hawkes process model for f0 and efj . Denote the parameters of f0 and efi as ⇢0 = [µ0, �0,!0]T and
⇢i = [µi, �i,!i]T , respectively. We solve

max
⇢0,⇢i

NX

i=1

(Qi(⇢i) + ⌫mtlk⇢i � ⇢0k2) ,

where k⇢i � ⇢0k2 is the `2 norm regularizer of ⇢i � ⇢0 to promote the difference between f0 and fj
to be small, ⌫mtl is a tuning parameter, and Qi(·) is the function defined in Eq. (14).

We would like to remark that another possible baseline is the hierarchical Bayesian model, i.e., we
model e✓(i)1:K to have prior distribution with parameter ✓. However, such hierarchical Bayesian model
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does not have a closed-form update in variational EM algorithm. Therefore, Markov chain Monte
Carlo should be adopted for inference, which is not scalable. For our large scale real graphs we
consider here, the time cost is unrealistic. Therefore we leave out this baseline.

Parameter Tuning. The detailed tuning procedure and detailed settings of each experiment can be
found in Appendix E.

5.1 Synthetic Data

Table 1: Visualizations of identities by HARMLESS(MAML).

S Ground Truth K0 = 3 K0 = 6 K0 = 10

0.5

1.0

2.0

Data generation. We gener-
ate a dataset of 50 nodes with
K = 6 communities. For
each community, we generate
Hawkes meta parameters ✓k =
{µk, �k,!k} using the follow-
ing uniform distributions:

µk ⇠ Uniform(0.15, 10),

�k ⇠ Uniform(0.15, 0.85),

!k ⇠ Uniform(1, 10).

We set ↵ = 1K , i.e., the entries
of ↵ is all one. Then for the i-th
node, the identity proportion ⇡i

is sampled from Dirichlet(↵)
and the membership indicator
zi from the corresponding cate-
gorical distribution Categorical(⇡i). Based on zi, we then generate the Hawkes parameters e✓(i)zi by
adding small perturbation to ✓zi :

eµ(i)
zi ⇠ N(µzi , 0.01), e�(i)zi ⇠ N(�zi , 0.01), e!(i)

zi ⇠ N(!zi , 0.05).

The sequence is then sampled based on Hawkes process with parameter e✓(i)zi in time interval [0, 20].
To ease the tuning we normalize the sequences by dividing by the largest timestamp. We set
Bk` =

0.5
N , 1

N , 2
N , for any k 6= `, and Bkk = 5

#{i2[1,··· ,N ]:zi=k} . We sample the graph edges based
onB. Denote S = Bk` ⇥N . The generated graphs are visualized in the second column of Table 1.

Visualization of communities. We visualize the communities learned by HARMLESS (MAML) in
Table 1. DenoteK0 as the number of communities specified in HARMLESS. We adoptK0 colors
corresponding to theK0 communities in the graph. The color of each node shown in the Table 1 is
the linear combinations of the RGB values of theK0 colors weighted by identity proportions ⇡i.

HARMLESS produces reasonable identities even if K0 is mis-specified. If K0 < K, some of the
communities would merge. IfK0 > K, some of the communities would split.

1 3 6 10
K0

5.00

5.05

5.10

5.15

5.20

5.25

L
o
g
-L
ik
e
li
h
o
o
d

MLE-Sep

MLE-Com

MTL

DMHP

Two Step

HARMLESS
(MAML)

HARMLESS
(FOMAML)

Figure 3: Plot of synthetic data. S = 1.

Benefit of joint training. To validate the benefit of
joint training on graphs and sequences, we compare
HARMLESS result with a two step procedure: We
first train an MMB model and obtain the identities,
and train HARMLESS (MAML) with fixed identities.
In Figure 3 we plot the obtained log-likelihood with
respect toK0.

HARMLESS (MAML) consistently achieves larger
log-likelihood than the two step procedure. This sug-
gests joint training of graphs and the sequences indeed improve the prediction of future events.

Log-likelihood with respect to K0. We also include the results of the baselines and HARMLESS
(FOMAML) in Figure 3. The performance of HARMLESS is consistently better than the baselines.
Besides, we find the performance HARMLESS (Reptile) is very dependent on the dataset. For this
synthetic dataset, Reptile cannot perform well.

5.2 Real Data
We adopt four real datasets.
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Table 2: Log-likelihood of real datasets.
Dataset 911-Calls LinkedIn MathOverflow StackOverflow
MLE-Sep 4.0030± 0.3763 0.8419± 0.0251 0.5043± 0.0657 0.2862± 0.0177
MLE-Com 4.5111± 0.3192 0.8768± 0.0028 1.7805± 0.0345 1.5594± 0.0134
DMHP 4.4812± 0.3434 0.8348± 0.0030 1.5394± 0.0347 N\A
MTL 4.4621± 0.3173 0.9270± 0.0027 1.7225± 0.0336 1.4910± 0.0089
HARMLESS (MAML) 4.5208± 0.3256 1.4070± 0.0105 1.8563± 0.0345 1.3886± 0.0082
HARMLESS (FOMAML) 4.6362± 0.3241 1.0129± 0.004 1.8344± 0.0348 1.5988± 0.0083
HARMLESS (Reptile) 4.4929± 0.3503 0.9540± 0.0082 1.8663± 0.0342 1.6017± 0.0097

911-Calls dataset: The 911-Calls dataset1 contains emergency phone call records of fire, traffic and
other emergencies for Montgomery County, PA. The county is divided into disjoint areas, each of
which has a unique ZIP Code. For each area, the timestamps of emergency phone calls in this area are
recorded as an event sequence. We consider each area as a subject, and two subjects are connected if
they are adjoint. We finally obtain 57 subjects and 81 connections among them. The average length
of the sequences is 219.1.

LinkedIn dataset: The LinkedIn dataset (Xu et al., 2017b) contains job hopping records of the users.
For each user, her/his check-in timestamps corresponding to different companies are recorded as an
event sequence. We consider each user as a subject, and two subjects are connected if the difference in
timestamps of two user joined the same company is less than 2 weeks. After removing the singleton
subjects, we have 1, 369 subjects and 12, 815 connections among them. The average length of the
sequences is 4.9.

MathOverflow dataset: The MathOverflow dataset (Paranjape et al., 2017) contains records of the
users posting and answering math questions. We adopt the records from May 2, 2014 to March 6,
2016. For each user, her/his timestamps of answering questions are recorded as an event sequence.
We consider each user as a subject, and two subjects are connected if one user answers another user’s
question. After removing the singleton subjects, we have 1, 529 subjects and 6, 937 connections
among them. The average length of the sequences is 11.8.

StackOverflow dataset: StackOverflow is a question and answer site similar to MathOverflow. We
adopt the records from November 8, 2015 to December 1, 2015. We construct the sequences and
graphs in the same way as MathOverflow. After removing the singleton subjects, we have 13, 434
users and 19, 507 connections among them. The average length of the sequences is 7.7.

Result: The log-likelihood is summarized in Table 2. Note due to Markov chain Monte Carlo is
needed forDMHP, we cannot get reasonable result for large dataset, i.e., StackOverflow. HARMLESS
performs consistently better than the baselines. Since the standard error of the results of 911-
Calls dataset are large, we also performed a paired t test. The test shows the difference in log-
likelihood between MLE-Com, i.e., best of the baselines, and HARMLESS (FOMAML), i.e., best of
HARMLESS series, is statistically significant (with p value= 1.3⇥ 10�5).
5.3 Ablation Study Table 3: Results of ablation study.

Method Log-Likelihood
HARMLESS (MAML) 1.4070± 0.0105
HARMLESS (FOMAML) 1.0129± 0.0042
HARMLESS (Reptile) 0.9540± 0.0082
Remove inner heterogeneity (K = 3) 0.9405± 0.0032
Remove inner heterogeneity (K = 5) 0.9392± 0.0032
Remove grouping (MAML) 0.9432± 0.0031
Remove grouping (FOMAML) 0.9376± 0.0031
Remove grouping (Reptile) 0.9455± 0.0041
Remove graph (MAML) 0.9507± 0.0032
Remove graph (FOMAML) 0.9446± 0.0032
Remove graph (Reptile) 0.9489± 0.0072

We then perform ablation study using
LinkedIn dataset. Three sets of ablation
study are considered here:
Remove inner heterogeneity: We model
each community of sequences using the
same parameters, i.e., we set e✓(i)k = ✓k.
Remove grouping: We set K = 1, so
that the whole graph is one community.
This equivalent to apply the MAML-type
algorithms on the sequences directly.
Remove graph: We do not consider the
graph information, i.e., we remove z!, z , Y and B from the panel in Figure 2.

The results in Table 3 suggest that MAML-type adaptation, graph information, and using multiple
identities all contribute to the good performance of HARMLESS.
6 Discussions
The setting of meta learning. The goal of conventional settings of meta learning is to train a model
on a set of tasks, so that it can quickly adapt to a new task with only few training samples. Therefore,

1Data is provided by montcoalert.org.

8



people divide the tasks into meta training set and meta test set, where each of the task contains a
training set and a test set. The meta model is trained on the meta training set, aiming to minimize the
test errors, and validated on the meta test set (Vinyals et al., 2016; Santoro et al., 2016). This setting
is designed for supervised learning or reinforcement learning tasks that has accuracy or reward as a
clear evaluation metric. Extracting information from the event sequences, however, is essentially an
unsupervised learning task. Therefore, we do not separate meta training set and meta test set. Instead,
we pull the collection of tasks together, and aim to extract shared information of the collection to
help the training of models on individual tasks. Here, each short sequence is a task. We exploit the
shared pattern of the collection of the sequences to obtain the models for individual sequences.
Community Pattern. The target of Mixed Membership stochastic Blockmodels (MMB) is to
identify the communities in a social graph, e.g., the classes in a school. However, real social graphs
cannot always be viewed as Erdős-Rényi (ER) graphs assumed by MMB. As argued in Karrer and
Newman (2011), for real-world networks, MMB tends to assign nodes with similar degrees to same
communities, which is different from the popular interpretation of the community pattern. This
property, however, is actually very helpful in our case. As an example, Twitter users that are more
active tend to have similar behavior: They tend to make more connections and post tweets more
frequently. In contrast, users with very different node degrees often have the tweets histories of
different characteristics, and thus should be assigned to different identities. Such property of MMB
allows the identities in HARMLESS to represent this non-traditional community patterns in non-ER
graphs, i.e., it assigns subjects with various activeness to different communities.
Mixture of Hawkes processes. Many existing works adopt mixture of Hawkes process to model
sequences that are generated from complicated mechanisms (Yang and Zha, 2013; Li and Zha, 2013;
Xu and Zha, 2017). Those works are different from HARMLESS since they do not consider the
hierarchical heterogeneity of the sequences, and do not consider the relational information.
Variants of Hawkes process. Some attempts have been made to further enhance the flexibility of
Hawkes processes. For example, the time-dependent Hawkes process (TiDeH) in Kobayashi and
Lambiotte (2016) and the neural network-based Hawkes process (N-SM-MPP) in Mei and Eisner
(2017) learn very flexible Hawkes processes with complicated intensity functions. Those models
usually have more parameters than vanilla Hawkes processes. For longer sequences, HARMLESS can
also be naturally extended to TiDeHs or N-SM-MPP. However, this work focuses on short sequences.
These methods are not useful here, since they have too many degrees of freedom.
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