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ABSTRACT

We introduce a new idea for enhancing constraint solving engines

that drive many analysis and synthesis techniques that are powerful

but have high complexity. Our insight is that in many cases the

engines are run repeatedly against input constraints that encode

problems that are related but of increasing complexity, and domain-

specific knowledge can reduce the complexity. Moreover, even for

one formula the engine may perform multiple expensive tasks with

commonalities that can be estimated and exploited. We believe

these relationships lay a foundation for making the engines more

effective and scalable. We illustrate the viability of our idea in the

context of a well-known solver for imperative constraints, and

discuss how the idea generalizes to more general purpose methods.
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1 INTRODUCTION

Many analysis and synthesis techniques, including symbolic execu-

tion, fuzzing, and program repair, rely critically on the efficiency of

backend constraint solvers and decision procedures, which often

suffer from scalability issues [6, 10, 15, 18, 20]. This paper intro-

duces a new idea for enhancing the performance of the engines

by tackling the challenge they face in exploring very large state

spaces of possible solutions. Our insight is that in many application

scenarios the engines are run repeatedly against input formulas

that encode problems that are related but of increasing complexity,

and domain-specific knowledge can be exploited to mitigate the

increase in complexity. Moreover, even for one formula, the engine
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may perform multiple expensive computations with commonalities

that can be estimated and exploited likewise. Our thesis is that

these relationships lay a foundation for making the engines more

effective and their applications more scalable.

Our focus is tools that take as input logical constraints, which

arise naturally in the context of many analysis and synthesis prob-

lems [6, 10, 15, 18, 20]. For example, a propositional satisfiability

(SAT) solver takes as input a formula in conjunctive normal form

(CNF) to determine its satisfiability, and outputs a solution (if one

exists). As another example, a model counter [3, 5, 9, 17] computes

the number of solutions that a given formula has.

Our work is motivated by two general strategies for analysis

of code ś iterative deepening and bounded exhaustive checking ś

which have their origins in model checking [10]. The strategies are

effective in both white-box analysis (e.g., symbolic execution) and

black-box analysis, say using bounded-exhaustive testing [6] where

the code is tested against all (non-equivalent) inputs within a bound

on the input size, which is likewise increased.

As an example, consider creating solutions to a formula that rep-

resents a precondition in bounded-exhaustive testing. The solver’s

task is to enumerate solutions for the given formula, which, once

defined, remains fixed (in terms of the precondition it character-

izes). Our idea is to exploit any commonalities in different search

steps that the solver must perform during enumeration. We expect

many such commonalities to exist ś after all, the solver creates

many inputs that may have a lot in common, e.g., in the form of

sub-structures they contain. We believe we can abstract key steps

of the solver’s search and re-use them, e.g., for more aggressive

pruning, as it enumerates the solutions.

As another example, consider computing the model count for a

formula that encodes a domain-specific problem for size bound k in

the context of iterative deepening where the tool already computed

the counts for the same problem for some smaller bounds, say k − 1

and k − 2. We believe the previous runs of the tool can provide vital

information that enables the model count for the desired bound

k to be computed without a full execution of the model counter

for this bound, e.g., by hypothesizing relations among the partial

results for different bounds and projecting the observed results for

the smaller bounds to estimate the result for the desired bound.

To demonstrate the viability of our idea, we develop it in the con-

text of the well-known Korat [6] solver for imperative constraints,

which has been used for automated testing [6] and quantitative

analysis [14]. As supporting evidence we present empirical data

that enables insights into the Korat search steps and key observa-

tions that show the potential for our idea to lead to new methods
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class Node {

Node left, right; /* children */

int info; /* data */ }

class SearchTree {

Node root; /* root node */

int size; /* number of nodes in the tree */

boolean repOK() {

if (root == null) return size == 0; // checks that empty tree has size zero

if (!isAcyclic()) return false; // checks that the input is a tree

if (numNodes(root) != size) return false; // checks that size is consistent

if (!isOrdered(root)) return false; // checks that data is ordered

return true; }

...

Figure 1: Search tree declaration and constraints in Java.
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Figure 2: Five non-isomorphic search trees with 3 nodes

N1, N2, and N3, and data 1, 2, and 3. N1 is the root.

for more efficient constraint solving and model counting. Specifi-

cally, we observe how solutions found by Korat are distributed with

respect to the candidates it considers during its search. We build

on these observations to lay the foundation of new techniques for

constraint solving and model counting using Korat, and discuss

how these can generalize to a much broader class of tools, which

can substantially impact software analysis and synthesis techniques

by making them much more scalable.

Related work. Our approach is rooted in the general principles

of memoization and incremental methods in computer science [11],

which have been employed in many previous analysis and synthesis

techniques, including the following that are most closely related to

our proposal: techniques for enhancing symbolic execution using

memoization where constraint solving results are reused [7, 12, 24,

25], transcoping where results for smaller bounds on analysis size

are used to optimize analysis for larger bounds [21], and model

counting for complex structures [13], and regression testing where

the cost of executing tests is reduced based on previous runs [26].

The key novelty of our work is to define an integration of the

principles of memoization and incremental methods in the areas of

constraint solving and model counting with a focus on the engine’s

internal state. Previous work in constraint solving and model count-

ing has neither studied solution distributions during the progress

of the engine nor leveraged the distributions (whether estimated or

known) to optimize the engine.

2 BACKGROUND: KORAT

This section describes the basics of Korat using binary search trees

(Figure 2) as an example [6]. Given an imperative constraint and

bound on the input size, Korat performs a backtracking search with

pruning and symmetry breaking to enumerate all non-isomorphic

solutions within the bound. Figure 1 shows an example constraint

solving problem [2]. The repOk method defines an imperative pred-

icate that inspects (using helper methods) its input structure, i.e.,

this, and returns true if all expected properties hold, and false oth-

erwise. Specifically, repOk checks: 1) the input is an acyclic object

graph (along left and right); 2) its nodes contain data in the correct

search order; and 3) its size field equals the number of nodes in

the tree. To bound the input size, Korat uses a finitization, which

is given as a Java method. The helper methods for repOk and finiti-

zation are omitted here but available in the Korat distribution [2].

The imperative constraint and finitization define a parameter-

ized constraint solving problem. Providing the number of possible

values for the fields of different types using the finitization bounds

the problem space. Korat solves the given problem by iteratively

creating a candidate structure, invoking repOk to check the structure,

outputting it if valid, and creating the next structure based on the

object fields accessed by repOk. Internally, Korat represents each

structure as a candidate vector: a sequence of integer indices into

ordered domains of values for each field.

Consider the constraint solving problem with finitization bound

of 2, i.e., each solution must have exactly 2 nodes. The root field

takes a value from the domain [null, N1, and N2], where N1 and

N 2 are the two possible nodes that can be in the tree. Each of the two

reference fields (left and right) of the two nodes also take a value

from this domain. The field size has only 1 possible value (i.e., 2).

The info field of each node takes a value from [0, 1]. The following

partial list shows the first five and the last candidate vectors that

Korat considers and the fields accessed for each candidate:
0 0 0 0 0 0 0 0 :: 0 1

1 0 0 0 0 0 0 0 :: 0 2 3 1

1 0 0 1 0 0 0 0 :: 0 2 3

1 0 0 2 0 0 0 0 :: 0 2 3 5 6 1 4 7

1 0 0 2 0 0 0 1 :: 0 2 3 5 6 1 4 7 ***

...

1 0 2 2 0 0 0 0 :: 0 2 3

Each row contains a candidate vector that has 8 elements ś root,

size, N 1.left, N 1.right, N 1.info, N 2.left, N 2.right, and N 2.info

ś and list of fields accessed with ł::ž as the separator. The valid

candidates are marked ł***ž. Each vector element is an index in

the corresponding field domain. The first candidate, i.e., all 0’s, has

all 5 reference fields set to null (since index 0 represents the first

value, i.e., null, from the corresponding domain), size set to 2 (since

its domain only has that single value), and each node’s info is 0;

this candidate is invalid because the value of size is incorrect.

Setting the bound to 5 in the finitization and running Korat

takes 0.29 seconds to find 42 solutions where each solution is a

(valid) search tree with exactly 5 nodes. During the search, Korat

explicitly checks 6,155 candidate vectors, i.e., runs repOk on each

of them, before finding all the solutions. Increasing the bound to 9

and re-running Korat we get 4,862 solutions in 17.37 seconds after

it explores 20,086,300 candidate vectors; the space of candidate

vectors for this problem has size > 263ś Korat prunes much of it.

3 OUR APPROACH

3.1 Study of Solution distributions

Our idea is motivated by our initial study of the solution distri-

butions during the Korat search, specifically how the number of

solutions found by Korat grows with the number of candidates it

explores. Figure 3 plots the distributions for 10 subjects from the

Korat distribution: binary tree (BT ), binomial heap (BH ), directed

acyclic graph (DAG), disjoint set (DS), doubly-linked list (DLL), Fi-

bonacci heap (FH ), heap array (HA), red-black trees (RBT ), search

tree (BST ), sorted list (SL), and singly-linked list (SLL). For each

subject, two consecutive sizes are plotted; the maximum size is set

to 10 if the generation completes in 300 seconds; otherwise, the

largest size that completes in 300 seconds is used. For each subject,
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Figure 3: Solution distribution for subject constraints for select sizes.

the figure shows the %explored (y-axis) against %valid (x-axis) for

two cases: 1) maximum size s for the subject; and 2) size s − 1.

For six of the ten structures, namely BT, BST, DAG, DLL, FH,

and SLL, the lines (for two sizes) are almost identical. Moreover, for

two of the subjects, namely DS and RBT, there are small differences

up to 30% solutions found ś with the maximum distance for DS at

5.42 for 20% solutions found and for RBT at 3.29 for 10% solutions

found ś and then the lines become almost identical. For HA, the

two lines are different initially but converge in the last 20%. For BH

the lines are the most different among all these subjects and the

maximum difference is as high as 13.47 (for 10% solutions found).

We also computed the R-squared values for the subject con-

straints based on the distributions we observed for the maximum

sizes selected. Eight of the ten subjects (BH, DLL, BT, RBT, DAG,

DS, SLL, BST) have R-squared value > 0.99; FH has R-squared value

between 0.98 and 0.99, and HA has R-squared value < 0.98, around

0.91. Overall, the R-squared and corresponding trend-lines show

that for majority of the subjects the solution count obtained during

partial search predicts accurately the results for the full search.

3.2 Predictive constraint solving and analysis

The solution distributions provide two key observations that allow

us to propose predictive constraint solving and analysis techniques:

(1) Running the solver to find solutions up to a fraction, e.g., 30%,

of the total number of structures considered by the standard

Korat search can help estimate the total solution count; and

(2) The solution distribution for a constraint c solved for a size

bound s can provide an estimate for the model count for a

larger bound u (> s) for the constraint c .

Predictive model counting. Perhaps the most direct application

of the two observations is to predict model counts using Korat.

While our observations provide insights into new techniques, the

observations do not lend themselves directly into automated tech-

niques. Consider Observation 1 for example. Even if we know that

the partial model count with respect to 30% of the total number of

structures considered is an excellent predictor for the full model

count, we still face the problem of not knowing how many struc-

tures the full Korat search would actually consider, and hence not

know when the search reaches the 30% mark.

We next outline a technique to tackle this problem. Assume Ko-

rat is used to estimate the model count for formula f for size bound

s . Observe that the state spaces (typically) grow at an exponential

rate with respect to the input size. We hypothesize that the num-

ber of candidates explored by the Korat search also grows at an

exponential rate, i.e., x = abs , where x is the number of candidates

explored and s is the size bound, and a and b are constants. Under

this hypothesis, it is simple to compute the values of a and b using

the results of the Korat search for sizes smaller than s , e.g., using

the two sizes s − 1 and s − 2. Table 1 shows the results of estimating

the number of candidates explored using this technique. In 5 of

10 cases the estimate is within 10% of the actual count; the worst

case is for DAG where the estimate is 48.49% of the actual count.

Approximate sampling. As a second application we show how

to use Korat to create a desired sample of test inputs, say to comple-

ment bounded-exhaustive testing by creating some larger inputs,

and testing against them. Let us sample approximately k% of inputs

in bound s . Our technique for estimating the model count (Sec-

tion 3.2) immediately lends to a sampling technique: estimate the

model count c , and run Korat until it finds k×c

100 solutions.

Preemptive pruning. As a third application we discuss how to

enhance the standard Korat search for enumerating solutions for

formula f and bound s . Observation 1 in an instance of a more

general property: the past behavior of the search can predict the

future behavior. We envision exploiting this property by abstracting

and reusing key steps that the search takes in finding the next

solution. To illustrate, observe the following consecutive steps in

the Korat search for creating search trees with 3 nodes where all

non-zero values for the 10th field, which represents the right child

of the third node, are tried, but none of them creates a valid tree:
1 0 0 2 0 0 3 0 0 1 0

1 0 0 2 0 0 3 0 0 2 0

1 0 0 2 0 0 3 0 0 3 0

Later in the search this sequence of assignments repeats for the

same field, and once again creates only invalid trees:

Table 1: Estimating the number of candidates explored for

size s using the known numbers for sizes s − 1 and s − 2.

Subject size space #valid #explored #est. expl. est./actual [%]

BH 10 2178 117,157,172 150,727,471 104,840,109 69.56

BST 10 2105 16,796 155,455,872 154,761,948 99.55

BT 10 272 16,796 815,100 813,824 99.84

DAG 7 2157 1,410,723 20,128,126 9,760,786 48.49

DLL 10 2121 562,595 562,823 525,969 93.45

DS 6 252 2,967,087 33,436,639 21,639,413 64.72

FH 7 2132 49,698,272 175,980,937 140,719,184 79.96

HA 10 242 111,511,015 583,317,405 506,210,306 86.78

RBT 10 2151 260 7,530,712 7,063,431 93.79

SLL 10 282 115,975 1,702,171 1,592,413 93.55
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1 0 0 2 0 3 0 0 0 1 0

1 0 0 2 0 3 0 0 0 2 0

1 0 0 2 0 3 0 0 0 3 0

In fact, during the search, this sequence of assignments is also made

for some other fields, e.g., the left child of the third node, which also

creates only invalid trees. For this subject, the reason is that these

failed assignments create a łbackž edge, i.e., a cycle, and hence we

get an invalid tree. We envision techniques that detect and exploit

such commonalities for more effective pruning, perhaps using ma-

chine learning methods [19] to detect more complex relations, can

make the search much more efficient.

3.3 #Korat

We envision #Korat, a new core engine for model counting for im-

perative predicates, which is based on insights into the Korat search

but unlike Korat, does not need to enumerate each solution. A key

restriction of the current Korat search is the need to concretely ini-

tialize each candidate input and check it using repOk. Our insight

is to re-define Korat’s backtracking such that it prunes valid candi-

dates when their validity can be determined by reasoning about the

repOk checks of other similar valid candidates. We envision #Korat

will enable new classes of optimized model counters that support

analyses of important classes of programs, including probabilistic

programs [8], especially in the context of dynamic data structures.

3.4 Generalization to propositional logic

We next discuss how our idea may be generalized to other tools,

specifically general purpose propositional satisfiability solvers (SAT)

and model counters, which take as input CNF formulas. While there

are many differences in Korat and the search of say, a SAT solver,

there is something basic in common: both are search engines that

maintain internal state to explore very large state spaces.

For SAT solvers, a starting point is the two observations we made

about Korat (Section 3). We can check if they hold for a modern SAT

solver [1], e.g., one based on CDCL, which maintains a history of

conflict clauses for enhanced pruning [22]. There are several ways

we can perform the check: 1) observe the number of backjumps the

SAT solver makes; 2) introduce and observe a counter in the SAT

solver that tracks the candidate solutions it prunes; and 3) observe

the number of conflict clauses that the SAT solver adds.

For model counters, the generalization is less direct because they

(except under exceptional cases) do not just enumerate all solutions

and report the count, rather they employ dedicated algorithms

for directly computing the counts. We discuss the generalization

for two classic techniques that lay at the heart of modern model

counters: 1) caching sub-formulas in the case of DPLL-based exact

model counting [4]; and 2) repeatedly adding XOR clauses and

solving in the case of probabilistic approximate model counting [16].

Assume the model counter is used for computing counts for two

formulas derived from the same domain-specific problem but with

different size bounds s and u where s < u. We hypothesize the

cache hits and misses for bound s can predict the hits and misses

for the bound u, and hence allow improving the caching strategy.

Likewise, we hypothesize the number of XOR clauses that are added

for bound s can predict the number to add foru; to notice the benefit

of this prediction, observe that the addition of each XOR clause is

followed by a constraint solving call to a non-traditional SAT solver

that can also handle XOR constraints [23]; therefore, if the number

of clauses to add can be estimated, many solver calls can be saved.

4 CONCLUSION

We proposed an approach to enhance constraint solvers and model

counters based on observing the steps they take during their ex-

ploration in one run or across multiple runs, and exploiting the

commonalities in the subproblems encountered. We presented sup-

porting evidence in the context of the Korat solver.We also proposed

a generalization to propositional solvers and model counters. We

believe our work opens a new direction for tackling the complexity

of very large state spaces, and can substantially impact analysis

and synthesis techniques by making them much more scalable.
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