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ABSTRACT

We introduce a new idea for enhancing constraint solving engines
that drive many analysis and synthesis techniques that are powerful
but have high complexity. Our insight is that in many cases the
engines are run repeatedly against input constraints that encode
problems that are related but of increasing complexity, and domain-
specific knowledge can reduce the complexity. Moreover, even for
one formula the engine may perform multiple expensive tasks with
commonalities that can be estimated and exploited. We believe
these relationships lay a foundation for making the engines more
effective and scalable. We illustrate the viability of our idea in the
context of a well-known solver for imperative constraints, and
discuss how the idea generalizes to more general purpose methods.
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1 INTRODUCTION

Many analysis and synthesis techniques, including symbolic execu-
tion, fuzzing, and program repair, rely critically on the efficiency of
backend constraint solvers and decision procedures, which often
suffer from scalability issues [6, 10, 15, 18, 20]. This paper intro-
duces a new idea for enhancing the performance of the engines
by tackling the challenge they face in exploring very large state
spaces of possible solutions. Our insight is that in many application
scenarios the engines are run repeatedly against input formulas
that encode problems that are related but of increasing complexity,
and domain-specific knowledge can be exploited to mitigate the
increase in complexity. Moreover, even for one formula, the engine
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may perform multiple expensive computations with commonalities
that can be estimated and exploited likewise. Our thesis is that
these relationships lay a foundation for making the engines more
effective and their applications more scalable.

Our focus is tools that take as input logical constraints, which
arise naturally in the context of many analysis and synthesis prob-
lems [6, 10, 15, 18, 20]. For example, a propositional satisfiability
(SAT) solver takes as input a formula in conjunctive normal form
(CNF) to determine its satisfiability, and outputs a solution (if one
exists). As another example, a model counter [3, 5, 9, 17] computes
the number of solutions that a given formula has.

Our work is motivated by two general strategies for analysis
of code — iterative deepening and bounded exhaustive checking —
which have their origins in model checking [10]. The strategies are
effective in both white-box analysis (e.g., symbolic execution) and
black-box analysis, say using bounded-exhaustive testing [6] where
the code is tested against all (non-equivalent) inputs within a bound
on the input size, which is likewise increased.

As an example, consider creating solutions to a formula that rep-
resents a precondition in bounded-exhaustive testing. The solver’s
task is to enumerate solutions for the given formula, which, once
defined, remains fixed (in terms of the precondition it character-
izes). Our idea is to exploit any commonalities in different search
steps that the solver must perform during enumeration. We expect
many such commonalities to exist — after all, the solver creates
many inputs that may have a lot in common, e.g., in the form of
sub-structures they contain. We believe we can abstract key steps
of the solver’s search and re-use them, e.g., for more aggressive
pruning, as it enumerates the solutions.

As another example, consider computing the model count for a
formula that encodes a domain-specific problem for size bound k in
the context of iterative deepening where the tool already computed
the counts for the same problem for some smaller bounds, say k — 1
and k — 2. We believe the previous runs of the tool can provide vital
information that enables the model count for the desired bound
k to be computed without a full execution of the model counter
for this bound, e.g., by hypothesizing relations among the partial
results for different bounds and projecting the observed results for
the smaller bounds to estimate the result for the desired bound.

To demonstrate the viability of our idea, we develop it in the con-
text of the well-known Korat [6] solver for imperative constraints,
which has been used for automated testing [6] and quantitative
analysis [14]. As supporting evidence we present empirical data
that enables insights into the Korat search steps and key observa-
tions that show the potential for our idea to lead to new methods
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class Node {
Node left, right; /% children x/
int info; /x data */ }

class SearchTree {
Node root; /* root node */
int size; /* number of nodes in the tree */

boolean repOK() {
if (root == null) return size == @; // checks that empty tree has size zero
if (!isAcyclic()) return false; // checks that the input is a tree
if (numNodes(root) != size) return false; // checks that size is consistent
if (!isOrdered(root)) return false; // checks that data is ordered
return true; }

Figure 1: Search tree declaration and constraints in Java.

Figure 2: Five non-isomorphic search trees with 3 nodes
Ni, N, and N3, and data 1, 2, and 3. Nj is the root.

for more efficient constraint solving and model counting. Specifi-
cally, we observe how solutions found by Korat are distributed with
respect to the candidates it considers during its search. We build
on these observations to lay the foundation of new techniques for
constraint solving and model counting using Korat, and discuss
how these can generalize to a much broader class of tools, which
can substantially impact software analysis and synthesis techniques
by making them much more scalable.
Related work. Our approach is rooted in the general principles
of memoization and incremental methods in computer science [11],
which have been employed in many previous analysis and synthesis
techniques, including the following that are most closely related to
our proposal: techniques for enhancing symbolic execution using
memoization where constraint solving results are reused [7, 12, 24,
25], transcoping where results for smaller bounds on analysis size
are used to optimize analysis for larger bounds [21], and model
counting for complex structures [13], and regression testing where
the cost of executing tests is reduced based on previous runs [26].
The key novelty of our work is to define an integration of the
principles of memoization and incremental methods in the areas of
constraint solving and model counting with a focus on the engine’s
internal state. Previous work in constraint solving and model count-
ing has neither studied solution distributions during the progress
of the engine nor leveraged the distributions (whether estimated or
known) to optimize the engine.

2 BACKGROUND: KORAT

This section describes the basics of Korat using binary search trees
(Figure 2) as an example [6]. Given an imperative constraint and
bound on the input size, Korat performs a backtracking search with
pruning and symmetry breaking to enumerate all non-isomorphic
solutions within the bound. Figure 1 shows an example constraint
solving problem [2]. The repOk method defines an imperative pred-
icate that inspects (using helper methods) its input structure, i.e.,
this, and returns true if all expected properties hold, and false oth-
erwise. Specifically, repok checks: 1) the input is an acyclic object
graph (along left and right); 2) its nodes contain data in the correct
search order; and 3) its size field equals the number of nodes in
the tree. To bound the input size, Korat uses a finitization, which

Almaawi, Dini, Yelen, Gligoric, Misailovic, Khurshid

is given as a Java method. The helper methods for repok and finiti-
zation are omitted here but available in the Korat distribution [2].

The imperative constraint and finitization define a parameter-
ized constraint solving problem. Providing the number of possible
values for the fields of different types using the finitization bounds
the problem space. Korat solves the given problem by iteratively
creating a candidate structure, invoking repOk to check the structure,
outputting it if valid, and creating the next structure based on the
object fields accessed by repOk. Internally, Korat represents each
structure as a candidate vector: a sequence of integer indices into
ordered domains of values for each field.

Consider the constraint solving problem with finitization bound
of 2, i.e., each solution must have exactly 2 nodes. The root field
takes a value from the domain [null, N1, and N2], where N1 and
N2 are the two possible nodes that can be in the tree. Each of the two
reference fields (left and right) of the two nodes also take a value
from this domain. The field size has only 1 possible value (i.e., 2).
The info field of each node takes a value from [0, 1]. The following
partial list shows the first five and the last candidate vectors that
Korat considers and the fields accessed for each candidate:
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Each row contains a candidate vector that has 8 elements — root,
size, N1.1left, Nl.right, N1.info, N2.left, N2.right, and N2.info
- and list of fields accessed with “::” as the separator. The valid
candidates are marked “xx*”. Each vector element is an index in
the corresponding field domain. The first candidate, i.e., all 0’s, has
all 5 reference fields set to null (since index 0 represents the first
value, i.e., null, from the corresponding domain), size set to 2 (since
its domain only has that single value), and each node’s info is 0;
this candidate is invalid because the value of size is incorrect.
Setting the bound to 5 in the finitization and running Korat
takes 0.29 seconds to find 42 solutions where each solution is a
(valid) search tree with exactly 5 nodes. During the search, Korat
explicitly checks 6,155 candidate vectors, i.e., runs repOk on each
of them, before finding all the solutions. Increasing the bound to 9
and re-running Korat we get 4,862 solutions in 17.37 seconds after
it explores 20,086,300 candidate vectors; the space of candidate
vectors for this problem has size > 263~ Korat prunes much of it.

3 OUR APPROACH
3.1 Study of Solution distributions

Our idea is motivated by our initial study of the solution distri-
butions during the Korat search, specifically how the number of
solutions found by Korat grows with the number of candidates it
explores. Figure 3 plots the distributions for 10 subjects from the
Korat distribution: binary tree (BT), binomial heap (BH), directed
acyclic graph (DAG), disjoint set (DS), doubly-linked list (DLL), Fi-
bonacci heap (FH), heap array (HA), red-black trees (RBT), search
tree (BST), sorted list (SL), and singly-linked list (SLL). For each
subject, two consecutive sizes are plotted; the maximum size is set
to 10 if the generation completes in 300 seconds; otherwise, the
largest size that completes in 300 seconds is used. For each subject,



Predictive Constraint Solving and Analysis

ICSE-NIER’20, May 23-29, 2020, Seoul, Republic of Korea

1 00| [—e=size
= size

Zexplored
explored
explored

valid vlid alid

Zexplored
sexplored
explored

B |

valid sivalid

TR R S R o
510 20 30 40 50 60 70 80 90 100 510 20 30 40 50 60 70 50 90 100

0
510 20 30 40 50 60 70 80 90 100 510 20 30 40 50 60 70 50 90 10 510 20 30 40 50 60 70 s 90 100

100 || —e=size = 10
—-—size=9

sexplored
explored

B

valid Zivalid

]

explored
sexplored

RBT

Zvalid

510 20 %0 0 50 w0 70 80 %0 10 510 20 30 40 50 60 70 50 %0 10

510 20 30 a0 50 6 70 s o0 1m0

S0 20 30 0 50 w0 70 80 90 100

Figure 3: Solution distribution for subject constraints for select sizes.

the figure shows the %explored (y-axis) against %valid (x-axis) for
two cases: 1) maximum size s for the subject; and 2) size s — 1.
For six of the ten structures, namely BT, BST, DAG, DLL, FH,
and SLL, the lines (for two sizes) are almost identical. Moreover, for
two of the subjects, namely DS and RBT, there are small differences
up to 30% solutions found — with the maximum distance for DS at
5.42 for 20% solutions found and for RBT at 3.29 for 10% solutions
found - and then the lines become almost identical. For HA, the
two lines are different initially but converge in the last 20%. For BH
the lines are the most different among all these subjects and the
maximum difference is as high as 13.47 (for 10% solutions found).
We also computed the R-squared values for the subject con-
straints based on the distributions we observed for the maximum
sizes selected. Eight of the ten subjects (BH, DLL, BT, RBT, DAG,
DS, SLL, BST) have R-squared value > 0.99; FH has R-squared value
between 0.98 and 0.99, and HA has R-squared value < 0.98, around
0.91. Overall, the R-squared and corresponding trend-lines show
that for majority of the subjects the solution count obtained during
partial search predicts accurately the results for the full search.

3.2 Predictive constraint solving and analysis

The solution distributions provide two key observations that allow
us to propose predictive constraint solving and analysis techniques:

(1) Running the solver to find solutions up to a fraction, e.g., 30%,
of the total number of structures considered by the standard
Korat search can help estimate the total solution count; and

(2) The solution distribution for a constraint ¢ solved for a size
bound s can provide an estimate for the model count for a
larger bound u (> s) for the constraint c.

Predictive model counting. Perhaps the most direct application
of the two observations is to predict model counts using Korat.
While our observations provide insights into new techniques, the
observations do not lend themselves directly into automated tech-
niques. Consider Observation 1 for example. Even if we know that
the partial model count with respect to 30% of the total number of
structures considered is an excellent predictor for the full model
count, we still face the problem of not knowing how many struc-
tures the full Korat search would actually consider, and hence not
know when the search reaches the 30% mark.

We next outline a technique to tackle this problem. Assume Ko-
rat is used to estimate the model count for formula f for size bound
s. Observe that the state spaces (typically) grow at an exponential

rate with respect to the input size. We hypothesize that the num-
ber of candidates explored by the Korat search also grows at an
exponential rate, i.e., x = ab®, where x is the number of candidates
explored and s is the size bound, and a and b are constants. Under
this hypothesis, it is simple to compute the values of a and b using
the results of the Korat search for sizes smaller than s, e.g., using
the two sizes s — 1 and s — 2. Table 1 shows the results of estimating
the number of candidates explored using this technique. In 5 of
10 cases the estimate is within 10% of the actual count; the worst
case is for DAG where the estimate is 48.49% of the actual count.

Approximate sampling. As a second application we show how
to use Korat to create a desired sample of test inputs, say to comple-
ment bounded-exhaustive testing by creating some larger inputs,
and testing against them. Let us sample approximately k% of inputs
in bound s. Our technique for estimating the model count (Sec-
tion 3.2) immediately lends to a sampling technique: estimate the
kxc

model count ¢, and run Korat until it finds 100
Preemptive pruning. As a third application we discuss how to
enhance the standard Korat search for enumerating solutions for
formula f and bound s. Observation 1 in an instance of a more
general property: the past behavior of the search can predict the
future behavior. We envision exploiting this property by abstracting
and reusing key steps that the search takes in finding the next
solution. To illustrate, observe the following consecutive steps in
the Korat search for creating search trees with 3 nodes where all
non-zero values for the 10th field, which represents the right child
of the third node, are tried, but none of them creates a valid tree:

solutions.
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Later in the search this sequence of assignments repeats for the
same field, and once again creates only invalid trees:

Table 1: Estimating the number of candidates explored for
size s using the known numbers for sizes s — 1 and s — 2.

[ Subject [ size [ space [ #valid [ #explored [ #est. expl. [ est./actual [%] ]
BH 10 [ 2% ] 117,157,172 | 150,727,471 | 104,840,109 69.56
BST 10 [ 2% 16,796 | 155,455,872 | 154,761,948 99.55
BT 10 272 16,796 815,100 813,824 99.84
DAG 7| 2D7 1,410,723 | 20,128,126 9,760,786 48.49
DLL 10 | 2™t 562,595 562,823 525,969 93.45
DS 6 22 2,967,087 | 33,436,639 | 21,639,413 64.72
FH 7 | 287 | 49,698,272 | 175,980,937 | 140,719,184 79.96
HA 10 2% | 111,511,015 | 583,317,405 | 506,210,306 86.78
RBT 10 [ 2BT 260 7,530,712 7,063,431 93.79
SLL 10 252 115,975 1,702,171 1,592,413 93.55
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In fact, during the search, this sequence of assignments is also made
for some other fields, e.g., the left child of the third node, which also
creates only invalid trees. For this subject, the reason is that these
failed assignments create a “back” edge, i.e., a cycle, and hence we
get an invalid tree. We envision techniques that detect and exploit
such commonalities for more effective pruning, perhaps using ma-
chine learning methods [19] to detect more complex relations, can
make the search much more efficient.

3.3 #Korat

We envision #Korat, a new core engine for model counting for im-
perative predicates, which is based on insights into the Korat search
but unlike Korat, does not need to enumerate each solution. A key
restriction of the current Korat search is the need to concretely ini-
tialize each candidate input and check it using repOk. Our insight
is to re-define Korat’s backtracking such that it prunes valid candi-
dates when their validity can be determined by reasoning about the
repOk checks of other similar valid candidates. We envision #Korat
will enable new classes of optimized model counters that support
analyses of important classes of programs, including probabilistic
programs [8], especially in the context of dynamic data structures.

3.4 Generalization to propositional logic

We next discuss how our idea may be generalized to other tools,
specifically general purpose propositional satisfiability solvers (SAT)
and model counters, which take as input CNF formulas. While there
are many differences in Korat and the search of say, a SAT solver,
there is something basic in common: both are search engines that
maintain internal state to explore very large state spaces.

For SAT solvers, a starting point is the two observations we made
about Korat (Section 3). We can check if they hold for a modern SAT
solver [1], e.g., one based on CDCL, which maintains a history of
conflict clauses for enhanced pruning [22]. There are several ways
we can perform the check: 1) observe the number of backjumps the
SAT solver makes; 2) introduce and observe a counter in the SAT
solver that tracks the candidate solutions it prunes; and 3) observe
the number of conflict clauses that the SAT solver adds.

For model counters, the generalization is less direct because they
(except under exceptional cases) do not just enumerate all solutions
and report the count, rather they employ dedicated algorithms
for directly computing the counts. We discuss the generalization
for two classic techniques that lay at the heart of modern model
counters: 1) caching sub-formulas in the case of DPLL-based exact
model counting [4]; and 2) repeatedly adding XOR clauses and
solving in the case of probabilistic approximate model counting [16].
Assume the model counter is used for computing counts for two
formulas derived from the same domain-specific problem but with
different size bounds s and u where s < u. We hypothesize the
cache hits and misses for bound s can predict the hits and misses
for the bound u, and hence allow improving the caching strategy.
Likewise, we hypothesize the number of XOR clauses that are added
for bound s can predict the number to add for u; to notice the benefit
of this prediction, observe that the addition of each XOR clause is
followed by a constraint solving call to a non-traditional SAT solver
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that can also handle XOR constraints [23]; therefore, if the number
of clauses to add can be estimated, many solver calls can be saved.

4 CONCLUSION

We proposed an approach to enhance constraint solvers and model
counters based on observing the steps they take during their ex-
ploration in one run or across multiple runs, and exploiting the
commonalities in the subproblems encountered. We presented sup-
porting evidence in the context of the Korat solver. We also proposed
a generalization to propositional solvers and model counters. We
believe our work opens a new direction for tackling the complexity
of very large state spaces, and can substantially impact analysis
and synthesis techniques by making them much more scalable.
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