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Abstract

Wasserstein distance plays increasingly impor-
tant roles in machine learning, stochastic pro-
gramming and image processing. Major efforts
have been under way to address its high com-
putational complexity, some leading to approxi-
mate or regularized variations such as Sinkhorn
distance. However, as we will demonstrate, reg-
ularized variations with large regularization pa-
rameter will degradate the performance in sev-
eral important machine learning applications,
and small regularization parameter will fail due
to numerical stability issues with existing al-
gorithms. We address this challenge by devel-
oping an Inexact Proximal point method for
exact Optimal Transport problem (IPOT) with
the proximal operator approximately evaluated
at each iteration using projections to the prob-
ability simplex. The algorithm (a) converges
to exact Wasserstein distance with theoretical
guarantee and robust regularization parameter
selection, (b) alleviates numerical stability is-
sue, (c) has similar computational complexity
to Sinkhorn, and (d) avoids the shrinking prob-
lem when apply to generative models. Further-
more, a new algorithm is proposed based on
IPOT to obtain sharper Wasserstein barycenter.

1 INTRODUCTION
Many practical tasks in machine learning rely on comput-
ing a Wasserstein distance between probability measures
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or between their sample points [3, 41, 43, 37]. However,
the high computational cost of Wasserstein distance has
been a thorny issue and has limited its application to chal-
lenging machine learning problems.

In this paper we focus on Wasserstein distance for discrete
distributions the computation of which amounts to solving
the following discrete optimal transport (OT) problem,

W (µ,ν) = minΓ∈Σ(µ,ν)〈C,Γ〉. (1)

Here µ,ν are two probability vectors, W (µ,ν) is the
Wasserstein distance between µ and ν. Matrix C =
[cij ] ∈ Rm×n+ is the cost matrix, whose element cij rep-
resents the distance between the i-th support point of
µ and the j-th one of ν. The optimal solution Γ∗ is
referred as optimal transport plan. Notation 〈·, ·〉 repre-
sents the Frobenius dot-product and Σ(µ,ν) = {Γ ∈
Rm×n+ : Γ1m = µ,Γ>1n = ν}, where 1n represents n-
dimensional vector of ones. This is a linear programming
problem with typical super O(n3) complexity1.

An effort by Cuturi to reduce the complexity leads to
a regularized variation of (1) giving rise the so-called
Sinkhorn distance [8]. It aims to solve an entropy regular-
ized optimal transport problem

Wε(µ,ν) = minΓ∈Σ(µ,ν)〈C,Γ〉+ εh(Γ). (2)

The entropic regularizer h(Γ) =
∑
i,j Γij ln Γij results in

an optimization problem (2) that can be solved efficiently
by iterative Bregman projections [5],

a(l+1) =
µµµ

Gb(l)
, b(l+1) =

ννν

GTa(l+1)

starting from b(0) = 1
n111n, where G = [Gij ] and Gij =

e−Cij/ε. The optimal solution Γ∗ then takes the form
Γ∗ij = aiGijbj . The iteration is also referred as Sinkhorn
iteration, and the method is referred as Sinkhorn algo-
rithm which, recently, is proven to achieve a near-O(n2)
complexity [2].

1Assume O(n) = O(m).



The choice of ε cannot be arbitrarily small. Firstly,
Gij = e−Cij/ε tends to underflow if ε is very small. The
methods in [5, 6, 19] try to address this numerical instabil-
ity by performing the computation in log-space, but they
require a significant amount of extra exponential and log-
arithmic operations, and thus, compromise the advantage
of efficiency. More significantly, even with the benefits of
log-space computation, the linear convergence rate of the
Sinkhorn algorithm is determined by the contraction ratio
κ(G), which approaches 1 as ε→ 0 [14]. Consequently,
we observe drastically increased number of iterations for
Sinkhorn method when using small ε.

Can we just employ Sinkhorn distance with a moderately
sized ε for machine learning problems so that we can get
the benefits of the reduced complexity? Some applica-
tions show Sinkhorn distance can generate good results
with a moderately sized ε [15, 20]. However, we show that
in several important problems such as generative model
learning and Wasserstein barycenter computation, a mod-
erately sized ε will significantly degrade the performance
while the Sinkhorn algorithm with a very small ε becomes
prohibitively expensive (also shown in [36]).

In this paper, we propose a new framework, Inexact Prox-
imal point method for Optimal Transport (IPOT) to com-
pute the Wasserstein distance using generalized proximal
point iterations based on Bregman divergence. To en-
hance efficiency, the proximal operator is inexactly evalu-
ated at each iteration using projections to the probability
simplex, leading to an inexact update at each iteration yet
converging to the exact optimal transport solution.

Regarding the theoretical analysis of IPOT, we provide
conditions on the number of inner iterations that will guar-
antee the linear convergence of IPOT. In fact, empirically,
IPOT behaves better than the analysis: the algorithm
seems to be linearly convergent with just one inner it-
eration, demonstrating its efficiency. We also perform
several other tests to show the excellent performance of
IPOT. As we will discussed in Section 6.2, the computa-
tion complexity is almost indistinguishable comparing to
the Sinkhorn method. Yet again, IPOT avoids the lengthy
and experience-based tuning of the ε and can converges to
the true optimal transport solution robustly with respect to
its own parameters. This is unquestionably important in
applications where the exact sparse transport plan is pre-
ferred. In applications where only Wasserstein distance
is needed, the bias caused by regularization might also
be problematic. As an example, when applying Sinkhorn
to generative model learning, it causes the shrinkage of
the learned distribution towards the mean, and therefore
cannot cover the whole support of the target distribution
adequately.

Furthermore, we develop another new algorithm based

on the proposed IPOT to compute Wasserstein barycenter
(see Section 4). Better performance is obtained with much
sharper images. It turns out that the inexact evaluation
of the proximal operator blends well with Sinkhorn-like
barycenter iteration.

2 PRELIMINARIES

We then provide some background on optimal transport
and proximal point method.

2.1 Wasserstein Distance and Optimal Transport

Wasserstein distance is a metric for two probability dis-
tributions. Given two distributions µ and ν, the p-
Wasserstein distance between them is defined as

Wp(µ, ν) :=
{

inf
γ∈Σ(µ,ν)

∫
M×M

dp(x, y)dγ(x, y)
} 1
p

, (3)

where Σ(µ, ν) is the set of joint distributions whose
marginals are µ and ν, respectively. The above opti-
mization problem is also called the Monge-Kantorovitch
problem or optimal transport problem [17]. In the fol-
lowing, we focus on the 2-Wasserstein distance, and for
convenience we write W (·, ·) = W 2

2 (·, ·).

When µ and ν both have finite supports, we can represent
the distributions as vectors µ ∈ Rm+ ,ν ∈ Rn+, where
‖µ‖1 = ‖ν‖1 = 1. Then the Wasserstein distance be-
tween µ and ν is computed by (1). In other cases, given
realizations {xi}mi=1 and {yj}nj=1 of µ and ν, respec-
tively, we can approximate them by empirical distribu-
tions µ̂ = 1

m

∑
xi
δxi and ν̂ = 1

n

∑
yj
δyj . The supports

of µ̂ and ν̂ are finite, so similarly we have µ = 1
m1{xi},

ν = 1
n1{yj}, and C = [c(xi, yj)] ∈ Rm×n+ .

The optimization problem (1) can be solved by linear pro-
gramming (LP) methods. LP tends to provide a sparse so-
lution, which is preferable in applications like histogram
calibration or color transferring [24]. However, the cost of
LP scales at least O(n3 log n) for general metric, where
n is the number of data points [22]. As aforementioned,
an alternative optimization method is the Sinkhorn algo-
rithm in [8]. Following the same strategy, many variants
of the Sinkhorn algorithm have been proposed [2, 10, 40].
Unfortunately, all these methods only approximate origi-
nal optimal transport by its regularized version and their
performance both in terms of numerical stability and com-
putational complexity is sensitive to the choice of ε.

2.2 Generalized Proximal Point Method

Proximal point methods are widely used in optimiza-
tion [1, 21, 28, 29]. Here, we introduce its generalized
form. Given a convex objective function f defined on X
with optimal solution set X ∗ ⊂ X , generalized proximal



Figure 1: Schematic of the convergence path of (a) Sinkhorn algorithm, (b) exact proximal point algorithm and (c)
inexact proximal point algorithm (IPOT). The distance shown is in Bregman sense. Sinkhorn solution is feasible and
the closest to optimal solution set within the Dh constraints, but is not in the optimal solution set. However, proximal
point algorithm, no matter exact or inexact, solves optimization with Dh constraints iteratively, until an optimal solution
is reached.

point algorithm aims to solve

arg minx∈X f(x). (4)

In order to solve Problem (4), the algorithm generates
a sequence {x(t)}t=1,2,... by the following generalized
proximal point iterations:

x(t+1) = arg minx∈X f(x) + β(t)d(x, x(t)), (5)

where d is a regularization term used to define the proxi-
mal operator, usually defined to be a closed proper convex
function. For classical proximal point method, d adopts
the square of Euclidean distance, i.e., d(x, y) = ‖x−y‖22,
in which case the sequence {x(t)} converges to an ele-
ment in X ∗ almost surely.

The generalized proximal point method has many advan-
tages, e.g, it has a robust convergence behavior – a fairly
mild condition on β(t) guarantee its convergence for some
given d, and the specific choice of β(t) generally just af-
fects its convergence rate. Moreover, even if the proximal
operator defined in (5) is not exactly evaluated in each
iteration, giving rise to inexact proximal point methods,
the global convergence of which with local linear rate is
still guaranteed under certain conditions [34, 31].

3 BREGMAN DIVERGENCE BASED
PROXIMAL POINT METHOD

In this section we will develop the main algorithm IPOT.
Specifically, we will use generalized proximal point
method to solve the optimal transport problem (1). Recall
the proximal point iteration (5), we take f(Γ) = 〈C,Γ〉,
X = Σ(µ,ν), and d(·, ·) to be Bregman divergence Dh

based on entropy function h(x) =
∑
i xi lnxi, i.e.,

Dh(x,y) =

n∑
i=1

xi log
xi
yi
−

n∑
i=1

xi +

n∑
i=1

yi. (6)

As a result, the proximal point iteration for problem (1)
can be written as

Γ(t+1) = arg minΓ∈Σ(µ,ν)〈C,Γ〉+ β(t)Dh(Γ,Γ(t)).

(7)

However, it is still not trivial to solve the above optimiza-
tion problem in each iteration, since optimization prob-
lems with such complicated constraints generally does
not have a closed-form solution. Fortunately, with some
reorganization, we can solve it with Sinkhorn algorithm.

Substituting Bregman divergence (6) into proximal point
iteration (7), with simplex constraints, we obtain

Γ(t+1) = arg minΓ∈Σ(µ,ν)〈C − β(t) log Γ(t),Γ〉

+ β(t)h(Γ).
(8)

DenoteC ′ = C−β(t) ln Γ(t). Note that for optimization
problem (8), Γ(t) is a fixed value that is not relevant to
optimization variable Γ. Therefore, C ′ can be viewed as
a new cost matrix that is known, and problem (8) is an en-
tropy regularized optimal transport problem. Comparing
to (2), problem (8) can be solved by Sinkhorn iteration
by replacing Gij by G′ij = e−C

′
ij/β

(t)

= Γ
(t)
ij e
−Cij/β(t)

.
As we will later shown in Section 5, as t→∞, Γ(t) will
converge to an optimal transport plan.

Figure 1 illustrates how Sinkhorn and IPOT solutions
approach optimal solution with respect to number of itera-
tions in sense of Bregman divergence. First, let’s consider
Sinkhorn algorithm. The objective function of Sinkhorn
(2) has regularization term εh(Γ), which can be equiva-
lently rewritten as constraint Dh(Γ,11T ) ≤ η for some
η > 0. Therefore, Sinkhorn solution is feasible within the
Dh constraints and the closest to optimal solution set, as
shown in Figure 1 (a).

Proximal point algorithms, on the other hand, solves op-
timization with Dh constraints iteratively as shown in
Figure 1 (b)(c). Different from Sinkhorn algorithm, prox-
imal point algorithms converge to the optimal solution



Algorithm 1 IPOT(µµµ,ννν,C)
Input: Probabilities {µµµ,ννν} on support points {xi}mi=1,
{yj}nj=1, cost matrix C = [‖xi − yj‖]
b← 1

m111m

Gij ← e−
Cij
β

Γ(1) ← 111111T

for t = 1, 2, 3, ... do
Q← G� Γ(t)

for l = 1, 2, 3, ..., L do // Usually set L = 1
a← µµµ

Qb , b← ννν
QTa

end for
Γ(t+1) ← diag(a)Qdiag(b)

end for

with nested iterative loops. Exact proximal point method,
i.e., solving (8) exactly as shown in Figure 1 (b), provides
a feasible solution that is closest to the optimal solution
set in each proximal iteration until the optimal solution
reached. However, the disadvantage for exact proximal
point method is that it’s not efficient.

The proposed inexact proximal point method (IPOT) does
not solve (8) exactly. Instead, a very small amount of
Sinkhorn iteration, e.g., only one iteration, is suggested.
The reason for this is three-fold. First, the convergence
of Sinkhorn algorithm in each proximal iteration is not
required, since it is just intermediate step. Second, usu-
ally in numerical optimization, the first a few iterations
achieve the most decreasing in the objective function.
Performing only the first a few iterations has high cost
performance. Last and perhaps the most important, it is
observed that IPOT can still converge to an exact solution
with small amount of inner iterations2.

The algorithm is shown in Algorithm 1. For simplicity we
use β = β(t). Denote diag(a) the diagonal matrix with ai
as its i-th diagonal elements. Denote � as element-wise
matrix multiplication and (·)

(·) as element-wise division.
We use warm start to improve the efficiency, i.e. in each
proximal point iteration, we use the final value of a and b
from last proximal point iteration as initialization instead
of b(0) = 111m. Later we will show empirically IPOT will
converge under a large range of β with L = 1, a single
inner iteration will suffice.

4 WASSERSTEIN BARYCENTER BY
IPOT

We now extend IPOT method to a related problem – com-
puting the Wasserstein barycenter. Wasserstein barycenter

2Similar ideas are also used in accelerating the expectation-
maximization algorithm with only one iteration used in the
maximization step [18].

is widely used in machine learning and computer vision
[5, 25]. Given a set of distributionsP = {p1,p2, ...,pK},
their Wasserstein barycenter is defined as

q∗(P,λ) = arg minq∈Q
∑K

k=1
λkW (q,pk) (9)

where Q is in the space of probability distributions,∑K
k=1 λk = 1, and W (q,pk) is the Wasserstein distance

between the barycenter q and distribution pk, which takes
the form

W (q,pk) = min
Γ
〈C,Γ〉, s.t. Γ1 = pk,Γ

T 1 = q.

(10)

The idea of IPOT method can also be used to compute
Wasserstein barycenter. Substitute (10) into (9) and reor-
ganize, we have

q∗(P,λ) = arg minq∈Q

K∑
k=1

λk〈C,Γk〉,

s.t. Γk1 = pk, and ∃q,ΓTk 1 = q.

Analogous to IPOT, we take

f({Γk}) =
K∑
k=1

λk〈C,Γk〉,

take X to be the corresponding constraints, and take
d({Γk}, {Γ(t)

k }) to be
∑K
k=1 λkDh(Γk,Γ

(t)
k ). The prox-

imal point iteration for barycenter is

Γ
(t+1)
k = arg min

Γk

K∑
k=1

λk{〈C,Γk〉+ β(t)Dh(Γk,Γ
(t)
k )}

s.t. Γk1 = pk, and ∃q,ΓTk 1 = q. (11)

With further organization, we have

Γ
(t+1)
k = arg min

Γk

K∑
k=1

λk{〈C − β(t) log Γ
(t)
k ,Γk〉

+ β(t)h(Γk)}
s.t. Γk1 = pk, and ∃q,ΓTk 1 = q. (12)

On the other hand, analogous to Sinkhorn algorithm, [5]
propose Bregman iterative projection that seeks to solve
an entropy regularized barycenter,

q∗ε (P,λ) = arg minq∈Q
∑K

k=1
λkWε(q,pk). (13)

Comparing (12) and (13), the minimization in each prox-
imal point iteration in (12) can be solved by Bregman
iterative projection [5] using the same change-of-variable
technique in Section 3.



Algorithm 2 IPOT-WB({pk})
1: Input: The probability vector set {pk} on grid
{yi}ni=1

2: bk ← 1
n1n, ∀k = 1, 2, ...,K

3: Cij ← c(yi, yj) := ||yi − yj ||22
4: Gij ← e−

Cij
β

5: Γk ← 11T

6: for t = 1, 2, 3, ... do
7: Hk ← G� Γk, ∀k = 1, 2, ...,K
8: for l = 1, 2, 3, ..., L do
9: ak ← q

Hkbk
, ∀k = 1, 2, ...,K ,

10: bk ← pk
HT
k ak

, ∀k = 1, 2, ...,K

11: q ←
∏K
k=1(ak � (Hkbk))λk

12: end for
13: Γk ← diag(ak)Hkdiag(bk), ∀k = 1, 2, ...,K
14: end for
15: Return q

We provide the detailed algorithm in Algorithm 2, and
name this algorithm IPOT-WB. Same as Algorithms 1,
IPOT-WB algorithm can converge with L = 1 and a large
range of β.

Since the sketch in Figure 1 does not have restrictions
on f and X , the sketch and the corresponding analysis
for IPOT also applies to IPOT-WB, except the distance is
in sense of convex combination of Bregman divergences
instead of a single Bregman divergence.

5 THEORETICAL ANALYSIS

Classical proximal point algorithm has sublinear conver-
gence rate. However, after we replace the square of Eu-
clidean distance in classical proximal point algorithm by
Bregman distance, we can prove stronger convergence
rate - a linear rate for both IPOT and IPOT-WB. First,
we consider when the optimization problem (8) is solved
exactly, we have a linear convergence rate guaranteed by
the following theorem.

Theorem 5.1. Let {x(t)} be a sequence generated by the
proximal point algorithm

x(t+1) = arg minx∈X f(x) + β(t)Dh(x, x(t)),

where f is continuous and convex. Assume f∗ =
min f(x) > −∞. Then, with

∑∞
t=0 β

(t) =∞, we have

f(x(t)) ↓ f∗.

If we further assume f is linear and X is bounded, the
algorithm has linear convergence rate.

More importantly, the following theorem gives us a guar-
antee of convergence when (8) is solved inexactly.

Theorem 5.2. Let {x(t)} be the sequence generated by
the Bregman distance based proximal point algorithm
with inexact scheme (i.e., finite number of inner iterations
are employed). Define an error sequence {e(t)} where

e(t+1) ∈β(t)
[
∇f(x(t+1)) + ∂ιX (x(t+1))

]
+
[
∇h(x(t+1))−∇h(x(t))

]
,

where ιX is the indicator function of set X , and ∂lX (·)
is the subdifferential of the indicator function lX . If
the sequence {ek} satisfies

∑∞
k=1 ‖ek‖ < ∞ and∑∞

k=1〈ek, x(t)〉 exists and is finite, then {x(t)} converges
to x∞ with f(x∞) = f∗. If the sequence {e(t)} satisfies
that exist ρ ∈ (0, 1) such that‖e(t)‖ ≤ ρt, 〈e(t), x(t)〉 ≤
ρt and with assumptions that f is linear andX is bounded,
then {x(t)} converges linearly.

The proofs of both theorems are given in the supplemen-
tary material. Theorem 5.2 guarantees the convergence
of inexact proximal point method — as long as the inner
iteration number L satisfies the given conditions, IPOT
and IPOT-WB algorithm would converge linearly. Note
that although Theorem 5.2 manages to prove the linear
convergence in inexact case, in practice the conditions
is not trivial to verify. In practice we usually just adopt
L = 1.

Now we know IPOT and IPOT-WB can converge to the
exact Wasserstein distance and Wasserstein barycenter.
What if an entropic regularization is wanted? Please refer
to the supplementary material for how IPOT can achieve
regularizations with early stopping.

6 EMPIRICAL ANALYSIS

In this section we will illustrate the convergence behavior
with respect to inner iteration number L and parameter β,
the scalability of IPOT, and the issue with entropy regu-
larization. We leverage the implementation of Sinkhorn
iteration and LP solver based on Python package POT
[13], and use Pytorch to parallel some of the implementa-
tion.

6.1 Convergence Rate

A simple illustration task of calculating the Wasserstein
distance of two 1D distribution is conducted as numerical
validation of the convergence theorems proved in Sec-
tion 5. The two input margins are mixtures of Gaussian
distributions shown in the figure in the right lower of
Figure 2 (a): the red one is 0.4φ(·|60, 8) + 0.6φ(·|40, 6),
and the blue one is 0.5φ(·|35, 9) + 0.5φ(·|70, 9), where
φ(·|µ, σ2) is the probability density function of 1 dimen-
sional Gaussian distribution with mean µ and variance σ2.
Input vectors µ and ν is the two function values on the



(a) β = 1 with different L (b) L = 1 with different β

Figure 2: The plots of differences in computed Wasserstein distances w.r.t. number of iterations. Here, W are the
Wasserstein distance computed at current iteration. WLP is computed by simplex method, and is used as ground truth.
The test adopts c(x, y) = ||x− y||2. (a) The plot of the convergence trajectories of IPOT with different L. The right
lower figure is the two input margins for the test. We also plot the ones for Sinkhorn method in comparison. (b) The
plot of differences in computed Wasserstein distances with different β.

uniform discretization of interval [1, 100] with grid size
1. To be clear, the use of two 1D distribution is only for
visualization purpose. We also did tests on empirical dis-
tribution of 64D Gaussian distributed data, and the result
shows the same trend. We include more discussion in the
supplementary material.

Figure 2 shows the convergence of IPOT under different
L and β. We also include the result of Sinkhorn method
for comparison. IPOT algorithm has empirically linear
convergence rate even under very small L.

The convergence rate increases w.r.t. β when β is small,
and decreases when β is large. This is because the choice
of β is a trade-off between inner and outer convergence
rates. On the one hand, a smaller β usually lead to quicker
convergence of proximal point iterations. On the other
hand, the convergence of inner Sinkhorn iteration, is
quicker when β is large.

Furthermore, the choice of L also appears to be a trade-
off. While a larger L takes more resources in each step, it
also achieves a better accuracy, so less proximal point iter-
ations are needed to converge. So the choice of best L is
relevant to the choice of β. For large β, the inner Sinkhorn
iteration can converge faster, so smaller L should be used.
For small β, larger L should be used, which is not effi-
cient, and also improve the risk of underflow for the inner
Sinkhorn algorithm. So unless there are specific need for
accuracy, we do not recommend using very small β and
large L.

For simplicity, we use L = 1 for later tests.

6.2 Scalability

We conduct the following scalability test to show the
computation time of the proposed IPOT comparing to the
state-of-art benchmarks. The optimal transport problem is
conducted between the two empirical distributions of 16D

Figure 3: Log-log plot of average time used to achieve 1e-
4 relative precision with error bar. Each point is obtained
by the average of 6 tests on different datasets.

uniformly distributed data (See Section 2.1 for formula-
tion). Besides proposed IPOT algorithm (see Algorithm 1
with L = 1), the Sinkhorn algorithm follows [8] and the
stabilized Sinkhorn algorithm follows [6]. The result of
the scalability test is shown in Figure 3. The LP solver has
a good performance under the current experiment settings.
But LP solver is not guaranteed to have good scalability as
shown here. Moreover, LP method is difficult to parallel.
Readers who are interested please refer to experiments
in [8].

Sinkhorn and IPOT can be paralleled conveniently, so
we provide both CPU and GPU tests here. Under this
setting, IPOT takes approximately the same resources as
Sinkhorn at ε = 0.01. For smaller ε, original Sinkhorn
will underflow, and we need to use stabilized Sinkhorn.
Stabilized Sinkhorn is much more expensive than IPOT,
especially for large datasets and small ε, as demonstrated
by the experiment result of stabilized Sinkhorn at ε =
10−2 and 10−4.

Note that we also try to use the method proposed in [32]



Sinkhorn Sinkhorn Sinkhorn IPOT IPOT
𝜖 = 0.1 𝜖 = 0.01 𝛽 = 0.1 𝜖 = 0.001 𝛽 = 0.01 

Sinkhorn
𝜖 = 0.0001 

IPOT
𝛽 = 1 

# Iter
1

100

500

2000

IPOT
𝛽 = 0.001 

Figure 4: The transport plan generated by Sinkhorn
and IPOT methods at different iteration number. The red
colormap is the result from Sinkhorn or IPOT method,
while the black wire is the result of simplex method for
comparison. In the right lower plans, the red and the black
is almost identical.

for ε scaling, to help the convergence when ε→ 0. How-
ever, although it is faster than Sinkhorn method when data
size is smaller than 1024, the time used at 1024 is already
around 2×103s. Therefore we didn’t include this method
in the figure.

6.3 Effect of Entropy Regularization

We have shown that IPOT can converge to exact Wasser-
stein distance with complexity comparable to Sinkhorn
(see Figure 1 and 3) and as we claimed in Section 1 this
is important in some of the learning problems.

But in what cases is the exact Wasserstein distance truly
needed? How will the entropy regularization term affect
the result in different applications? In this section, we
will discuss the exact transport plan with sparsity prefer-
ence and the advantage of exact Wasserstein distance in
learning the generative models.

6.3.1 Sparsity of the Transport Plan
In applications such as histogram calibration and color
transferring, an exact and sparse transport plan is wanted.
In this section we conduct tests on the sparsity of the
transport plan using the two distributions shown in Figure
2 for both IPOT and Sinkhorn methods with different
regularization coefficients. Figure 4 visualize the differ-
ent transport plans. The red colormap is the result from
Sinkhorn or IPOT method, where the black wire beneath
is the result by simplex method as ground truth. To be
clear, the different number of interaction of IPOT means
the number of the outer iteration with still L = 1 inner
iteration.

The proposed IPOT method can always converge to the
sparse ground truth with enough iteration and it is very
robust with respect to the parameter β, i.e., there is little

visual difference with β changing from 0.1 to 0.001. Fur-
thermore, even with large β = 1, the optimal plan is still
sparse and acceptable. In addition, if some smoothness
is wanted, IPOT method would also be able to work with
early stopping. The degree of smoothness can be easily
adjusted by adjusting the number of iterations if needed.

On the other hand, the optimal plans obtained by Sinkhorn
has two issues. If the ε is chosen to be large (i.e., ε = 0.1
or 0.01), the optimal plan are blur i.e., neither exact nor
sparse. In downstream applications, the non-sparse struc-
ture of transport plan make it difficult to extract the trans-
port map from source distribution to target distribution.
However if the ε is chosen to be small (i.e., ε = 0.0001),
it needs more iterations to converge. For example, the
Sinkhorn ε = 0.0001 case still cannot converge after 2000
iterations. So in Sinkhorn applications, ε needs to be se-
lected carefully. This fine tuning issue can be avoid by
the proposed IPOT method, since IPOT is robust to the
parameter β.

6.3.2 Shrinkage Problem in Generative Models
As shown in Equation (2), Sinkhorn method use entropy to
penalize the optimization target and has biased evaluation
of Wasserstein distance. The inaccuracy will affect the
performance of the learning problem where Wasserstein
metric is served as loss function.

In order to better illustrate the affect of the inaccurate
Wasserstein distance, we consider the task of learning
generative models, specifically, Wasserstein GAN [3].
Similar to other GAN, WGAN seeks to learn a generated
distrubution to approximate a target distribution, except
using Wasserstein distance as the loss that measures the
distance between the generated distribution and target
distribution. It uses the Kantorovitch dual formulation to
compute Wasserstein distance.

In this section, we train a Wasserstein GAN with the dual
formulation substituted by Sinkhorn and IPOT methods.
Detailed derivation can be found in supplementary ma-
terial. Meanwhile, the standard approach of using dual
form proposed in [3] is also compared. Note that the
purpose of this section is not to propose a new GAN but
visualize how proposed IPOT can avoid the possible nega-
tive influence introduced by the inaccuracy of the entropy
regularization in the Sinkhorn method.

We claim that result of Sinkhorn method with moderate
size ε tends to shrink towards the mean, so the learned
distribution cannot cover all the support of target distri-
bution. To demonstrate the reason of this trend, consider
the extreme condition when ε → ∞, the loss function
becomes

Γ∗ = arg min
Γ

h(Γ) = arg min
Γ

Dh(Γ,11T /mn).



Figure 5: The sequences of learning results using IPOT, Sinkhorn, and original WGAN. In each figure, the orange dots
are samples of generated data, while the contour represents the ground truth distribution.

So Γ∗ = 11T /mn. If we view {xi} and {yj : yj =
gθ(zj)} as the realizations of random variables X and Y ,
the optimal Sinkhorn distance Wε is expected to be

EX,Y [Wε] = EX,Y [〈Γ∗,C〉]

= EX,Y [
∑
i,j

||xi − yj ||22]

= n2(Var(X) + (X − Y )2 + Var(Y )),

where n is the data size, (·) is the mean of random vari-
able, and Var(·) is the variance. At the minimum of the
distance, the mean of generated data {yj} is the same
as {xi}, but the variance is zero. Therefore, the learned
distribution would shrink asymptotically toward the data
mean due to smoothing the effect of regularization.

However, the proposed IPOT method is free from the
above shrinking issue since the exact Wasserstein dis-
tance can be found with the approximately the same cost
(see Section 6.1 and Section 6.2). Now we illustrate the
shrinkage problem by the following experiments.

Experiments on 2D Synthetic Data First, we conduct a
2D toy example to demonstrate the affect of regularization.
We use a 2D-2D NN as generator to learn a mapping
from uniformly distributed noise to mixture of Gaussian
distributed real data. Since as shown in Figure 2, Sinkhorn
may need more iteration to converge, in this experiment,
IPOT uses 200 iterations and Sinkhorn uses 500 iterations.

Figure 5 shows the results. As ε varies from 0.01 to 0.1,
the learned distribution of Sinkhorn gradually shrinks to
the mean of target distribution, again this is because the
inaccurcy in calculating the Wasserstein distance. On the
contrary, since IPOT can converge to the exact Wasser-
stein distance regardless of different β, the result robustly
cover the whole support of target distribution. Further-
more, comparing to the dual form method used in the
WGAN, the proposed IPOT method is better in small
scale cases and can achieve similar performance in large
scale cases [15]. This is mainly because the discriminator
neural network used in WGAN is susceptible to overfit-

(a) Sinkhorn ε = 1: digits 0,1,3,7,8,9 are
covered

(b) IPOT β = 1: all digits are covered

Figure 6: Plots of MNIST learning result under compa-
rable resources. They both use batch size=200, number
of hidden layer=1, number of nodes of hidden layer=500,
number of iteration=200, learning rate = 1e-4.

ting in low dimensional cases, and it exceeds the objective
of this paper.

Experiments on Higher Dimensional Data For higher
dimensional data, we cannot visualize the final generated



Figure 7: The result of barycenter. For each digit, we ran-
domly choose 8 of 50 scaled and shifted images to demon-
strate the input data. From the top to the bottom, we show
(top row) the demo of input data; (second row) the results
based on [9]; (third row) the result based on [35]; (fourth
row) the result based on [5]; (bottom row) the results
based on IPOT-WB.

distribution as done in the 2D test. So in order to demon-
strate IPOT has little shrinkage issue, we set the latent
space to be 2D, and visualize it by plotting the images
generated at dense grid points on the latent space. Due
to the low dimensional latent space, We perform the ex-
periment using MNIST dataset. Note that this is mainly
for the convenience in visualization, the whole shrinkage-
free property of IPOT method is also extendable to more
complex learning problems. Associated with the MNIST
dataset, we use a generator gθ : R2 7→ R784, noise data
{zj} ∼ Unif([0, 1]2) as input, and one fully connected
hidden layer with 500 nodes.

Figure 6 shows an example of generated results. The
Sinkhorn results look authentic, but we can only find
some of the digits in it. This is exactly the consequence of
shrinkage due to the inaccurate calculation of Wasserstein
distance - in the domain where the density of learned dis-
tribution is nonzero, the density of target distribution is
usually nonzero; but in some part of the domain where
the density of target distribution is nonzero, the learned
distribution is zero. In the example of Figure 6 (a), the
learned distribution cannot cover the support of digits
2,4,5,6 while when using IPOT to calculate the Wasser-
stein loss, all ten digits are can be recovered in 6 (b),
which shows the coverage of the whole domain of the
target distribution. In supplementary material we pro-
vide more examples, e.g., if a larger ε is used, Sinkhorn
generator would shrink to one point, and hence cannot
learn anything, while the IPOT method is robust to its
parameter β and covers more digits.

6.4 Computing Barycenter

We test our proximal point barycenter algorithm on
MNIST dataset, borrowing the idea from [9]. Here, the
images in MNIST dataset is randomly uniformly reshape
to half to double of its original size, and the reshaped

images have random bias towards corner. After that, the
images are mapped into 50× 50 grid. For each digit we
use 50 of the reshaped images with the same weights
as the dataset to compute the barycenter. All results are
computed using 50 iterations and under ε, β = 0.001. So
for proximal point method, the regularization is approxi-
mately the same as ε = 2× 10−5, which is pretty small.
We compare our method with state-of-art Sinkhorn based
methods [9], [35] and [5]. Among the four methods, the
convolutional method [35] is different in terms of that
it only handles structural input tested here and does not
require O(n2) storage, unlike other three general purpose
methods.

We are also aware of that there are other literatures for
Wassersetin barycenter, such as [38] and [7], but they are
targeting a more complicated setting, and has a different
convergence rate (i.e. sublinear rate) than the methods
we provide here. The results (Figure 7) from proximal
point algorithm are clear, while the results of Sinkhorn
based algorithms suffer blurry effect due to entropic regu-
larization. While the time complexity of our method is in
the same order of magnitude with Sinkhorn algorithm [5],
the space complexity is K times of it, because K differ-
ent transport maps need to be stored. This might cause
pressure to memory for large K. Therefore, a sequential
method is needed. We left this to future work.

7 CONCLUSION

We proposed a proximal point method - IPOT - based
on Bregman distance to solve optimal transport problem.
Different from the Sinkhorn method, IPOT algorithm can
converge to ground truth even if the inner optimization
iteration only performs once. This nice property results in
similar convergence and computation time comparing to
Sinkhorn method. However, IPOT provides a robust and
accurate computation of Wasserstein distance and associ-
ated transport plan, which leads to a better performance
in image transformation and avoids the shrinkage in gen-
erative models. We also apply the IPOT idea to calculate
the Wasserstein barycenter. The proposed method can
generate much sharper results than state-of-art due to the
exact computation of the Wasserstein distance.
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A Fast Proximal Point Method for Computing Exact Wasserstein Distance – Appendix

A More Analysis on IPOT

A.1 Convergence w.r.t. L

Figure 8: The plot of differences in computed Wasserstein dis-
tances w.r.t. number of iterations for 64D Gaussian distributed
data. Here, W are the Wasserstein distance computed at current
iteration. WLP is computed by simplex method, and is used
as ground truth. The test adopts c(x, y) = ||x − y||2. Due to
random data is used, the number of iteration that the algorithm
reaches 10−17 varies from 1000 to around 5000 according to our
tests.

As mentioned in Section 6.1, we provide the test
result of 64D Gaussian distributed data here. We
choose the computed Wasserstein distance 〈Γ,C〉
as the indicator of convergence, because while
the optimal transport plan might not be unique,
the computed Wasserstein distance at convergence
must be unique and minimized to ground truth. We
use the empirical distribution as input distributions,
i.e.,

W ({xi}, {gθ(zj)}) = minΓ〈C(θ),Γ〉

s.t. Γ111n =
1

n
111n,Γ

T111n =
1

n
111n.

(14)

As shown in Figure 8, the convergence rate is also
linear. For comparison, we also provide the con-
vergence path of Sinkhorn iteration. The result
cannot converge to ground truth because the method is essentially regularized.

Remark. When we are talking about amount of regularization, usually we are referring to the magnitude of ε for
Sinkhorn, or the equivalent magnitude of ε computed from remark in Section 3 for IPOT method. However, the amount
of regularization in a loss function should be quantified by ε/||C||, instead of ε alone. That is why in this paper, different
magnitude of ε is used for different application.

A.2 How IPOT Avoids Instability

Heuristically, if Sinkhorn does not underflow, with enough iteration, the result of IPOT is approximately the same as
Sinkhorn with ε(t) = β/t. The difference lies in IPOT is a principled way to avoid underflow and can converge to
arbitrarily small regularization, while Sinkhorn always causes numerical difficulty when ε→ 0, even with scheduled
decreasing ε like [6]. More specifically, in IPOT, we can factor Γ = diag(u1)Gtdiag(u2), where (·)t is element-wise
exponent operation, and u1 and u2 are two scaling vectors. So we have ε(t) = β/t. As t goes infinity, all entries ofGt

would underflow if we use Sinkhorn with ε(t) = β/t. But we know Γ∗ is neither all zeros nor contains infinity. So
instead of computingGt, u1 and u2 directly, we use Γt to record the multiplication ofGt with part of u1 and u2 in
each step, so the entries of Γt will not over/underflow. The explicit computation ofGt is not needed.

Therefore, by tuning β and iteration number, we can achieve the result of arbitrary amount of regularization with IPOT.

B Learning Generative Models

In this section, we show the derivation for the learning algorithm, and more tests result.

For simplicity, we assume |{xi}| = |{zj}| = n. Given a dataset {xi} and some noise {zj} [4, 16], our goal is to find a



parameterized function gθ(·) that minimize W ({xi}, {gθ(zj)}),

W ({xi}, {gθ(zj)}) = minΓ〈C(θ),Γ〉

s.t. Γ111n =
1

n
111n,Γ

T111n =
1

n
111n,

(15)

where C(θ) = [c(xi, gθ(zj))].Usually, gθ is parameterized by a neural network with parameter θ, and the minimization
over θ is done by stochastic gradient descent.

In particular, given current estimation θ, we can obtain optimum Γ∗ by IPOT, and compute the Wasserstein distance by
〈C(θ),Γ∗〉 accordingly. Then, we can further update θ by the gradient of current Wasserstein distance. There are two
ways to solve the gradient: One is auto-diff based method such as [15], the other is based on the envelope theorem [1].
Different from the auto-diff based methods, the back-propagation based on envelope theorem does not go into proximal
point iterations because the derivative over Γ∗ is not needed, which accelerates the learning process greatly. This
also has significant implications numerically because the derivative of a computed quantity tends to amplify the error.
Therefore, we adopt envelope based method.

Theorem B.1. Envelope theorem. Let f(x, θ) and l(x) be real-valued continuously differentiable functions, where
x ∈ Rn are choice variables and θ ∈ Rm are parameters. Denote x∗ to be the optimal solution of f with constraint
l = 0 and fixed θ, i.e.

x∗ = arg min
x

f(x, θ) s.t. l(x) = 0.

Then, assume that V is continuously differentiable function defined as V (θ) ≡ f(x∗(θ), θ), the derivative of V over
parameters is

∂V (θ)

∂θ
=
∂f

∂θ
.

In our case, because Γ∗ is the minimization of 〈Γ,C(θ)〉 with constraints, we have

∂W ({xi}, {gθ(zj)})
∂θ

=
∂〈Γ∗,C(θ)〉

∂θ

= 〈Γ∗, ∂C(θ)

∂θ
〉 = 〈Γ∗, 2(gθ(zj)− xi)

∂gθ(zi)

∂θ
〉,

where we assume Cij(θ) = ‖xi − gθ(zj)‖22, but the algorithm can also adopt other metrics. The derivation is in
supplementary materials. The flowchart is shown in Figure 9, and the algorithm is shown in Algorithm 3.

Note Sinkhorn distance is defined as S({xi}, {gθ(zj)}) = 〈C(θ),Γ∗〉, where Γ∗ = arg minΓ∈Σ(111/n,111/n)〈C(θ),Γ〉+
εh(Γ). If Sinkhorn distance is used in learning generative models, envelope theorem cannot be used because the loss
function for optimizing θ and Γ is not the same.

In the tests, we observe the method in [15] suffers from shrinkage problem, i.e. the generated distribution tends to
shrink towards the target mean. The recovery of target distribution is sensitive to the weight of regularization term ε.
Only relatively small ε can lead to a reasonable generated distribution.

Algorithm 3 Learning generative networks
Input: real data {xi}, initialized generator gθ
while not converged do

Sample a batch of real data {xi}ni=1

Sample a batch of noise data {zj}ni=1 ∼ q
Cij := c(xi, gθ(zj)) := ||xi − gθ(zj)||22
Γ = IPOT( 1

n1n,
1
n1n,C)

Update θ with 〈Γ, [2(xi − gθ(zj))∂gθ(zj)
∂θ ]〉

end while

B.1 Synthetic Test



Figure 10: The sequences of learning result of IPOT, Sinkhorn. In each figure, the orange histogram is the histogram
of generated data, while the red line represents the PDF of the ground truth of target distribution.

Figure 9: The architecture of the learning
model using Envelope theorem in detail. Ac-
cording to Envelope theorem, we do not need
to compute ∂W

∂Γ∗ , so we do not need to back-
propagate into the iteration.

In section 5.1, we show the learning result of Sinkhorn and IPOT
in 2D case. In Figure 10 we show sequences of results for a 1D-1D
generator, respectively. The upper sequence is IPOT with β =
0.01, 0.025, 0.05, 0.075, 0.1. The results barely change w.r.t. β.
The lower sequence is the corresponding Sinkhorn results. The
results shrink to the mean of target data, as expected. Also, we
observe the learned distribution tends to have a tail that is not in the
range of target data (also in 2D result, we do not include that part
for a better view). It might be because the range of support that has
a small probability has very small gradient when updated. Once
the distribution is initialized to have a tail with small probability,
it can hardly be updated. But this theory cannot explain why larger
ε corresponds to longer tails. The tails can be on the left or right.
We pick the ones on the left for easier comparison.

B.2 MNIST Test

The same shrinkage can be observed in MNIST data as well. See
figure 11. While ε = 0.1 covers most shapes of the numbers, ε = 1
only covers a fraction, and ε = 10 seems to cover only the mean
of images.

C Color Transferring

Optimal transport is directly applicable to many applications, such as color transferring and histogram calibration. We
will show the result of color transferring and why accurate transport plan is superior to entropically regularized ones.

The goal of color transferring is to transfer the tonality of a target image into a source image. This is usually done
by imposing the histogram of the color palette of one image to another image. Since Reinhard et al. [26], many
methods [24, 42] are developed to do so by learning the transformation between the two histograms. Experiments
in [30] have shown that transformation based on optimal transport map outperforms state-of-the-art techniques for
challenging images.

Same as other prime-form Wasserstein distance solvers [22, 8], the proximal point method provide a transport plan. By
definition, the plan is a transport from the source distribution to a target one with minimum cost. Therefore it provides a
way to transform a histogram to another.

One example is shown in figure 12. We use three different maps to transform the RGB channels, respectively. For each
channel, there are at most 256 bins. Therefore, using three channels separately is more efficient than treating the colors



(a) IPOT β = 0.1 (b) IPOT β = 1 (c) IPOT β = 10

(d) Sinkhorn ε = 0.1 (e) Sinkhorn ε = 1 (f) Sinkhorn ε = 10

Figure 11: Plots of MNIST learning result under comparable resources with different ε. They both use batch size=200,
number of hidden layer=1, number of nodes of hidden layer=500, number of iteration=500, learning rate = 1e-4. Note
that despite we show result of ε = 0.1 here, the algorithm does not run stably. It would sometimes fail due to numerical
issue.



(a) Original image (b) Color image (c) Simplex

(d) Sinkhorn ε=10−2 (e) Sinkhorn ε=10−3 (f) IPOT

Figure 12: An example of color transferring. The right upper corner of each generated image shows the zoom-in of the
color detail of the mouth corner.

as 3D data. Figure 12 shows proximal point method can produce identical result as linear programming at convergence,
while the results produced by Sinkhorn method differ w.r.t. ε.

D General Bregman Proximal Point Algorithm

In the main body of the paper, we discussed the proximal point algorithm with specific Bregman distance, which is
generated through the traditional entropy function. In this section, we generalize our results by proving the effectiveness
of proximal point algorithm with general Bregman distance. Bregman distance is applied to measure the discrepancy
between different matrices which turns out to be one of the key ideas in regularized optimal transport problems. Its
special structure also give rise to proximal-type algorithms and projectors in solving optimization problems.

D.1 Basic Algorithm Framework and Preliminaries

The fundamental iterative scheme of general Bregman proximal point algorithm can be denoted as

x(t+1) = arg min
x∈X

{
f(x) + β(t)Dh(x, x(t))

}
, (16)

where t ∈ N is the index of iteration, and Dh(x, x(t)) denotes a general Bregman distance between x and x(t) based on
a Legendre function h (The definition is presented in the following). In the main body of the paper, h is specialized as
the classical entropy function and as follows the related Bregman distance reduces to the generalized KL divergence.
Furthermore, the Sinkhorn-Knopp projection can be introduced to compute each iterative subproblem. In the following,
we present some fundamental definitions and lemmas.

Definition D.1. Legendre function: Let h : X → (−∞,∞] be a lsc proper convex function. It is called

1. Essentially smooth: if h is differentiable on int domh, with moreover ‖∇h(x(t))‖ → ∞ for every sequence
{x(t)} ⊂ int domh converging to a boundary point of domh as t→ +∞;



2. Legendre type: if h is essentially smooth and strictly convex on int domh.

Definition D.2. Bregman distance: any given Legendre function h,

Dh(x, y) = h(x)− h(y)− 〈∇h(y), x− y〉, ∀x ∈ domh, ∀y ∈ int domh, (17)

whereDh is strictly convex with respect to its first argument. Moreover,Dh(x, y) ≥ 0 for all (x, y) ∈ domh×int domh,
and it is equal to zero if and only if x = y. However, Dh is in general asymmetric, i.e., Dh(x, y) 6= Dh(y, x).

Definition D.3. Symmetry Coefficient: Given a Legendre function h : X → (−∞,∞], its symmetry coefficient is
defined by

α(h) = inf

{
Dh(x, y)

Dh(y, x)

∣∣ (x, y) ∈ int domh× int domh, x 6= y

}
∈ [0, 1]. (18)

Lemma D.4. Given h : X → (−∞,+∞], Dh is general Bregman distance, and x, y, z ∈ X such that h(x), h(y),
h(z) are finite and h is differentiable at y and z,

Dh(x, z)−Dh(x, y)−Dh(y, z) =
〈
∇h(y)−∇h(z), x− y

〉
(19)

Proof. The proof is straightforward as one can easily verify it by simply subtracting Dh(y, z) and Dh(x, y) from
Dh(x, z).

D.2 Theorem 5.1 and Theorem 5.2

In this section, we first establish the convergence of Bregman proximal point algorithm, i.e., Theorem 5.1, while our
analysis is based on ([11, 12, 39]). Further, we establish the convergence of inexact version Bregman proximal point
algorithm, i.e., Theorem 5.2, in which the subproblem in each iteration is computed inexactly within finite number of
sub-iterations.

Note that here for simplicity we provide proof of d(Γ,Γ(t)) = Dh(Γ,Γ(t)), i.e., the IPOT case. We can analogously
prove it for d({Γk}, {Γ(t)

k }) =
∑K
k=1 λkDh(Γk,Γ

(t)
k ), i.e., the IPOT-WB case, with very similar proof. This is because

the latter is essentially just the weighted version of the former.

Before proving both theorems, we propose several fundamental lemmas. The first Lemma is the fundamental descent
lemma, which is popularly used to analysis the convergence result of first-order methods.

Lemma D.5. (Descent Lemma) Consider a closed proper convex function f : X → (−∞,∞] and for any x ∈ X and
β(t) > 0, we have:

f(x(t+1)) ≤ f(x) + β(t)
[
Dh(x, x(t))−Dh(x, x(t+1))−Dh(x(t+1), x(t))

]
, ∀x ∈ X. (20)

Proof. The optimality condition of (16) can be written as(
x− x(t+1)

)T [
∇f(x(t+1)) + β(t)

(
∇h(x(t+1))−∇h(x(t))

)]
≥ 0, ∀x ∈ X.

Then with the convexity of f , we obtain

f(x)− f(x(t+1)) + β(t)
(
x− x(t+1)

)T (
∇h(x(t+1))−∇h(x(t))

)
≥ 0. (21)

With (19) it follows that(
x− x(t+1)

)T (
∇h(x(t+1))−∇h(x(t))

)
= Dh(x, x(t))−Dh(x, x(t+1))−Dh(x(t+1), x(t)).

Substitute the above equation into (21), we have

f(x(t+1)) ≤ f(x) + β(t)
[
Dh(x, x(t))−Dh(x, x(t+1))−Dh(x(t+1), x(t))

]
, ∀x ∈ X.



Next, we prove the convergence result in Theorem 5.1.

Theorem 5.1 Let {x(t)} be the sequence generated by the general Bregman proximal point algorithm with iteration
(16) where f is assumed to be continuous and convex. Further assume that f∗ = min f(x) > −∞. Then we have that
{f(x(t))} is non-increasing, and f(x(t))→ f∗. Further assume there exists η, s.t.

f∗ + ηd(x) ≤ f(x), ∀x ∈ X, (22)

The algorithm has linear convergence.

Proof. 1. First, we prove the sufficient decrease property:

f(x(t+1)) ≤ f(x(t))− β(t)(1 + α(h))Dh(x(t+1), x(t)). (23)

Let x = x(t) in (20), we obtain

f(x(t+1)) ≤ f(x(t))− β(t)
[
Dh(x(t), x(t+1)) +Dh(x(t+1), x(t))

]
≤ f(x(t))− β(t)(1 + α(h))Dh(x(t+1), x(t)).

With the sufficient decrease property, it is obvious that {f(x(t))} is non-decreasing.

2. Summing (23) from i = 0 to i = t− 1 and for simplicity assuming β(t) = β, we have

k−1∑
i=0

[
1

β(t)

(
f(x(i+1))− f(x(i))

)]
≤ −

[
1 + α(h)

] k−1∑
i=0

Dh(x(i+1), x(i))

⇒
∞∑
i=0

Dh(x(i+1), x(i)) <
1

β(1 + α(h))
f(x(0)) <∞,

which indicates that Dh(x(i+1), x(i))→ 0. Then summing (20) from i = 0 to i = t− 1, we have

k
(
f(x(t))− f(x)

)
≤

t−1∑
i=0

(
f(x(i+1))− f(x)

)
≤ βDh(x, x(0)) <∞, ∀x ∈ X.

Let t→∞, we have limt→∞ f(x(t)) ≤ f(x) for every x, as a result we have limk→∞ f(x(t)) = f∗.

3. Finally, we prove the convergence rate is linear. Assume x∗ = arg minx f(x) is the unique optimal solution.
Denote d(x) = Dh(x∗, x). Let also β(t) = β, we will prove

d(x(t+1))

d(x(t))
≤ 1

1 + η
β

(24)

Replace x with x∗ in inequality (20), we have

f(x(t+1)) ≤ f∗ + β
[
d(x(t))− d(x(t+1))−Dh(x(t+1), x(t))

]
. (25)

Using assumption 22, we have
f∗ + ηd(x(t+1)) ≤ f(x(t+1)) (26)

Sum 25 and 26 up, we have
η

β
d(x(t+1)) ≤ d(x(t))− d(x(t+1))−Dh(x(t+1), x(t))

≤ d(x(t))− d(x(t+1))

Therefore,
d(x(t+1))

d(x(t))
≤ 1

1 + η
β

Therefore, we have a linear convergence in Bregman distance sense.



Assumption (22) does not always hold when f is linear. In our specific case, x is bounded in [0, 1]m×n. More rigorously,
we can prove the following lemma.

Lemma D.6. Assume X is a bounded polyhedron, x∗ is unique, d(x) is an arbitrary nonnegative convex function with
d(x∗) = 0. If f is linear, then there exist η, s.t. f∗ + ηd(x) ≤ f(x).

Proof. Since X is a bounded polyhedron, any x ∈ X can be expressed as x =
∑n
i=0 λiei, where ei is the vertices of

X , n is finite, and
∑
λi = 1. Also f is linear, so f(x) =

∑n
i=0 λif(ei)

Since f is linear, X is polyhedral and x∗ is unique, x∗ is a vertex of X . Denote e0 = x∗.

Denote δ = mini>0 f(ei)− f∗, then δ > 0, or else x∗ is not unique. Denote dmax = maxi>0 d(ei). Take

η = δ/dmax,

we have

f∗ + ηd(x) = f∗ + ηd(
n∑
i=0

λiei)

(Jensen’s Inequality) ≤ f∗ + η
n∑
i=0

λid(ei)

(d(e0) = 0) ≤ f∗ + (1− λ0)ηdmax

= f∗ + (1− λ0)δ

=
n∑
i=1

λi(f
∗ + δ) + λ0f

∗

≤
n∑
i=0

λif(ei)

= f(x).

For more general cases, if x∗ is not unique, we can divide the vertices as optimal vertices and the rest vertices, instead
of e0 and the rest as above, the conclusion can be proved analogously. Furthermore, if X is not a polyhedron, as long as
X is bounded, we can always prove the conclusion in a polyhedron A s.t. X ∈ A and x∗ is also the optimal solution of
minx∈A f(x). Proof of more general cases can be found in [27] (This paper points out some fairly strong continuity
properties that polyhedral multifunctions satisfy).

Inequality (24) shows how the convergence rate is linked to β. This is the reason we claim in Section 4.1 that a smaller
β would lead to quicker convergence in exact case.

From above, we showed that the general Bregman proximal point algorithm with constant step size can guarantee
convergence to the optimal solution f∗, and has linear convergence rate with some assumptions. Further, we prove the
convergence result for the general Bregman proximal point algorithm with inexact scheme in Theorem 5.2.

Theorem 5.2 Let {x(t)} be the sequence generated by the general Bregman proximal point algorithm with inexact
scheme (i.e., finite number of inner iterations are employed). Define an error sequence {e(t)} where

e(t+1) ∈ β(t)
[
∇f(x(t+1)) + ∂ιX(x(t+1))

]
+
[
∇h(x(t+1))−∇h(x(t))

]
, (27)

where ιX is the indicator function of set X . If the sequence {e(t)} satisfies
∑∞
k=1 ‖e(t)‖ <∞ and

∑∞
k=1〈e(t), x(t)〉

exists and is finite, then {x(t)} converges to x∞ with f(x∞) = f∗. If the sequence {e(t)} satisfies that exist ρ ∈ (0, 1)
such that‖e(t)‖ ≤ ρt, 〈e(t), x(t)〉 ≤ ρt and with assumption (22), then {x(t)} converges linearly.



Remark: If exact minimization is guaranteed in each iteration, the sequence {x(t)} will satisfy that

0 ∈ β(t)
[
∇f(x(t+1)) + ∂ιX(x(t+1))

]
+

1

β(t)

[
∇h(x(t+1))−∇h(x(t))

]
.

As a result, with enough inner iteration, the guaranteed e(t) will goes to zero.

Proof. This theorem is extended from [12, Theorem 1], and we propose a brief proof here. The proof contains the
following four steps:

1. We have for all k ≥ 0, through the three point lemma

Dh(x, x(t+1)) = Dh(x, x(t))−Dh(x(t+1), x(t))− 〈∇h(x(t))−∇h(x(t+1)), x(t+1) − x〉,

which indicates

Dh(x, x(t+1)) = Dh(x, x(t))−Dh(x(t+1), x(t))−〈∇h(x(t))−∇h(x(t+1))+e(t+1), x(t+1)−x〉+〈e(t+1), x(t+1)−x〉.

Since 1
β(t)

[
e(t+1) +∇h(x(t))−∇h(x(t+1))

]
∈ ∇f(x(t+1)) + ∂ιX(x(t+1)) and 0 ∈ ∇f(x∗) + ∂ιX(x∗) if x∗

be the optimal solution, we have

〈∇h(x(t))−∇h(x(t+1)) + e(t+1), x(t+1) − x∗〉

= β(t)〈
[

1

β(t)

(
∇h(x(t))−∇h(x(t+1)) + e(t+1)

)]
− 0, x(t+1) − x∗〉 ≥ 0,

because∇f + ∂ιX is monotone (f + ιX is convex). Further we have

Dh(x∗, x(t+1)) ≤ Dh(x∗, x(t))−Dh(x(t+1), x(t)) + 〈e(t+1), x(t+1) − x∗〉.

2. Summing the above inequality from i = 0 to i = t− 1, we have

Dh(x∗, x(t)) ≤ Dh(x∗, x(0))−
t−1∑
i=0

Dh(x(i+1), x(i)) +

t−1∑
i=0

〈e(i+1), x(i+1) − x∗〉.

Since
∑∞
t=1 ‖e(t)‖ <∞ and

∑∞
t=1〈e(t), x(t)〉 exists and is finite, we guarantee that

Ē(x∗) = sup
t≥0


t−1∑
i=0

〈e(i+1), x(i+1) − x∗〉

 <∞.

Together with Dh(x(i+1), x(i)) > 0, we have

Dh(x∗, x(t)) ≤ Dh(x∗, x(0)) + Ē(x∗) <∞,

which indicates

0 ≤
∞∑
i=0

Dh(x(i+1), x(i)) < Dh(x∗, x(0)) + Ē(x∗) <∞,

and hence Dh(x(i+1), x(i))→ 0.

3. Based on the above two items, we know that the sequence {x(t)} must be bounded and has at least one limit
point x∞. The most delicate part of the proof is to establish that 0 ∈ ∇f(x∞) + ∂ιX(x∞). Let T = ∇f + ∂ιX ,
then T denotes the subdifferential mapping of a closed proper convex function f + ιX (f is a linear function
and X is a closed convex set). Let {tj} be the sub-sequence such that xtj → x∞. Because xtj ∈ X and X is
a closed convex set, we know x∞ ∈ X . We know that Dh(x∗, x(t+1)) ≤ Dh(x∗, x(t)) + 〈e(t+1), x(t+1) − x∗〉



and
∑∞
k=0〈e(t+1), x(t+1) − x∗〉 exists and is finite. From [23, Section 2.2], we guarantee that {Dh(x∗, x(t))}

converges to 0 ≤ d(x∗) <∞. Define y(t+1) := λk

(
∇h(x(t))−∇h(x(t+1)) + e(t+1)

)
, we have

λk〈y(t+1), x(t+1) − x∗〉 = Dh(x∗, x(t))−Dh(x∗, x(t+1))−Dh(x(t+1), x(t)) + 〈e(t+1), x(t+1) − x∗〉.

By taking the limit of both sides and λk = λ > 0, we obtain that

〈y(t+1), x(t+1) − x∗〉 → 0.

For the reason that ykj+1 is a subgradient of f + ιX at xkj+1, we have

f(x∗) ≥ f(xkj+1) + 〈ykj+1, x∗ − xkj+1〉, x∗ ∈ X,xkj+1 ∈ X.

Further let j →∞ and using f is lower semicontinuous, 〈y(t+1), x(t+1) − x∗〉 → 0, we obtain

f(x∗) ≥ f(x∞), x∞ ∈ X

which implies that 0 ∈ ∇f(x∞) + ιX(x∞).

4. Recall the inexact scheme (27), we can equivalently guarantee that

(x− x(t+1))T
{
β(t)∇f(x(t+1)) +

[
∇h(x(t+1))−∇h(x(t))

]
− e(t+1)

}
≥ 0, ∀x ∈ X.

Together the convexity of f and the three point lemma, we obtain

f(x(t+1)) ≤ f(x) +
1

β(t)

[
Dh(x, x(t))−Dh(x, x(t+1))−Dh(x(t+1), x(t))− (x− x(t+1))T e(t+1)

]
.

Let x = x∗ in the above inequality and recall the assumption (22), i.e.,

f(x)− f(x∗) ≥ ηd(x),

we have with β(t) = β

ηd(x(t+1)) ≤ 1

β

[
d(x(t))− d(x(t+1))

]
+

1

β

(
(x(t+1) − x∗)T e(t+1)

)
≤ 1

β

[
d(x(t))− d(x(t+1))

]
+

1

β

(
C‖e(t+1)‖+ 〈x(t+1), e(t+1)〉

)
,

where C := supx∈X∗{‖x‖}. The second inequality is obtained through triangle inequality. Then

d(t+1) ≤ µd(t) + µ
(
C‖e(t+1)‖+ 〈x(t+1), e(t+1)〉

)
,

where µ = 1
1+βη < 1. With our assumptions and according to Theorem 2 and Corollary 2 in [33], we guarantee

the generated sequence converges linearly in the order of O
(
ct
)
, where c =

√
1+max{µ,ρ}

2 ∈ (0, 1).

Based on the above four items, we guarantee the convergence results in this theorem.
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