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Abstract: In this paper we present a data-driven approach for uncertainty propagation. In
particular, we consider stochastic differential equations with parametric uncertainty. Solution
of the differential equation is approximated using maximum entropy (maxent) basis functions
similar to polynomial chaos expansions. Maxent basis functions are derived from available data
by maximization of information-theoretic entropy, therefore, there is no need to specify basis
functions beforehand. We compare the proposed maxent based approach with existing methods.
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1. INTRODUCTION

Most physical systems are modeled by non-linear differen-
tial equations. Such models often suffer from parametric
uncertainties, which in turn leads to inaccurate prediction
of the states of the system. Even if the state of a system
is exactly known at a time instant, due to the paramet-
ric uncertainties, the states at subsequent time instants
determined from uncertain models exhibit stochastic na-
ture, and often one is interested in temporal evolution of
distribution or statistical moments of the states.

In general, determining distribution of states, by propa-
gation through stochastic models, is an infinite dimen-
sional and computationally intractable problem. Polyno-
mial chaos expansions (PCE) have been widely studied
as an approach to construct a reduced order and com-
putationally tractable surrogate model for the original
system. In PCE, a stochastic process is expressed as a
weighted sum of polynomials of random variables. The
polynomials or basis functions are selected according to the
underlying distribution of the random parameters, and the
optimal weights or coefficients of the chaos are determined
using the so called Galerkin projection. A correspondence
between stochastic distributions and optimal basis from
Askey family of orthogonal polynomials which leads to
the exponential convergence of error with respect to the
order of approximation is discussed in Xiu and Karniadakis
(2002). This is also known as generalized polynomial chaos
(gPC). Application of PCE for modeling uncertainties in
physical systems has been discussed in many works, such
as Xiu and Karniadakis (2003); Najm (2009); Hamdia
et al. (2017), to name a few.

The classical polynomial chaos approach assumes that
the distributions of involved random variables are exactly
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known. However, in reality, this assumption does not hold
true. Often, limited information is available about the
distributions in the form of finite number of samples, and
engineering models must be developed using such limited
set of data. A data-driven approach for chaos expansion,
termed as arbitrary polynomial chaos (aPC), is discussed
in Oladyshkin and Nowak (2012). In aPC, instead of fitting
a probability distribution function over the given data,
an orthogonal basis of polynomials for chaos expansion
is constructed from raw moments of the available samples.
In the present work, we pursue a similar approach, but
instead of constructing polynomials from raw moments,
we use maximum entropy (mazent) functions which are
derived from the available samples, as basis to construct a
chaos expansion.

The principle of maximum entropy was first introduced
in Jaynes (1957a,b) as an approach to draw the least
biased inference from incomplete or limited data. Maxi-
mum entropy based methods are often used for inferring
a probability distribution from sparse information and it
has found applications in many diverse fields such as struc-
tural mechanics, image processing, and machine learn-
ing, among others. See Duan et al. (2000); Karl (2005);
Ziebart et al. (2008). The mazent basis functions that we
use in this work arise as shape functions in the context
of mazxent based polygonal interpolation, as discussed in
Sukumar (2004); Arroyo and Ortiz (2006). For the sake
of completeness, mazent based polygonal interpolation is
briefly reviewed in Section 2. Our recent work, Deshpande
and Bhattacharya (2019b), discussed the data-driven func-
tion approximation using such mazent basis functions in
the context of dynamics modeling. The results show that
mazent based approach can model the unknown dynamics
with good accuracy even if the available data set is sparse.
This served as a motivation to pursue the present study.



The objective of this work is to investigate the accu-
racy and convergence properties of chaos expansions con-
structed using mazent basis functions for solution of
stochastic differential equations (SDEs).

The key highlights of this work are as follows.

e We present a novel approach for developing surrogate
models of SDEs using data-driven mazent basis func-
tions.

e The infinite dimensional solutions of SDEs are ap-
proximated in mazent based deterministic finite di-
mensional framework.

e Error and convergence properties of mazent based
chaos expansions are studied by means of numerical
simulations, and compared with the existing methods.

e Numerical results show that if the functional depen-
dence of a system on the random variable is unknown,
mazent based approach performs better than the
polynomial expansions even if the available data is
sparse.

The rest of the paper is organized as follows. Section 2
briefly discusses the principle of maximum entropy and the
derivation of mazxent basis functions. Solutions of SDEs
using chaos expansions is reviewed in Section 3. Numerical
results are presented in Section 4 followed by concluding
remarks in Section 5.

2. MAXIMUM ENTROPY BASIS FUNCTIONS
2.1 Mazimum entropy principle

Suppose A; are mutually independent events with the
unknown discrete probabilities p;, such that p;, > 0 and
p; form the partition of unity, for 4 = 1---N. Let us
assume that we have been given expected value of a func-
tion E[g(A)] = Zf\/:lpig(Ai). Our goal is to determine
the probability distribution p := [py,p2---pn]|T, which
satisfies the given constraint. There can be a number of
distinct distributions which satisfy the given constraints.

The maximum entropy principle serves as a tool to infer
the least biased distribution from the insufficient data. To
be specific, the mazent principle states that (see Jaynes
(1957a,b)), out of all possible distributions that satisfy
the given constraints, the least biased or the most likely
probability distribution (p*), is the one which maximizes
the information-theoretic entropy H(p) defined as

N
H(p):=— Y pilog(p:), (1)
=1

and 0log(0) := 0. The entropy maximization problem,
formally can be written as

p* = argmax H(p),
P

(2a)

N N
such that Zpig(Ai) = E[g(A)], and Zpi =1. (2b)
i=1 i=1

Equivalently, the constraints in (2b) can be rewritten as

N
> pi(g(A) —E[g(A)]) = 0. (3)
=1

2.2 Minimum relative entropy principle

Suppose prior distribution m := [my,mg---my]? which
estimates the probability distribution p is known, then
the least biased probability distribution, p*, is determined
by minimizing relative (cross) entropy or Kullback-Leibler
divergence as (see Kullback and Leibler (1951))

p* = arg min (H(p, m) := ipi log (:;)), (4)

P

subject to constraints in (3).

As mentioned earlier, mazent basis functions that we use
in the current work arise as shape functions in the context
of polygonal interpolation, which is discussed next.

2.3 Polygonal interpolation using maxent principle

An analogy between determining the least biased prob-
ability distribution and polygonal interpolation was first
presented in Sukumar (2004), followed by extensions of
the work in Sukumar (2007); Arroyo and Ortiz (2006). We
briefly discuss the polygonal interpolation using mazent
basis functions below.

Let S := {A;}Y, € Da C RY be a set with cardinality
N in d—dimensional space. Suppose that Da is compact.
Each element A; in S is associated with a shape function
¥i(-) > 0. The polygonal interpolant f(-) of f(:) at A is
defined as

N
f(a)= waA)f(Ai), (5)

where f(-) is a scalar real valued function defined over
Da, and A € Conv(S), and the convex hull of the set S
is defined as

N N
Conv(8) == {AJA =Y wiA, > w; = 1,w; >0,
=1 =1

A; € S}

The values of W(A) = [p;(A), 2 (A)---hn(A)]T used
in evaluation of the interpolant (5) are also referred to as
barycentric coordinates of A w.r.t. elements nodes A; of
S. In this paper, we refer elements A; € S as basis nodes,
and associated shape functions ;(-) as basis functions.

It is desirable for interpolants to recover constant and lin-
ear functions exactly. Therefore, following constraints are
imposed on barycentric coordinates 1;(A) to guarantee
the linear precision of the interpolant.

N

sz(A) =1, (63)
N -
> hi(A)A; = A, or, ST(A) = A, (6b)

where S := [A1, Ay - Ay]. Or equivalently,
Sw(A) =0, )
where A; == A; — A and S := [Al, A, - AN]

After a direct comparison between (3) and (7), ¥;(A) can
be interpreted as probability associated with the event



A;, and here g(A) = A. Let m(A) := [my,ma---my]?
be a suitably defined prior estimate for the barycentric
coordinates W(A). Therefore, ¥(A) which minimizes the
relative entropy defined by (4) can be interpreted as the
least biased barycentric coordinates of A w.r.t. basis nodes
A,; € S for a given prior estimate m(A).

The relative entropy minimization problem is formally
written as

T*(A) = argmin H (¥(A),m(A));s.t. ST(A) =0 (8)

v(A)

Solution of this convex optimization problem using the
method of Lagrange multipliers is discussed in Jaynes
(1957a); Sukumar (2004); Arroyo and Ortiz (2006). This
optimization problem reduces to the following system
of nonlinear equations in Lagrange multipliers AT =
[A1, A2 - -+ Ag] associated with equality constraints in (8)

N
Z Amy(A)e A = 0. 9)
=1

Numerical solvers are employed to solve this system of
equations. The optimal barycentric coordinates or basis
functions in terms of A are given by

m,»(A)e‘ATAi

A @ a

(10)

In this paper, we use Gaussian prior, i.e. m(A) for any
A € Conv(S) is defined as

e—BIANE
Zj e—BlIA;I13’

where 8 > 0. For 8 > 0, we get so called local mazent
basis functions. The parameter [ affects the degree of
locality of basis functions. Higher value of 8 implies the
larger decay of basis functions away from their associated
nodes, and larger degree of locality of basis functions. For
B = 0 or uniform prior, i.e. m; = 1/N fori=1---N, we
recover so called global mazent basis functions introduced
in Sukumar (2004). All numerical results presented in this
paper are obtained for 5 = 0. For notational convenience,
hereafter we drop the asterisk in (10) and use ¥(A) or
1;(A) to denote the optimal local mazent basis functions
evaluated at A.

m(A) := [my,my---my]’ and m;(A) :

3. SOLUTION OF STOCHASTIC DIFFERENTIAL
EQUATIONS

Let A € Da C R? be a random vector with joint prob-
ability density function p(A). Approximant of a function
f(A) : Da — R™ using a known set of basis functions
{¢:(A)}N | can be written as

N
F(A) ~F(A) = Y fii(A), (11)
=0

where, f; are deterministic coefficients. The optimal co-
efficients are determined by Galerkin projection, i.e. the

projection of the error e(A) := f(A) — f(A) against each
basis function is set to zero, i.e.

Ele(A)¢;(A)] = /D e(A)pi(A)p(A)IA =0, (12)

for i =0,---, N. This results in a deterministic system of
equations which can be solved for f;. If instead of p(A),
samples of A are available, then integral in (12) can be
replaced with summation and it becomes a least squares
problem.

In generalized polynomial chaos (gPC) expansions, ¢;(-)
are multivariate orthogonal polynomials which are selected
based on the known distribution of A, see Xiu and
Karniadakis (2002). However, if p(A) is unknown, instead,
samples of random vector A are available then one has to
rely on data-driven methods. A data-driven polynomial
chaos approach in which orthogonal basis polynomials
are constructed from raw moments of available samples,
termed as arbitrary polynomial chaos (aPC), is presented
in Oladyshkin and Nowak (2012). In present work, we
employ mazent functions derived in Section 2 as bases
for chaos expansions. Data-driven function approximation
using mazxent basis functions is discussed in detail in
Deshpande and Bhattacharya (2019b). In this paper, we
focus on the application of maxent basis functions for
solution of stochastic differential equations.

A general procedure for solution of stochastic differential
equations using chaos expansions is discussed in Xiu and
Karniadakis (2002). In this paper, for simplicity and
brevity of discussion, and without loss of generality, we
consider linear stochastic ordinary differential equation
given by

x(t,A) = A(A)x(t,A), (13)
where x := x(t, A) € R” and A(A) € R"*™. The solution
x(t, A) is approximated using chaos expansion as

N
x(t, A) ~ %1, A) = 3 xi(t)6i (A) = X()B(A), (14)
i=0
where X(t) := [x1(t) - - - xn(t)] are time varying determin-
istic coefficients and ®(A) := [¢1(A) - - dn(A)]T are cho-
sen basis functions for chaos expansion. After substituting
the approximation (14), the projection of equation error
of (13) against each basis is set to zero to obtain a system
of deterministic ODEs in terms of chaos coefficients x;(t),
which is given by
%. = (B[®(A)®"(A)] @ 1,) " x
E[(®(A)27(A)) & AA))]x., (15)
where, x.(t) := vec (X(t)). A step-by-step derivation of
the surrogate system of deterministic ODEs similar to

(15) for a generalized non-linear ODE can be found in
Deshpande and Bhattacharya (2019a).

The deterministic ODEs in (15) can be solved using
standard deterministic approaches. Therefore, x.(¢) and
hence X(t) can be determined at any time ¢. Then the
moments of x(¢, A) can be approximated by the moments
of X(t, A) as

Efx(t)] ~ EI%()] = X(OE[@(A),  (16)

E[(x(t) ~ Ex(®)]) ()] ~ E[(%(t) ~ B&(®])(-)]
= X(1) (E[@(A)27 (A)] - E[®(A)E[@(A)]) X7 (1),
(16b)

Let D := {A;}]"", C Da be the set of available samples
for A. Since this is the only available information about



A, the expectation integrals involved in (15) and (16) are
approximated by sample averages calculated using data
points in D.

We define B := {A;}5, such that D C Conv(B). This
is trivially satisfied if we choose B = D. However, B need
not be identical to D. The elements in B serve as nodes for
mazent basis functions. Therefore, the number of mazent
basis functions is ng. The definition of B ensures that
barycentric coordinates (see (10)) of each A; € D are well
defined w.r.t. basis nodes in B.

In the following section we solve different stochastic ODEs
using mazxent basis functions as bases for chaos expansions.

4. NUMERICAL RESULTS

For the purpose of numerical simulations, we consider a
scalar ODE given by

z(t) = a(A)x(t), AeR, (17)
with deterministic initial condition x(0) = 1. The decay
coefficient a(A) is a stochastic parameter with dependence
on random variable A. The system of ODEs for chaos

coefficients when using maxent basis functions follows
from (14) and (15) as

(t, A) ~ &t A) =Y ()i (A),
i=0

%o = (E[¥(A)TT(A)]) " Ela(A)E(A) T (A))x., (18)

where x.(t) = [21(t),22(t) -+ 2, (t)]T. Note, T(A) are
barycentric coordinate of A w.r.t basis nodes in 5. Ap-
proximate mean and variance at time ¢ follow from (16)
as

A (t) = x.(t) "E[2 (A)], (19a)
¢ (O(ENE(A)BT(A)] ~ E[W(A)]E[W(A)]T)acéé))
Since mazent basis functions evaluated for any A add up
to one (see (6a)), the initial condition for chaos coefficients
can be written as x.(0) = 1,,, where, 1,, is the column
vector of length np with each element unity. With this
initial condition for x., it is straightforward to verify that
mean and variance approximated using (19) come out to
be f1,(0) = 1 and 62(0) = 0, which exactly recovers the
given initial condition z(0) = 1.

In text to follow, we consider two examples. The first
example is a classical ODE studied in chaos expansion
literature. In this example, we assume that the functional
form of a(A) is known and investigate the error conver-
gence properties of mazent based expansions. In second
example, we assume that the functional form of a(A) is
unknown, instead, an approximant is constructed from a
given sparse data set. Then a surrogate model is developed
using the approximant. The results obtained for mazent
based models are compared with data-driven polynomial
chaos (aPC) based surrogate models.

Ezxample 1

Let us assume that the functional form of a(A) = —(1 4+
A)/2 is known, where A is uniformly distributed over
[—1,1]. This ODE has been used as a test problem in Xiu
and Karniadakis (2002); Oladyshkin and Nowak (2012).

Error in mean
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S
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Fig. 1. Estimated mean and error for different number of
mazent basis functions (np) and fixed np = 500.
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Fig. 2. Estimated variance and error for different number
of mazent basis functions (ng) and fixed np = 500.

The analytical or true values of mean and variance are

- ot N
given by p.(t) = 1%“ and o2(t) = =5 * 1%“

for t > 0, which are shown by black dashed lines in Fig.1
and Fig.2.

The two major sources of error in estimated moments
given by (19) are namely, limited number of data samples
(np), and truncation of chaos expansion at finite number
of terms or finite number of basis functions (ng). Conver-
gence properties of both types of error are discussed in the
following text. We first consider the effect the of number
of basis functions, and for this investigation we assume the
data set D to be fixed. For the second case, we keep the
basis functions fixed, and vary the size of data set D.

Fig.1 and Fig.2 show the effect of increasing number
of mazent basis functions for a fixed data set D which
consists of np = 500 uniformly spaced points in [—1, 1].
The set of basis nodes, B, is selected as a collection
of ng uniformly spaced points in [—1,1]. Equation (18)
is integrated numerically from ¢ = 0 to ¢ = 30 for
different values of nz. Moments at each time instant are
approximated using (19) and are shown in plots on the left
sides of Fig.1 and Fig.2. It is well known that moments
approximated using surrogate model such as (18) deviate
from true values as ODEs are integrated forward in time.
The errors in estimated moments calculated w.r.t. true
moments are shown in plots on the right sides of Fig.1
and Fig.2. The error in estimated mean is defined as
€,(t) :=|1— fiz(t)/pz(t)|. The error in estimated variance
is defined in similar way. It is clear from Fig.1 and Fig.2
that surrogate models obtained using more number of
mazent basis functions maintain better accuracy for longer
periods of time while performing the temporal integration.
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Fig. 3. Error in estimated moments at t = 10 for different
number of basis functions (np) and fixed np = 500.
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Fig. 4. Comparison of error in estimated moments for aPC
and mazent based models, ng = 5 and np = 500.

Fig.3 shows the convergence of error in moments calculated
at ¢t = 10 w.r.t. number of basis functions (np). It is clear
that both mazent and aPC based models demonstrate
similar error convergence trend. We observe strong con-
vergence initially as we start increasing number of basis
functions. However, after certain value of ng, the errors
saturate and do not decreases further as ng is increased.
For example, consider error in mean shown by blue line
with circles in Fig.3. We observe strong convergence as
the number of basis functions is increased from ng = 2 to
ng = 4. However, for ng = 5 onwards, the errors become
stagnant. This observation is attributed to limited size of
sample set. This suggests that given a finite set of samples,
D, there is a lower limit on how much error can be reduced.

Fig.4 compares temporal evolution of error in estimated
moments for data-driven surrogate models obtained using
aPC and the proposed mazent based framework, for equal
number of basis functions. We observe that mazent and
aPC based models demonstrate similar error evolution,
with maxent based model being marginally better than
the aPC based model for estimated variance for ¢ > 10.

Needless to say, the accuracy of approximation depends
on the number of available samples, i.e. np. The left plot
in Fig.5 shows the mean of errors in estimated mean and
variance of z(t) at t = 10 calculated for different number of
data points (np) sampled randomly from [—1, 1], repeated
500 times, for a fixed number of mazent basis functions
npg = 5. Similar variation for the variance of errors in
estimated moments is shown in the right plot. With no
surprise, we observe that both mean and variance of errors
decrease as the number of available samples increases. The
aPC based model also shows a very similar trend (not
shown in the figure).

o Variance of ¢,

— % — Variance of ,:

Mean of error
Variance of error

102
10! 102 10° 10' 102 108

No. of samples No. of samples

Fig. 5. Variation of mean (left) and variance (right) of
error in estimated moments with different number
of samples (np), for fixed ng = 5 mazent basis
functions, at ¢t = 10.

Results discussed herein are obtained if A is sampled from
a uniform distribution. Although not shown here, similar
results are observed when A is sampled from a Gaussian
distribution. In this example, where functional form of
a(A) is assumed to be known, we observe that aPC and
mazent based models demonstrate similar performances
in terms of accuracy of the estimated moments and error
convergence rates.

Ezxzample 2

In this example we assume that the functional form of
a(A) is not known. Instead, we have been given samples
of A, and values of a(A) for a sparse sample set of A. We
assume that np samples of A are given. Let D’ := {A; }721
be the sparse set of samples of A for which a; := a(A;) is
known.

Here, solving stochastic ODE involves two steps. First,
we approximate the function a(A) using given data
{Aj,a, }721 Second, we construct chaos expansion as we
did in the previous example and integrate the surrogate
model temporally. Basis nodes for mazent basis functions
are chosen to be the elements in D', i.e. B and D’ are
identical and ng = np/. The same basis nodes are used for
function approximation in step one and chaos expansion in
step two. The weights or coefficients associated with basis
functions for function approximation are determined by
the least squares solution as discussed in Deshpande and
Bhattacharya (2019b).

For the purpose of simulation, we assume that A is a
uniformly distributed variable between (0,1), and that D
and D’ respectively consist of uniformly spaced np = 500
and nps = 10 points in (0,1). The unknown underlying
functional form of a(A) is assumed to be a(A) = A~ 1(1—
A)~! with @ = 2,9 = 0.5. Moments of the true or
reference solution of (17) are obtained using Monte-Carlo
runs with 5 x 10* samples of A.

Comparison of error in estimated moments using mazxent
and aPC based models is shown in Fig.6, and clearly,
the former demonstrates better accuracy. The relatively
better accuracy of the mazent model is mainly attributed
to the ability of mazent basis functions to approximate the
underlying functional form of a(A) with sparse data better
than polynomials bases constructed for the aPC model.
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Fig. 6. Comparison of error in estimated moments, ng =
npr = 10, np = 500
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Fig. 7. Comparison of function approximation accuracy,

a(A) =A/V1—-A, ng=np = 10.

The normalized error for function approximation is shown
in Fig.7. The mazent based approximant has lower error
than the aPC based function approximant, and conse-
quently, mazent based model demonstrates better accu-
racy in the estimated moments as shown in Fig.6. However,
as discussed in Deshpande and Bhattacharya (2019b), it
should be noted that if the underlying functional form
of a(A) lies within the span of basis polynomials, then
aPC based model will have similar, or perhaps even better
accuracy than the mazent model. But, for functions such
as we considered here, which are difficult to approximate
using polynomials, especially if the given data set is sparse,
mazent based models perform better. Ability to accurately
approximate functions is particularly vital for solving dif-
ferential equations with the initial condition uncertainty,
as modeling of uncertainty in the initial condition reduces
to a function approximation problem.

5. CONCLUSION

In this paper we presented an approach to develop surro-
gate models based on limited data by construction of chaos
expansions using mazxent basis functions. We investigated
the error characteristics and convergence properties of
such mazxent based chaos expansions and compared the
accuracy with data-driven polynomial chaos expansions
(aPC). We observed that mazent based surrogate models
demonstrate similar accuracy as the aPC models if the
functional dependence on the random variables is known.
In the case where functional dependence is unknown, maz-
ent based approach demonstrated better accuracy than
the polynomial expansions especially if the available data
is sparse.

We note that the selection of basis nodes for mazent basis
functions may not be trivial for high dimensional complex
systems, and it may affect the accuracy of chaos expansion.
However, this investigation is out of scope of this paper.
In this paper, we considered simple differential equations,
with data set sampled from uniform and Gaussian dis-
tributions. However, results observed in this paper are
motivating enough to pursue further investigations with
more complex underlying distributions and differential
equations of real physical systems, and will be topics of
our future works.
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