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Abstract— We present a new method to generate optimal
grasps for brittle and fragile objects using a novel stress-
minimization (SM) metric. Our approach is designed for objects
that are composed of homogeneous isotopic materials. Our SM
metric measures the maximal resistible external wrenches that
would not result in fractures in the target objects. In this paper,
we propose methods to compute our new metric. We also use
our SM metric to design optimal grasp planning algorithms.
Finally, we compare the performance of our metric and conven-
tional grasp metrics, including Q1,Q∞,QG11,QMSV ,QV EW .
Our experiments show that our SM metric takes into account
the material characteristics and object shapes to indicate the
fragile regions, where prior methods may not work well. We
also show that the computational cost of our SM metric is on
par with prior methods. Finally, we show that grasp planners
guided by our metric can lower the probability of breaking
target objects.

I. INTRODUCTION

Grasp quality metrics are scalar functions defined on

the set of possible grasps, which is used to compare the

quality of different grasps. The performance and properties of

(asymptotically) optimal grasp planning algorithms depend

heavily on the type of grasp quality metrics used. A summary

of these metrics can be found in [24]. The usual require-

ments for high-quality grasps include force closure, small

contact force magnitudes, the preference of normal forces

over frictional forces, higher resilience to external wrenches,

and force resilience along all directions. For example, the

Q1,Q∞ metrics [8] take all these factors into consideration,

while QV EW [17] is direction-dependent. The choice of a

metric is typically based on the requirements of an applica-

tion, but may also affect the choice of the resulting grasp

planning algorithm. For example, the Q1,Q∞ metrics are

submodular, which allow fast discrete grasp points selection

[25]. The Q1 metric has an optimizable lower-bound, which

allows an optimization-based grasp planning algorithm [7]

to jointly search for grasp points and grasp poses.

However, all the metrics considered so far make a common

assumption that the target object is rigid and stiff, and will

not crack or break due to to the forces exerted by the grasp.

As a result, prior methods assume that the target object is a

rigid body and all the forces and torques are applied on the

center-of-mass, which greatly simplifies the computation and

analysis of metrics. However, this assumption does not hold

when a robot is grasping fragile or brittle objects, and certain

weak locations on the objects should be avoided to prevent

fractures. Grasping of fragile objects has been considered in

prior works [22], [1], which attempt to avoid breaking objects

by developing safe grippers. Our goal is complimentary, as
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we want to formulate new grasp metrics that reduce the

stresses in fragile objects.

Main Results: We present a novel stress-minimization

metric that takes into account the probability of the target

object being broken into pieces. Based on the theory of brittle

fracture [10], we formulate the set of external wrenches that

can be resisted without causing fractures in the object. Sim-

ilar to the Q1 metric [8], our metric measures the maximal

size of the sphere-shaped subset of resistible wrenches. We

refer to this new metric as the stress-minimization (SM)

metric QSM . We show that QSM can be computed efficiently

using the boundary element method (BEM) [6], given a

surface triangle mesh of the object and a set of contact

points. The cost of computing QSM is similar to that of

computing Q1. Using a simple scenario, we also show

that most previous grasp metrics, including Q1,Q∞ [8],

QG11 [4], QV EW [17], and QMSV [4], do not reflect the

probability of the target object being broken, while QSM

does. Finally, we show that conventional optimization-based

grasp planning algorithms [5], [25], [14] can be modified

to search for globally optimal grasps by maximizing QSM .

Based on our algorithm, we can compute optimal grasps

for a row of complex, high-genus objects with the lowest

probability of breaking them. Computing QSM takes 4 − 8s

and finding optimal grasps under QSM takes 1 − 5hr on

average using a global optimization algorithm [14] or less

than 10min using a stochastic optimization algorithm [27].

II. RELATED WORK

We review related work in grasp quality metrics, material

and fracture modeling, and grasp planning.

Grasp Quality Metrics: Although some grasp planners

only consider external wrenches along some certain direc-

tions [21], more pertinent characterization of a robust grasp

requires resilience to external wrenches along all directions,

which is known as force closure [23]. However, infinitely

many grasps can have force closure and some of them are

classified as good grasps based on different quality metrics

[24]. Most of the metrics Q are designed such that Q > 0

implies force closure. Closely related metrics to our QSM

are Q1,Q∞ [8], which measures the maximal radius of an

origin-centered wrench-space sphere contained in the convex

set of resistible wrenches under contact force magnitude

constraints.

Material and Fracture Modeling: Real world solid

objects may result in brittle or ductile fractures under external

forces, depending on the underlying materials. However,

modeling the physics during fractures is difficult because

they can undergo large deformations during fractures [10].

Fortunately, for grasp planning, we do not need to model

these deformations precisely, but only need to detect where

fractures might occur. In this case, the theory of linear elastic-

ity suffices [10] and the stress induced by external wrenches



Q1 QSM Q1 QSM Q1 QSM Q1 QSM QSM C = 4

Fig. 1: First and second rows: We show globally optimal grasps for 8 different target objects based on Q1 (left) and QSM (right) in
each box. These grasps are generated by choosing C = 3 contact points (frictional cones in red) from N = 100 potential contact points
using BB, which takes 1.7hr to compute. The optimal grasp for the bunny head avoids the ears of the bunny under the QSM metric (black
circle). Third and fourth rows: We plot the maximal stress configuration (color coded). Using QSM can drastically reduce the maximal
stress as indicated in the black circle. Finally, we show two optimal grasps with C = 4 and QSM on the right, which takes 5.4hr to
compute.

on target objects can be computed efficient using the finite

element method (FEM) [16] or the boundary element method

(BEM) [6]. We use BEM as our computational tool because

it can take the materials of the target object into consideration

while only requires a surface triangle mesh, which is more

amenable to robot grasp applications.

Grasp Planning: Given a grasp quality metric, an (asymp-

totically) optimal grasp planning algorithm finds a grasp that

maximizes the grasp quality metric. Early algorithms [27]

use sampling-based methods for planning. These algorithms

are very general and they are agnostic to grasp quality metric

types. However, more efficient algorithms such as [7], [25]

can be designed if quality metrics have certain properties

such as monotonicity and submodularity. A good grasp

metric can also be used in learning based grasp planners such

as [19], [18], [20] that use precomputed metrics to train a

grasp quality function represented by a deep neural network

and then use the function as a guidance.

III. PROBLEM STATEMENT

In this section, we formulate the problem of stress-

minimization grasp planning. Throughout the paper, we

assume that the 3D target object is in its reference space,

where the origin coincides with its center-of-mass. The object

takes up a volume that is a closed subset Ω ⊂ R3. In addition,

the object is under an external 6D wrench w and a set of N

external contact forces f1,⋯,N at contact points x1,⋯,N with

unit contact normals n1,⋯,N . If a grasp is valid, we have the

following wrench balance condition:

w = − N∑
i=1
( fi
xi × fi) s.t. ∥(I − nin

T
i )fi∥ ≤ θnT

i fi, (1)

where θ is the frictional coefficient. A well-known method
for comparing the quality of two different grasps is to
compare their Q1 metric [8], which is the maximal radius of
the origin-centered inscribed sphere in the convex hull of all
possible resistible external wrenches when the magnitude of
fi is bounded. Mathematically, this can be expressed as:

Q1 =max r s.t.{w∣wT
Ww ≤ r2} ⊆

{w∣∃f1,⋯,N , s.t.Equation 1,
N

∑
i=1

n
T
i fi ≤ 1},

where W is the 6×6 positive semi-definite metric tensor in

the wrench space.

However, the formulation of Q1 metric assumes that the

object remains rigid and will never be broken or decomposed

into parts, no matter how large the external forces are. To

relax this condition, we have to make use of the numerical

models of brittle fracture, e.g., [10]. In these formulations,

we assume that the object is made of homogeneous isotropic

elastic material with λ,µ being its Lamé material param-

eters [10]. This material model covers most target objects

encountered in our daily lives, including objects made of

copper, rubber, glass, and porcelain. When under external

force fields g(x) ∶ R3 → R3, an infinitesimal displacement

u(x) ∶ R3 → R3 and a stress field σ(x) ∶ R3 → R3×3 will

occur ∀x ∈ Ω. u(x),σ(x) can be computed from g(x) using

the force balance condition:∀x ∈ Ω ∶ ǫ ≜ (∇u +∇uT )/2
σ ≜ 2µǫ + λtr(ǫ)I
∇ ⋅σ + g = 0

∀x ∈ ∂Ω ∶ n(x) ⋅σ + N∑
i=1

δ(x − xi)fi = 0,
(2)

where we assume the boundary of Ω is smooth almost

everywhere with the unit outward normal defined as n(x)
and δ is the Dirac’s delta operator. Classical theory of brittle

fracture [10] further assumes that there exists a tensile stress

σmax and brittle fractures will not happen if the following

condition holds:∀∥d∥ = 1,x ∈ Ω ∶ dT
σ(x)d ≤ σmax.

In order to make sure that the grasp metric always takes

bounded value, we propose to slightly modify the above

condition and limit σ(x) on both sides, leading to the

following condition:∀∥d∥ = 1,x ∈ Ω ∶ −σmax ≤ dT
σ(x)d ≤ σmax. (3)

Note that the stress tensor must be symmetric so that its

singular values coincide with its eigenvalues. Given the

theory of brittle fracture, the goal of our work is to propose

a grasp metric QSM that measures grasp qualities with

Equation 3 as a precondition, present algorithms to compute



QSM , and analyze grasp planning algorithms that are based

on our QSM metric.

IV. THE STRESS-MINIMIZATION METRIC QSM

Our construction of QSM is illustrated in Figure 2. The

basic idea behind the construction of QSM is very similar

to that of the Q1 metric. Intuitively, we first define a convex

subset W of the 6D wrench space, which contains resistible

wrenches that does not violate Equation 3. We then define

QSM as the maximal radius of the origin-centered sphere

contained in W.

A. Definition of W and QSM

Given a certain wrench w, we need to determine whether

w ∈ W. This can be performed by first computing σ and

then testing whether Equation 3 holds. However, Equation 2

is a relationship between σ and g(x) but not w, so we

need to find a relationship between g and w. In other words,

we need to find a body force distribution such that the net

effect of g is equivalent to applying w on the center-of-mass.

Obviously, infinitely many formulations of gs will satisfy

this relationship and different choices of g(x) will lead to

different variants of QSM metrics. In this paper, we propose

choosing g as a linear function in x. The most important

reason behind this choice is that the computation of σ can

be performed using BEM [6] if g is a harmonic function of

x, and BEM can be applied to a surface mesh representing

the target object while FEM [16] requires a volume mesh.

Under this choice, we have: g(x) = g0 + ∇gx, where g0 is

the constant term, and ∇g is the constant spatial derivative

tensor. Clearly g(x) has 12 degrees of freedom (3 in g0 and

9 in ∇g) and we can solve for g0 and ∇g to equate the

effect of g and w as follows:

w = ∫
Ω

( g

x × g)dx =
⎛⎜⎜⎜⎝

∣Ω∣g0

T ⎛⎜⎝
[∇g]x
[∇g]y
[∇g]z

⎞
⎟
⎠

⎞
⎟⎟⎟
⎠
,

where T ≜ ∫Ω (xx×, yx×, zx×)dx. Also, [∇g]x,y,z are the

first, second, and third column of ∇g, respectively. However,

there are 9 degrees of freedom in ∇g but only 3 constraints

so we have to solve for ∇g in a least square sense:

∇g = argmin
∇g

∫
Ω

∥∇gx∥2dx s.t. T ⎛⎜
⎝

[∇g]x
[∇g]y
[∇g]z

⎞
⎟
⎠
= ⎛⎜
⎝

w4

w5

w6

⎞
⎟
⎠
,

the solution of which can be computed analytically. In

summary, we have:

⎛
⎜⎜⎜
⎝

g0

[∇g]x
[∇g]y
[∇g]z

⎞
⎟⎟⎟
⎠
= ⎛⎝

I
∣Ω∣M−1T T [TM−1T T ]−1

⎞
⎠w, (4)

where M ≜ [∫Ω xxT dx] ⊗ I and ⊗ denotes Kronecker

product. The matrices T ,M are constants and can be

precomputed from the shape of the target object or, more

specifically, from the inertia tensor. Given these definitions,

we can now define W as follows:

W = {w∣∃g, f1,⋯,N ,u, ǫ,σ, s.t. Equation 1,2,3,4}. (5)

Finally, we are ready to give a mathematical definition of

QSM using the following optimization function:

QSM =max r s.t. {w∣wT
Ww ≤ r2} ⊆W.

From the mathematical definition of QSM , we immedi-

ately have the following properties of W:

Lemma 4.1: W is a convex set.

Proof: Equation 1 is a set of quadratic cone constraints,

which defines a convex set. Equation 2 is a set of infinite-

dimensional linear constraints, which defines a convex set.

Equation 3 is an infinite-dimensional PSD-cone constraint,

which defines a convex set. Finally, Equation 4 is a linear

constraint, which also defines a convex set. As the intersec-

tion of convex sets, W is convex.

Lemma 4.2: W is a compact set so that QSM is finite.

Proof: For any w ≠ 0, σ that satisfies all three

conditions (Equation 1, Equation 2 and Equation 4) cannot be

zero for all x ∈ Ω, otherwise the last equation in Equation 2

will be violated. In other words, there exist d and x such

that ∣dT
σ(x)d∣ > ǫ > 0. If we multiply w by α > σmax/ǫ,

Equation 3 will be violated so that αw ∉W. Therefore, W

is bounded and is obviously closed, so that W is compact

and QSM is finite.

In addition, the following property of QSM is obvious:

Lemma 4.3: QSM > 0 implies force closure.

The following property has been proved in [25] for Q1 and

also holds for QSM by a similar argument:

Lemma 4.4: QSM = min
d,∥d∥=1

max
w∈
√
WW

wTd.

B. Discretization of QSM

The computation of an exact QSM is impractical because

it involves infinite dimensional tensor fields: σ, ǫ, so we

have to discretize them using conventional techniques such

as FEM [16] or BEM [6]. We provide the detailed derivation

of BEM in Appendix and summarize the main results here.

Our BEM algorithm approximates the stress field σ(x) to be

piecewise constant on each triangular patch of the surface.

Assuming that the target object has K surface triangles

whose centroids are: x1,⋯,K , we have K different stress

values:

⎛
⎜
⎝

σx(xj)
σy(xj)
σz(xj)

⎞
⎟
⎠
= Aj

⎛
⎜⎜⎜
⎝

g0

[∇g]x
[∇g]y
[∇g]z

⎞
⎟⎟⎟
⎠
+ Bj ⎛⎜

⎝

f1⋮
fN

⎞
⎟
⎠
∀j = 1,⋯,K, (6)

where A,B are dense coefficient matrices defined from BEM

discretization and the detailed formulations are given in

Appendix . Note that computing the coefficients of these

two matrices is computationally costly, for which a naive

implementation of BEM requires O(K3) operations and

acceleration techniques such as the H-matrix [13] can reduce

this cost to O(Klog
2K) operations. However, these two

matrices are constant and can be precomputed for a given

target object shape, so the cost of BEM computation is not a

part of grasp planning. After discretization, we arrive at the

finite-dimensional version of the fracture condition:∀∥d∥ = 1, j = 1,⋯,K ∶ −σmax ≤ dT
σ(xj)d ≤ σmax. (7)
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Q1 ∶ ∑N
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Fig. 2: A toy example where we grasp a bunny head represented as a triangular surface mesh, with grasp points on two ears (frictional
cones in red). (a): When the bunny head is under an external wrench (blue arrow), the Q1 metric assumes that the wrench is applied on
the center-of-mass. (b): Our QSM metric assumes that the external wrench is applied as a force field all over the volume of bunny head
(blue arrows). (c): We use BEM to solve for a surface stress field (color coded on surface with high stress in red around connections
between the ears and the head). QSM assumes that the stress along any direction d is smaller than the tensile stress, σmax. (d): When
performing grasp planning, we first construct a KD-tree (transparent blue planes) for the set of N potential contact points. (e): We select
C contact points (red points) by descending the tree.

The finite-dimensional version of W̄:

W̄ ≜ {w∣∃g, f1,⋯,N ,u, ǫ,σ, s.t. Equation 1,6,7,4},
and the finite-dimensional version of Q̄SM defined as:

Q̄SM = argmax r s.t. {w∣wT
Ww ≤ r2} ⊆ W̄.

All the properties of the infinite-dimensional W and QSM

hold for the finite-dimensional version W̄ and Q̄SM by a

similar argument.

C. Computation of Q̄SM

Computing Q̄SM amounts to a non-trivial global optimiza-

tion. According to Lemma 4.4, the equivalent optimization

problem for Q̄SM is:

Q̄SM = min
d,∥d∥=1

max
w∈
√
WW̄

wTd,

for which direct optimization does not guarantee a global

solution. In this section, we modify two existing algorithms

to (approximately) compute Q̄SM , which were originally

proposed to compute Q1. In [25], the space of the unit

vectors is discretized into a finite set of D directions: d1,⋯,D.

As a result, we can compute an upper bound for Q̄SM as:

Q̄SM ≤ min
j=1,⋯,D

max
w∈
√
WW̄

wTdj .

We can make this upper bound arbitrarily tight by increasing

D. In another algorithm [28], a convex polytope C ⊆ W̄ is

maintained using H-representation [12] and we can compute

a lower bound for Q̄SM as:

Q̄SM ≥ min
d,∥d∥=1

max
w∈
√
WC

wTd. (8)

The global optimum of the optimization function in Prob-

lem 8 is easy to compute from an H-representation of C
by computing the distance between the origin and each

face of C. This lower bound can be iteratively tightened by

first computing the blocking face normal d of C and then

expanding C via:C ←ConvexHull(C ∪ {argmax
w∈
√
WW̄

wTd}).
These two algorithms can be implemented if we can find the

supporting point of
√
WW̄, which amounts to the following

conic programming problem:

argmax
w,fi,σ(xj)

wT
√
Wd

s.t. Equation 1,6,4

−σmaxI ⪯ σ(xj) ⪯ σmaxI ∀j = 1,⋯,K.

(9)

The conic programming reformulation in Problem 9 can be

solved using an interior point method [3]. Given this solution

procedure, we summarize the modified version of [25] in

Algorithm 1 and the modified version of [28] in Algorithm 2.

Note that Algorithm 2 is computationally costlier but it can

approximate Q̄SM up to an arbitrary precision ǫ, so we

always use Algorithm 2 in the rest of the paper.

Compared with the Q1 metric, a major limitation of using

the Q̄SM metric is that the computational cost is much

higher. Note that the computational cost of solving Problem 9

is at least linear in K and can be superlinear depending on the

type of conic programming solver used, such as [3]. This K

is the number of surface triangles on the target object, which

can be several thousands for complex objects. Fortunately,

we can drastically reduce this cost by progressively adding

constraints.

D. Performance Optimization

The naive execution of Algorithm 2 can be prohibitively

slow due to the repeatedly solving of Problem 9. The

conic programming problem has K PSD-cone constraints

with K being several thousands. Solving Problem 9 using

interior point method [3] involves repeatedly solving a sparse

linear system with a size proportional to K. We propose

a method that can greatly improve the performance when

solving Problem 9. Our idea is that when the global optimum

of Problem 9 is reached, most PSD-cone constraints are

inactive, so removing these constraints does not alter the

solution. This idea is inspired by [29] which shows that,

empirically, maximal stress only happens on a few sparse

points on the surface of the target object. However, we do

not know the active constraints as a prior. Therefore, we

propose to progressively detect these active constraints.
In order to perform these computations, we first select a

subset K ⊂ {1,⋯,K} such that ∣K∣≪K and {σ(xi)∣i ∈ K}
are the stress constraints that are most likely to be violated.
In other words, K is the initial guess of the active constraints.
To select this set K, we use a precomputation step and solve
Problem 9 for 1000 times using random d and record which
PSD-cones are active. For each PSD-cone, we maintain how
many times they become active during the 1000 solves of
Problem 9. We then select the most frequent ∣K∣ PSD-cones
to form K. After selecting K, we maintain an active set S
that initializes to K and we solve Problem 9 using constraints



only in S , which is denoted by:

argmax
w,fi,σ(xj)

w
T
√
Wd

s.t. Equation 1,6,4

−σmaxI ⪯ σ(xj) ⪯ σmaxI ∀j ∈ S.
(10)

Problem 10 is convex and we can solve for its global

optimum, after which we check the stresses on the remaining

constraints and we pick the most violated constraint:

j∗ = argmax
j∈{1,⋯,K}/S

√∥σ(xj)σ(xj)∥2. (11)

If we have
√∥σ(xj∗)σ(xj∗)∥2 < σmax, then the global

optimum of Problem 10 and Problem 9 will coincide. Oth-

erwise, we add j∗ to S . This method is summarized in

Algorithm 3 and is guaranteed to return the same global

optimum of Problem 9. The complexity of Algorithm 3 is

hard to analyze, but in practice it is orders of magnitude

more efficient than considering all constraints at once.

V. GRASP PLANNING UNDER THE SM METRIC

By grasp planning, our goal is to select C points that

tend to maximize Q̄SM given a set of N potential grasp

points sampled on ∂Ω. There are two types of algorithms that

can be used for grasp planning, which are based on branch-

and-bound (BB) [5], [25], [14] and sub-modular coverage

(SMC) [25]. However, SMC requires the formulation in

Problem 9 to be a sub-modular function in the set of contact

points. Although this property holds for Q1,Q∞, whether

this property holds for QSM is still an open problem.

However, we can use BB that only requires Problem 9 to

be a monotonic function in the set of contact points, which

is obvious. We follow [14] and build a KD-tree for the set

of N potential grasp points, as illustrated in Figure 2d and

Figure 2e. We maintain a pointer to one KD-tree node for

each of the C selected points. Next, we descend the tree until

all the C pointers reach leaf nodes and keep track of the best

set of C leaf nodes. BB can find the globally optimal set of

C grasp points that maximize any monotonic grasp metric

(see [14] for more details).

Algorithm 1 A modified algorithm of [25] to compute Q̄SM

1: sample directions d1,⋯,D in SO(3)
2: for i = 1,⋯,D do

3: ▷ Using Algorithm 3

4: Solve Problem 9 with d← di for wi

5: Return min
i
{wT

i

√
Wdi}

VI. EVALUATIONS

We have implemented our algorithms for computing QSM

and perform grasp planning using C++. The accuracy of

BEM relies on the quality of the surface triangle mesh, so

we first optimize the mesh quality to maximize the minimal

internal angles of each surface mesh triangle using CGAL

[2]. We implement the BEM using a kernel independent

numerical integration scheme [9]. The most computationally

costly step in BEM is the inversion of system matrices, for

which we use LU-factorization accelerated by H-matrices

Algorithm 2 A modified algorithm of [28] to compute Q̄SM

1: sample initial directions d1,⋯,D in SO(3)
2: for i = 1,⋯,D do

3: ▷ Using Algorithm 3

4: Solve Problem 9 with d← di for wi.

5: C0 ←ConvexHull(w1,⋯,D)
6: Solve Problem 8 with C ← C0 for Q̄0

SM

7: Store the blocking face normal on C0 as d0

8: while k = 1,⋯ do

9: ▷ Using Algorithm 3

10: Solve Problem 9 with d← dk−1 for wk

11: Ck ←ConvexHull(Ck−1 ∪ {wk})
12: Solve Problem 8 with C ← Ck for Q̄k

SM

13: Store the blocking face normal on Ck as dk

14: if ∣Q̄k
SM − Q̄k−1

SM ∣ < ǫ then

15: return Q̄k
SM

[13]. Finally, we use CGAL [15] to construct convex hulls

with exact arithmetic [11] to avoid degenerate cases. All the

experiments are performed on a single desktop machine with

two Xeon E5-2697 CPUs and 256Gb memory. In the rest of

this section, we evaluate the properties of QSM and compare

it with other metrics, including Q1,Q∞ [8], QG11,QMSV

[4], and QV EW [17].

Algorithm 3 Progressive solve of Problem 9

1: S ← K

2: while S ≠ {1,⋯,K} do

3: Solve Problem 10 for w, fi,σ(xj)
4: Pick j∗ using Equation 11

5: if
√∥σ(xj∗)σ(xj∗)∥2 < 1 then

6: Return w, fi,σ(xj)
7: else

8: S ← S ∪ {j∗}
9: Return w, fi,σ(xj)
Parameter Choices: Computing QSM requires more pa-

rameters than are necessary for computing Q1. Specifically,

there are three additional variables: tensile stress σmax and

Lamé material parameters: µ,λ. However, if we transform

µ,λ to an equivalent set of parameters: Young’s modulus

E and Poisson ratio ν [16], it is obvious that QSM is

proportional to σmax and inversely proportional to E. Since

the absolute value of a grasp metric is meaningless for grasp

planning and only the relative value matters, we can always

set σmax = E = 1 and choose only ν according to the

material type of the target object, and then set:

µ = 1/2(1 + ν) λ = ν/ [(1 + ν)(1 − 2ν)] .
In our experiments, we assume that objects are made of

copper with ν = 0.33. Finally, when running Algorithm 2,

we set ǫ = 0.001.

Shape-Awareness: The most remarkable advantage of

QSM over previous metrics, such as Q1, Q∞, QMSV ,

QV EW , and QG11, is shape awareness. In Figure 3a, our
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Fig. 3: (a): The target object is a U-shaped tuning fork. We test a 3-point grasp (frictional cones in red) where the distance to the center
of mass (green) is L. (b): We plot the change of Q1,Q∞,QMSV ,QV EW ,QG11, and QSM against L under 4 different conditions, where
QV EW is not stable and Q1,Q∞,QMSV ,QG11 do not reflect asymmetric. Here, we apply equal weights to the forces and torques with
Wbd = Id. (c): We use lower weights for torques with Wc = diag(1,1,1,0.01,0.01,0.01), in which case the best grasp under QSM is
different from that under the four other metrics. (d): We plot QSM using Wbd and meshes of different resolutions (Low: K = 5730, Mid:
K = 24204, High: K = 94398).

Fig. 4: We compare the computational cost of computing Q1 and
QSM for 20 random target objects and grasps.

target object is a U-shaped tuning fork and we use a 3-point

grasp. The shape of the tuning fork is asymmetric along

the X-axis. According to Figure 3b, the best grasp under

all metrics are the same, i.e., grasping the centroid point.

However, previous metrics are not aware of the asymmetry,

while QSM correctly reflects the fact that grasping the

leftmost point is better than grasping the rightmost point

because it is less likely to break the object. If we change

the metric W and emphasize force resistance over torque

resistance, then the difference between QSM and previous

metrics is more visible and even the best grasp changes as

shown in Figure 3c.

Robustness to Mesh Resolution: The change of QSM

is not sensitive to the resolution of the surface meshes, as

shown in Figure 3d, which makes QSM robust to target

objects discretized using small, low-resolution meshes. As

we increase K from 5730 to 24204 and finally to 94398, the

change of QSM against L is almost intact, with very small

fluctuations around L = −5.

Computational Cost: QSM has higher computational

cost than Q1. Most of the computational overhead lies in

the assembly of matrices A,B, which involves the direct

factorization of a large, dense matrix. However, this assembly

is precomputation and is required only once for each target

object before grasp planning. In Figure 3d, this step takes

112s when K = 5730, 1425s when K = 24204, and

3892s when K = 94398. After precomputation, the costs

of evaluating QSM and Q1 are very similar, as shown in

Figure 4. This implies that using QSM does not incur a

higher cost in grasp planning. This is largely due to the

progressive Algorithm 3, which greatly reduces the number

of constraints in solving Problem 9. Without this method,

solving Problem 9 is prohibitively costly as it requires the

solve of a sparse linear system of a size proportional to K.

Grasp Planning: In Figure 1, we show globally optimal

grasps for 8 different target objects under both the QSM

and Q1 metric. To generate these results, we choose C = 3
contact points from N = 100 potential contact points using

branch-and-bound. These contact points are generated using

Poisson disk sampling. The computational cost of BB, on

average, is 1.7hr under QSM and 0.6hr under Q1. When

we choose C = 4, the average computational cost under

QSM increases to 5.4hr. Although the cost of computing

QSM is comparable to that of computing Q1, we found that

QSM tends to create more local minima so BB needs to

create a larger search tree under QSM . In the third row of

Figure 1, we show the maximal stress configuration in W

and the corresponding stress configuration under Q1 next

to each other. The advantage of QSM , which suppresses

the stress to resist the same external wrench, is quite clear.

For some target objects, the high stress is concentrated in

a very small region and we indicate these regions using

black circles. Finally, for applications where globally optimal

grasps are too costly to compute and only sub-optimal

grasps are needed, users can choose stochastic grasp planning

algorithms such as [27], which can return a sub-optimal grasp

under QSM within 10min of computation.

VII. CONCLUSION AND LIMITATION

We present the SM metric, which reflects the tendency of

a target object to be broken during grasping. As a result,

a grasp maximizing QSM will minimize the probability

of breaking a fragile object. We show that QSM can be

computed using previous methods and its computational

cost can be drastically reduced by progressively detecting

the active set. Finally, we show that grasp planning under

QSM can be performed using BB algorithms. Our experi-

ments show that QSM is aware of geometric fragility while

Q1,∞,MSV,V EW,G11 are not. We also show that using QSM

does not increase the computational cost of the resulting

grasp planning algorithm.

The major limitation of our work is that computing QSM

requires a costly precomputation step to solve the BEM

problem. In addition, the BEM problem requires high-quality,

watertight surface meshes of target objects, while in many

applications we only have objects represented using point

clouds. An avenue of future research is to infer the value of

QSM for given unknown objects using machine learning,



as is done in [19]. Finally, QSM requires user to input

the Poisson ratio, which is a material parameter. We are

considering detecting these parameters from casual inputs

such as RGBD images.

APPENDIX

THE BOUNDARY ELEMENT METHOD

In this section, we summarize the boundary element dis-

cretization of Equation 2 and the definition of Ai,Bi. In

addition, we derive the special form of BEM with our body

force and external traction distribution. We follow [26] with

minor changes. First, we define a set of notations and useful

theorems. For any 3 × 3 matrix such as σ, we have:

∇ ⋅σ = (∇ ⋅σx
T ,∇ ⋅σy

T ,∇ ⋅σz
T )T .

For any 3 vector such as u, we have:

∆u = ∇ ⋅ (∇uT ) = (∆ux
T ,∆uy

T ,∆uz
T )T

∇ ⋅ ∇u = ∇∇ ⋅ u = ∇ ⋅ (tr(∇u)I).
A. Elastostatic Equation in Operator Form

We first derive the operator form of the elastostatic prob-

lem. By combining the three equations in Equation 2, we

have:
0 = ∇ ⋅ (µ∇u + µ∇uT + λtr(∇u)I) + g
= −L[u] + g = ∇ ⋅σ + g

L[] ≜ −(µ + λ)∇∇⋅ [] − µ∆[].
(12)

B. Boundary Integral Equation (BIE)

Next, we derive BIE via the divergence theorem:

∫
Ω

vTgds = ∫
Ω

vTL[u]dx = −∫
Ω

vT∇ ⋅σdx
= − ∫

∂Ω
vT

σnds + Sym(u,v),
where Sym(u,v) denotes a symmetric term in u,v satis-

fying: Sym(u,v) = Sym(v,u). We then swap u,v and

subtract the two equations to get:

∫
Ω

(uTL[v] − vTL[u])dx = ∫
∂Ω
(vTN[u] − uTN[v])ds

N[] ≜ σ[]n = µ∇[]n + µ∇[]Tn + λ∇ ⋅ []n. (13)

C. Fundamental Solution

If v is the fundamental solution centered at x̃, which is

denoted by U(x − x̃), then we get the boundary integral

equation by plugging U into Equation 13:

∫
Ω

UTgdx + ∫
∂Ω
(UTN[u] −N[U]Tu)ds = u(x̃), (14)

where the fundamental solution satisfying:

∫
Ω

L[U(x − x̃)]u(x)dx = u(x̃),
has the following analytic form:

U(x − x̃) = 1

8πµ
[∆rI − λ + µ

λ + 2µ∇2r] (15)

= 1

16πµ(1 − ν)r [(3 − 4ν)I +∇r∇rT ]
r ≜ ∣x − x̃∣ ν = λ

2(λ + µ) .

D. Body Force Term

Equation 14 still involves a volume integral, but we can

reduce that to a surface integral by using the special form of

body force: g(x) = g0 +∇gx and the Galerkin vector form

of the fundamental solution (Equation 15). The body force

term involves two basic terms. The first one is:

∫
Ω

∆rgdx =∫
Ω

∇ ⋅ (∇rgT − r∇gT )dx
=∫

∂Ω
[g∇rT − r∇g]nds.

The second one is:

∫
Ω

∇2rgdx =∫
Ω

∇ ⋅ (g∇rT − tr(∇g)rI)dx
=∫

∂Ω
[∇rgT − tr(∇g)rI]nds.

Plugging these two terms into Equation 14, we get:

∫
Ω

UTgdx = ∫
∂Ω

Gnds (16)

G ≜ 1

8πµ
[(g∇rT − r∇g) − λ + µ

λ + 2µ(∇rgT − tr(∇g)rI)] .
E. Singular Integrals

At this step all the terms in Equation 13 have been

transformed into boundary integrals. However, x in this form

must be interior to Ω. In this section, we take the limit of

x to ∂Ω and derive the Cauchy principle value of singular

integral terms.

The first integral in Equation 13, or the body force term

in Equation 16, has removable singularity so that we can use

numerical techniques to integrate them directly. The second

term in Equation 13 takes a special form due to our Dirac

external force distribution in Equation 2:

∫
∂Ω

UTN[u]ds = −∫
∂Ω

UT
N∑
i=1

δ(x − xi)fids

= − N∑
i=1

U(xi − x̃∗)fi.
which is also non-singular. The third term in Equation 13 is

singular and the value must be determined as follows:

lim
ǫ→0
∫
∂Ω
N[U]Tuds

= lim
ǫ→0
∫
∂Ω−B(ǫ)

N[U]Tuds + lim
ǫ→0
∫
∂Ω∩B(ǫ)

N[U]Tuds,
where we assume that ∥x̃ − x̃∗∥ = ǫ, x̃∗ ∈ ∂Ω, and B(ǫ) is

the sphere centered at x̃∗ with radius ǫ. We evaluate the two

terms separately. For the first term, we have:

lim
ǫ→0
∫
∂Ω−B(ǫ)

N[U]Tuds ≜ D[u]
=∫

∂Ω
[2µ(M[U])Tu + (M[ 1

4πr
])u + nT∇[ 1

4πr
]u]ds

=∫
∂Ω
[2µUM[u] − 1

4πr
M[u] + nT∇[ 1

4πr
]u]ds

M[] ≜∇[]nT − n∇[]T ,
which is known as double layer potential and only has

removable singularities. To evaluate the second term, we use

the following identity:

lim
ǫ→0
∫
∂Ω∩B(ǫ)

N[U]Tuds (17)

= lim
ǫ→0
∫
∂(Ω∩B(ǫ))

N[U]Tuds − lim
ǫ→0
∫
∂B(ǫ)∩Ω

N[U]Tuds.



Again, we break this into two terms. The first term in

Equation 17 is easy to evaluate using the divergence theorem:

lim
ǫ→0
∫
∂(Ω∩B(ǫ))

N [Ux]Tuds
= lim
ǫ→0
∫
∂(Ω∩B(ǫ))

nT
σ(Ux)Tu(x̃∗)ds

= − u(x̃∗)T lim
ǫ→0
∫
Ω∩B(ǫ)

L[Ux]ds = −ux(x̃∗).
The second term in Equation 17 is called the integral free

term, which evaluates to:

lim
ǫ→0
∫
∂B(ǫ)∩Ω

N [U]Tuds ≜ −Cu

C ≜φI
4π
−∫

∂(B(ǫ)∩∂Ω)
(x − x̃∗)nT dl,

where φ is the internal solid angle at x̃∗.

F. Putting Everything Together

Plugging all the integrals into Equation 14, we have:

∫
∂Ω

Gnds − N

∑
i=1

U(xi − x̃∗)fi −D[u] =Cu(x̃∗),
which is a dense system allowing us to solve for u every-

x1

j

x2

j

x3

j
nj

Fig. 5: The jth triangle.
where on ∂Ω. This system is discretized using Galerkin’s

method with piecewise linear u and piecewise constant f .

All the integrals are evaluated using variable-order Gauss

Quadratures. This linear system is denoted by:

(D +C)u =A
⎛⎜⎜⎜⎝

g0

[∇g]x[∇g]y[∇g]z

⎞⎟⎟⎟⎠
+B⎛⎜⎝

f1⋮
fN

⎞⎟⎠ ,

where D is the coefficient matrix of D, A is the coefficient

matrix of body force terms, and B is the coefficient matrix

of external force terms. After the displacements u have been

computed, we can recover the stress on the jth surface

triangle by solving the following linear system:∇uj(x2

j − x1

j) = u(x2

j) − u(x1

j)∇uj(x3

j − x1

j) = u(x3

j) − u(x1

j)
µ(∇uj +∇uT

j )nj + λtr(∇uj)nj = fi
σ(xj) = µ(∇uj +∇uT

j ) + λtr(∇uj)I,
(18)

which is 18 linear equations that can be solved for ∇uj and

σ(xj). This linear system is denoted by:

⎛⎜⎝
σx(xj)
σy(xj)
σz(xj)

⎞⎟⎠ =Nju +Mj

⎛⎜⎝
f1⋮
fN

⎞⎟⎠ ,
where N,M are corressponding coefficient matrices in Equa-

tion 18. Combining these two systems, we can define Aj ,Bj
as: Aj ≜Nj(D +C)−1A

Bj ≜Nj(D +C)−1B +Mj .
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