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Abstract—Network Function Virtualization (NFV) lays the
foundation for future networking. In this paper we attempt to
provide an in-depth analysis of NFV performance, namely, how
many packets a single CPU core can process, and in particular,
whether and when packet processing performance will scale
linearly with the number of cores. Understanding these questions
is important given the limited server capacities in a (mobile)
edge cloud. Through careful and extensive performance mea-
surement, we demonstrate server microprocessor architecture
has an enormous impact on NFV performance, and interplay
among the NF state, operations and workload characteristics in
a service function chain (SFC) further compounds the problem.
We develop a systematic profiling model for benchmarking and
estimating NFV/SFC performance under diverse traffic demands.

I. INTRODUCTION

By implementing and executing network functions (NFs)
as software running on multi-core commodity servers, net-
work function virtualization (NFV) makes networks more
programmable, flexible, and scalable. Network functionality
can also be continually evolved, new services quickly rolled
out, and network capacity readily expanded by adding new
servers. NFV is therefore touted as one of the primary pillars
on which future networks will be built. A basic premise of
NFV is to dynamically scale out/in by allocating more/fewer
CPU cores to execute NF instances to meet traffic demands.

To effectively utilize the limited server capacity in a (mo-
bile) network edge cloud (NEC) site while providing line-
rate packet processing, a fundamental yet important problem
for operators is to understand the NFV scaling performance
on multi-core servers under diverse workloads. Namely, how
many packets can a single CPU core process for a given
workload? When scale-out, how many packets can a k-core
server process in total? In particular, under what conditions
does the packet processing performance scale linearly with the
number of cores?
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Figure 1: NM per-
formance example

These questions are far more
complex than they appear. Taking
a network monitor (NM) function
(see §II-B for more detail) as an ex-
ample, the performance of a single
core (on a 48-core server) is shown
in Fig. 1 using a real packet trace
from [1]. We can see the performance
varies drastically: from as high as 5.5 Mpps (million packets
per second) at some times to only 3.9 Mpps. What con-
tributes to such wild fluctuations in NFV packet processing
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performance? We will see in Fig. 7 later that when scaling
out NM by running multiple instances on multiple cores, the
performance often does not increase linearly with the number
of cores; worst, adding more cores sometimes even hurts the
overall system throughput!

The goal of this paper is to provide deeper insights into these
performance issues. We first present a conceptual framework
to characterize and understand the behavior of individual NFs
in terms of their operations, state and traffic workloads, and
further extend it to multiple NFs executed in a sequence,
namely, a service function chain (SFC). In particular, we
examine the interplay between the NF state, operations and the
workloads and define several induced traffic characteristics and
metrics, e.g., affinity, spatial diversity and temporal locality.
Guided by this framework, we develop a systematic profiling
methodology to conduct extensive micro-benchmarking and
dive deep into the multi-core microprocessor architecture to
study their impact on NF/SFC performance on a single core
as well as NF/SFC scaling performance on multiple cores. The
main findings and contributions are summarized below.
• We show that multi-core server microprocessor architec-

ture, especially cache memory hierarchy, has a huge impact on
NF performance. Apart from the complexity of NF operations
on packets, the NF state is the key factor determining the
number of packets can be processed per core: As the state size
grows beyond the L1/L2 caches, NF performance degrades
quickly, as much as less than half of the peak performance.
This explains the wild fluctuations under varying workload
observed in Fig. 1.
• When scale-out on multiple cores, the traffic dispatching

policy, namely, the strategy & rules used to split and balance,
and distribute the workload among the instances is another
key performance factor. Again the interplay between the NF
state and the workload characteristics defined with respect to
the induced (traffic) affinity plays a critical role. We find that
NF/SFC performance scales linearly with the number of cores
only when the workload can be (near-evenly) partitioned and
balanced among the instances and the (active) state of each
NF instance resides within its (core-dedicated) L1/L2 caches.
Under “non-uniform” workload or when instances have shared
state, scaling performance deteriorates significantly; using
locks to protect shared state can negate the benefit of scale-
out entirely. This is largely because the cores compete for the
shared L3 cache and DRAM resources.
• SFC further compounds the situation, as multiple NFs in

an SFC may have competing and conflicting state requirements



and induce different traffic affinities. Hence what is “uniform”
workload to one NF is “non-uniform” to another, making the
choice of the right traffic dispatching policy more difficult.
Nonetheless, our conceptual framework enables to define
useful (NF-specific) workload characteristics and reason about
the competing resource requirements of NFs in an SFC.
• Last but not the least, using the systematic profiling

methodology to benchmark NF/SFC performance using select
synthetic workloads, we demonstrate how to estimate and
bound NF/SFC performance on diverse workloads via a simple
and yet effective method.

While there have been a flurry of research on developing
various NFV platforms as well as modeling, analysis and
verification of NF/SFC behavior, e.g., via program analysis and
symbolic execution, we believe, to the best of our knowledge,
this is the first systematic look at the impact of server
microprocessor architecture on NFV scaling performance via
microbenchmarking and in-depth cache-level measurements.

II. MULTI-CORE SERVER AND SFC EXECUTION

As a target NFV execution environment in NEC is multi-
core servers, we provide a quick overview of a typical multi-
core server architecture and its NUMA memory hierarchy. We
then briefly present some background on NFV and SFC, with
a simple example SFC used in this paper.

A. Multi-core NUMA Architecture
Fig. 2 schematically depicts a typical (Intel Skylake) multi-

core server architecture with its NUMA memory hierarchy.
This server has two CPU sockets, each with 24 cores. Each
core has its own dedicated L1/L2 caches, and the cores within
a socket have a shared L3 cache (also referred to as the
last level cache, LLC) and other uncore resources such as
integrated memory controller (iMC, to which the main mem-
ory bank DDR4 is attached) and DDIO. Intel DDIO allows
direct transfer data between NICs and LLCs, minimizing main
memory accesses. This is utilized by Intel DPDK [2] to enable
high performance packet processing. While L1 and L2 cache
access latencies are ˜1.2 ns and ˜4.1 ns respectively, we note
that an NF running on a core takes 13-20 ns to access data
stored in the shared local L3 cache in the same socket; this
latency further increases to 29-44 ns when accessing (via UPI
bus) data stored in the non-local L3 cache on the other socket.
In contrast, the typical memory access latency to the local
DRAM is 70 ns, and the non-local DRAM is 125 ns.

The figure also suggests that the multi-core server archi-
tecture – especially, memory access latencies – will have
a significant impact on NFV performance. For example, to
keep up with the line rate of a 10Gbps NIC, the average
per-packet processing time is ˜67ns for minimal 64 bytes
packet size, roughly the same as one local DRAM memory
access latency; with a 40Gbps NIC, this reduces to ˜18ns,
within the range of one L3 cache access. Keeping up with a
100Gbps line rate requires most data accesses confined to the
core-dedicated L1/L2 caches. Unfortunately, the L1/L2 cache
sizes are limited. As where data is stored in the memory
hierarchy has a significant impact on the performance of an
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Figure 2: Multi-core NUMA Server Architecture

NF, profiling NF performance is a nontrivial task. In this paper,
we provide an in-depth examination of NFV performance, with
the goal to develop a systematic framework for profiling and
benchmarking NFV/SFC performance.
B. NFV, SFC Execution and Scaling

As stated in the introduction, NFs are “reactive” programs
that perform operations on packets as they arrive. The op-
erations of an NF on packets are determined by both its
functionality and (control) state. An NF is stateless if it simply
reads its state to determine what to do with a packet, and the
operation on a future packet is independent of those arriving
before it. A simple example is a layer-3 forwarder (L3FW) NF,
which reads its routing/forwarding table to determine where
to route a packet. In contrast, a stateful NF must also update
its state as a result of a decision/operation made on a packet,
which will subsequently influence the decision/operation made
on some future packets. A classical example is a layer-4 load
balancer (L4LB) NF which, upon the arrival of the first packet
of a TPC 5-tuple flow, selects a (backend) server to which it
will be assigned for processing and rewrites the destination IP
address of the packet, which is then forwarded to the selected
server – this decision also results in a new flow entry inserted
into a flow table (the state) that L4LB must maintain; the
destination IP addresses of the subsequent packets belonging
to the same flow must be rewritten with the same server
address so that they can be forwarded to the correct server
for processing. NFs are often strung together to form an SFC,
e.g., L4LB followed by L3FW. Hence given a packet, often
multiple operations from a sequence of NFs must be performed
before it is shipped out of an NFV system.

For simplicity of exposition, we consider the common run-
to-completion (RTC) model for SFC execution, namely, all
NFs in an SFC instance are executed on a single core. It has
been shown [3], [4], [5] that RTC in general yields superior
performance over the alternative pipeline model [6], [7], [8]
(albeit not always the case [5]). This is because RTC avoids
the inter-core transfer penalty when packets are moved from
one core to another core for processing, the latency of which is
at least as much as that of one local L3/LLC access. RTC also
simplifies the problem of SFC scaling – we can simply scale
out SFC by running multiple SFC instances, one per core.
Hence the basic NFV profiling problem reduces to: i) how
much traffic a single SFC instance can process on a single
core; and then ii) the scaling performance on multiple cores.
In this paper we will empirically demonstrate that answering
each of these two questions are not as straightforward as they
may appear. There are many complex factors affecting the
performance of NFs and SFCs, and several challenges must
be addressed when scaling SFC.



To make the exposition both lucid and concrete, we will use
a “toy” SFC with four simple NFs, namely, ACL → NM →
L4LB→ L3FW , as running examples throughout the paper. In
this SFC, two NFs (ACL and L3FW) are stateless and the other
two (NM and L4LB) are stateful. The operations and the state
they maintain are briefly described below: (i) Access control
(ACL) performs flow classification operation using a set of
configured access control rules to decide whether to block a
flow. (ii) Network monitor (NM) maintains a host counter array,
one counter per host (src_ip), to keep track of the number
of packets generated by each host (e.g., for accounting); for
fast look up, we implement the host counter array using a hash
table. (iii) Layer-4 load balancer (L4LB), as mentioned earlier,
assigns a flow id to each flow using a hash function performed
on the packet’s 5-tuple header fields whose information is
stored in the flow table, looks up a flow-to-server table using
the flow id to map each flow to one of the several destination
servers by rewriting the dst_ip and dst_port fields of the
packet. (iv) Layer 3 forwarder (L3FW), also mentioned earlier,
performs exact match by looking up a routing table using a
hash of the destination IP address to find the output interface
and rewrite the packet’s dst_mac field. We have implemented
these simple yet highly optimized NFs using Intel DPDK
libraries 18.11. In particular, the access control function is
implemented using the built-in DPDK ACL library [9]. All
the look up tables are implemented with hash library [10],
where the hash function is CRC-based.

III. CHARACTERIZING NETWORK FUNCTION BEHAVIOR:
KEY FACTORS AND PERFORMANCE METRICS

We present a conceptual framework for characterizing NF
behavior along three dimensions: NF operations, state and
workload (i.e., network traffic). As part of this framework,
we also identify the major factors that affect NF performance
and put forth several performance metrics.

A. NF Operations
The program logic of an NF dictates what operations it

must perform. These operations can be broadly separated into
two kinds: i) operations on packets and ii) operations on the
state; both kinds involve memory accesses. A typical NF will
perform at least one read and one write operations on packets;
at least one read to the state (to look up the state) and may
be also a write operation to the state (for a stateful NF).
For example, the simple stateless NF, L3FW, reads the packet
header, uses it to look up its forwarding table, and then re-
writes the dst_mac field for packet forwarding. In contrast,
the stateful L4LB NF performs multiple read/write operations
both on packets and the state: for each packet, it reads the
5-tuple header fields and maps it to a unique flow id, and
uses the flow id to look up its flow table; if the lookup is
successful, it uses the returned value to rewrite the dst_ip
field of the packet; a failed lookup operation indicates the
packet belonging to a new flow, which results in additional
operations – L4LB looks up the server pool table to select
a server for the new flow, rewrites the dst_ip field of the
packet accordingly, and inserts a new entry in the flow table.

Table I: The State and Operations of 2 Stateful NFs

NFs Scope of NF State # of state # of packet # of (static)
(and induced TAG) operations operations instructions

NM per src ip 1 read, 1 write 1 read 461
L4LB per 5-tuple 2-3 read, 0-2 write 1 read, 1 write 676

One way to quantify the complexity of an NF is to calculate
the number of instructions (e.g., using the tool developed
in [11]) and measure the cycles needed to execute them. The
number of instructions clearly affects the instruction cache
(i-cache) requirement, nonetheless it is a less performance
critical indicator. We also remark that modern servers have
separate i-caches and d-caches (data caches), hence NF in-
structions do not compete for the cache resources as in the case
of NF state and packets (see more discussion below). Instead,
it is far more important to quantify the number of NF memory
accesses, i.e., the number of operations on packets and state,
due to the NUMA memory hierarchy and vastly differing
cache/memory access latencies. In the last three columns of
Table I, we list and compare the numbers of state and packet
operations and the size of instructions for NM and L4LB. We
see that L4LB is relatively more complex than NM – this is
also reflected by the performance results in §IV-B.
B. NF State

Whether stateless or stateful, NF operations are determined
by its state. The size of NF state is a key factor affecting
the performance of an NF, as it determines where in the
memory hierarchy NF state entries may be cached or stored.
In particular, the state of a stateful NF has far significant
impact on NF performance. Each NF state has a scope and
induces traffic affinity: it binds a group of packets together to
the same entry of the NF state – namely, the processing of
these packets triggers access/update to the same state entry –
referred to as the traffic affinity group (TAG). The scope of
NF state determines the (potential) size of TAGs. By default,
the scope of a stateless NF is per-packet, and thus the size
of each TAG is 1. On the other hand, scope of the L4LB
state is per (5-tuple) flow, and hence its TAGs correspond to
packets belonging to individual flows. In contrast, the scope
of the NM state is per host (per source IP address), and hence
its TAG sizes vary depending on how many packets/flows are
generated by each host. The scope of (stateful) NF state and its
granularity have a significant influence on the size of memory
footprints of an NF at various levels (L1/L2/L3) of the cache
hierarchy. For example, as its state is more fine-grained than
that of NM, L4LB may require much more cache resources to
maintain its state (e.g., its flow table) than NM to process the
same collection of packets. When the flow table size exceeds
the L1/L2 cache sizes, part of the state must be stored in the
L3 cache or even DRAM, which are not only slower than the
L1/L2 caches, but also shared by the cores on the same CPU
socket. This creates resource contention among them.

NF state, its scope and the induced TAGs not only affect the
performance of an NF running on a single core, but also have
important implications when scaling NF to multiple cores. A
key issue here is to how to distribute (load-balance) and steer
traffic among different instances of the same NF – this problem
is simply referred to as traffic dispatching. For example, when



scaling NM to multiple instances, is it better to i) distribute
traffic on a per-flow basis and steer the flows randomly to
each NM instance as most existing NFV frameworks using
RTC do [4], [6], or ii) distribute traffic on a per-host basis
and steer all packets with the same source IP address to the
same instance (i.e., observing the TAG boundary)? The former
strategy allows the workload to be more evenly balanced
among the NF instances, but multiple cores now need to access
and update the same state entry (a host counter). In the other
words, the NM state is shared among the cores and needs to
be resident in the L3 cache, creating resource contention and
slower state updates. In contrast, the latter strategy enables
the cores to effectively “divide” the (host) counter array for
exclusive state access. But the workload may not be evenly
balanced among the instances (especially when there are some
“elephant” hosts generating large amounts of traffic), and thus
the cores are not equally utilized. As will be discussed later,
this situation can become far more complex when considering
scaling out an SFC with multiple NFs, which calls for a
systematic methodology for SFC performance profiling.

C. Workload Characteristics
Clearly, the performance of an NF hinges on its workload,

i.e., incoming traffic. As discussed above, the state scope of
a stateful NF induces traffic affinity among packets. Given
a collection of packets, we use the term traffic diversity to
measure the number of state entries, one per TAG, that the NF
must maintain. This yields the total state memory requirement
for processing the given traffic demand. However, the actual
cache requirements will generally be much smaller than the
total state size, and will depend on the cache/memory hierar-
chy footprints of the NF as it processes packets dynamically
as they arrive. Measuring the cache requirements/memory
hierarchy footprints directly is challenging in practice. We
estimate them indirectly by using two metrics: i) the temporal
locality of the traffic workload characterizes how often packets
belonging to the same TAG arrive within a time window
(see §V for a formal metric to measure temporal locality);
and ii) the spatial locality measures how many different
TAGs packets arriving within a time window belong to. These
metrics depend on the measurement time window size and vary
over time, and can be quantified using the average, worst-case
or percentile statistics or modeled as a probability distribution.
Last but not the least, DPDK often transfers a burst of packets
directly from NICs to the LLC/L3 cache. The packets under
processing by an NF also compete with the NF state for the
d-cache resources.

IV. PERFORMANCE PROFILING OF INDIVIDUAL NFS

We conduct experiments to empirically benchmark NF
performance. We start with a single core and then investigate
the issues in scaling NF performance using multiple cores.

A. Testbed and Workload Generation
Before the profiling and experimental results, we first pro-

vide a brief description of the testbed and how we generate the
workload by controlling and varying various characteristics.

Testbed. Our testbed consists of two 48-core servers, each
equipped with a dual-port 100Gbps DPDK-capable NIC. The
servers are directly connected via optical links of 100 Gbps
line rate. Both servers have two sockets (24 cores/socket), with
the same architecture as shown in Fig. 2. CPUs are Intel Xeon
Platinum 8168 @2.7GHz clocked at 3.4GHz. One server is
used to generate packets and send them to the other server
for NF/SFC processing, which sends them back after being
processed. The OS on the server running our DPDK-based
NFV framework is Ubuntu 18.04.2. For both the servers, we
modify the kernel parameters to isolate the CPU cores such
that the Linux kernel does not use those cores for scheduling.
We however leave just one core (core 0) for the OS. Hyper-
threading is disabled. We allocate 256 hugepages of 1GB size
for packet processing, thus each of the two CPU sockets get
128 GB of hugepage memory. Due to space limitation, we will
not delve into the design of our NFV framework. To dispatch
traffic to different cores, we use DPDK’s rte_flow [12]
library to offload the specified traffic dispatching policies
(based on 5-tuple headers) into the hardware NIC.

Workload Generation. We use TRex [13] – one of the
few software-based traffic generators capable of generating
100Gbps traffic (TRex can generate traffic at 100Gbps line rate
consistently using 20 cores). For compatibility, the traffic gen-
erator is installed on the server with CentOS 7.6 distribution.
TRex allows us to generate traffic with diverse characteristics
with controllable rules (“traffic profiles”). For example, we
can fix the total volume of traffic (e.g., #. of packets with a
given packet size), and vary the number of (5-tuple) flows, or
more generally, TAGs. Take the host-level TAGs (of NM) as
an example. We can generate a collection of target TAGs by
setting the source IP range to be 10.0.0.1 - 10.0.0.10,
and randomly produce a given number of 5-tuple flows (or
packets) belonging to these TAGs. This would allow us to
control the total number of state entries in an NF by generating
a certain number of TAGs with maximal traffic diversity
(and worst temporal/spatial locality properties). TRex provides
APIs for us to control and vary the temporal characteristics
of the workload, e.g., by changing the inter packet gap (thus
the # of packets per second), the start time (in terms of
flows or packets in the same workload), or the number of
packets in each flow. TRex can also record the generated
traffic in a pcap trace, and replay a pcap file (e.g., from
previously generated or real traffic trace) for traffic generation.
Given a workload, we can modify the traffic temporal locality
characteristics by reordering flows/TAGs, e.g., by replaying
flows f1 → f2 → . . .→ fn, one by one in a loop (to maximize
temporal locality), or by varying the sets of flows in each time
interval (to control spatial locality).

B. NF Performance Benchmarking on a Single Core

We now examine the impact of NF operations, state and
workload characteristics on the performance of an NF running
on a single core.

Impact of NF Operations. We first determine how many
packets an NF can process on a single core under the best
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scenario by increasing the number of packets while fixing the
numbers of flows/TAGs to ensure that the NF state resides
within the L1 cache. Fig. 3 shows the maximum number of
packets that L4LB and NM running on a single core can process
under different packet sizes. With 64 bytes packet size, L4LB
running on a single core can handle a maximum of 6.9 Mpps,
while NM running on a single core can handle a maximum
of 8.2 Mpps. The performance degrades slightly with larger
packet sizes, as more L3 cache space is needed for holding
them. That L4LB can handle fewer Mpps than NM is not too
surprising. (We remark that with a smaller packet size, an NFV
system must be able to handle more packets so as to keep
up with the 100Gbps line rate. In the following experiments,
unless otherwise stated, the default packet size is 64 bytes). As
shown in Table I, L4LB is slightly more complex, requiring
more memory access operations per packet. The L1 i-cache
is 16KB in our server. As the average instruction length is 64
bits, roughly 2000 instructions can be packed into the cache.
Hence the i-cache typically will not be the bottleneck for NFs
(and SFCs) that contain fewer than 2000 instructions. Instead,
the number of memory-bound operations in an NF is a key
performance critical factor. This will be more evident when we
examine the impacts of NF state and workload characteristics
below.

Impact of NF State. In this set of experiments, we investigate
the impact of the NF state size by varying the number of
flows (L4LB) or the number of (source) hosts (NM) while
fixing the total traffic volume. The results are shown in Fig. 4.
For either NF, as we gradually increase the state size starting
with 10 entries, the performance stays nearly constant until
the state size reaches a critical point (LB0 and NM0 resp.
in the figure) – dubbed the best performance point (BPP)
– and starts dropping rapidly once beyond this point. As
the state size continues to increase beyond another critical
point (LB1 and NM1 resp. in the figure) – dubbed the worst
performance point (WPP), the performance stabilizes and stays
largely constant again. These phenomena can be explained
by examining the memory accesses of the NFs, as shown in
Fig. 5: before BPP, the memory accesses are mostly confined
to the L1/L2 caches, yielding the best performances; between
BPP and WPP, we see that memory accesses are increasingly
bound to the L3 cache and DRAM; beyond WPP, the rate of
DRAM bound memory accuses largely stabilizes for both NFs.
The performance gaps between the two NFs (depicted by d0,
d1) are due to the fact that L4LB requires more memory per
state entry and more memory operations per packet. We see
that performance of NFs is primarily determined by memory
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access speeds. This is true not only for L4LB and NM, but
for a variety of other NFs we have tested (e.g., stateful NAT,
firewall, IDS). This is because NFs typically perform relatively
simple computations on packets (and state) and then ship them
out – this is in contrast to many cloud computing applications
which are often compute-intensive.

Impact of Workload Characteristics. Clearly, traffic diversity
(as measured by the number of TAGs in a given traffic
demand) is intimately related to the NF state, in particular, its
scope – more diverse traffic leads to larger state size. In the
above experiments, packets/flows belonging to different TAGs
are randomly generated; hence the workload thus generated
likely has the worst-case temporal and spatial localities. We
now explore the impact of the temporal locality characteristics
in traffic workload on the performance of an NF by comparing
the “best-case” vs. “worst-case” scenarios. For the “best-case”
scenario, we fix the number of flows/TAGs and generate them
one at a time in a loop (instead of randomly as before): namely,
we generate packets belonging to flow 1/TAG 1 first (either
with a fixed flow/TAG size, or the size randomly drawn from a
distribution), we then move on to generate packets belonging
to flow 2/TAG 2, and so forth; this process is repeated until a
target traffic volume is reached. Fig. 6 compares the L4LB
performance under the worst-case and best-case temporal
localities as we vary the traffic diversity (i.e., the number
of flows). We see that temporal localities in traffic workload
help improve the NF performance, delaying the performance
turning points (BPPs and WPPs). The same observation also
holds for NM. By controlling the spatial localities in traffic
workloads, we obtain similar results. Due to space limitation,
we do not report them here. In §V we will explore these issues
further – in particular, the interplay of NF state and workload
characteristics – in the context of profiling SFC performance.
C. Scaling Out NF Performance

When the traffic demand exceeds what an NF running on
a single core can process, scaling out the NF by running on
multiple cores is necessary. Given the results obtained from
NF performance benchmarking on a single core, would the
overall throughput simply scale linearly with the number of
cores, c? Unfortunately such linear scaling performance can
be attained only for certain types of NFs, e.g., L4LB, with
per-flow (5-tuple flow) TAG. As discussed in §III-B, when the
TAG granularity of a stateful NF is coarser than a flow, a new
question arises: how traffic should be distributed and steered
to multiple instances of an NF? The answer to this question
matters because whenever a TAG is split among multiple cores,
these cores will need to access to and update the same state
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entry of the NF. In other words, the state must be shared
among multiple cores, and therefore the state entries are at best
residents in the L3 cache and worst in the DRAM. If strong
consistency of the NF state is required, locking mechanism
must be employed [14], [15], [16]. This further slows down
the operations of an NF. Hence the strategy used for traffic
dispatching to scale out an NF (and likewise, an SFC) has a
huge impact on its performance.

We use NM as an example to empirically demonstrate the im-
pact of traffic dispatching strategies and shared state on NFV
performance scaling. We generate two traffic workloads with
different characteristics, both with a total of 1000 (src_ip)
TAGs. The first is the “uniform” workload with each TAG
containing an equally number of (5-tuple) flows; the src_ip
of these flows is randomly generated from one of the 1000
TAGs. The other workload is “non-uniform” with half of the
TAGs (“mice hosts”) containing equal number of flows, while
the remaining TAGs (“elephant” hosts) containing 10 times as
many flows as in the “mice” TAGs. Each (5-tuple) flow has
the same number of packets with the frame size of 64 bytes.
The number of cores used in the experiments ranges from 1
to 22, where in each experiment, we gradually increase the
traffic volume until the system is saturated to the best scaling
performance under each setting. In conducting these exper-
iments, we employ Intel Cache Allocation Technology [17]
to provision an equal or proportional fare of the L3 cache
per core to avoid the so-called “noisy neighbor” problem and
ensure performance isolation among the NF instances running
on cores sharing the same uncore resources.

The evaluation results are shown in Fig. 7. The three
plots with markers (•), (5), and (4) correspond to the results
obtained using the uniform workload; for (•) and (5), traffic is
dispatched to each core (an L4LB or NM instance) by observing
the TAG boundary, e.g., on a per-host basis for NM; whereas
for (4), per-flow traffic dispatching is used. Hence in the latter
case, the state is shared among multiple cores; for (4) explicit
locking mechanism is used to ensure strong consistency (i.e.,
before a core can access/update a state entry, it must first
acquire the lock). We see that with the uniform workload and
per-host traffic dispatching, linear scaling performance can
indeed be attained. That the performance flattens out when
using more than 16 cores for NM (versus 20 cores for L4LB
due to their different NF operations) is because the number of
packets have reached the 100Gbps line rate. In other words,
NM can keep up with the 100Gbps line rate with 16 cores
(under the uniform workload and per-host traffic dispatching);
devoting more cores beyond 16 leads to a waste of core
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resources. In contrast, with per-flow traffic dispatching for NM,
devoting more cores does not significantly improve the overall
system throughput; in the case of shared state with locks (4),
NM is capable of processing fewer than 10 Mpps even with
the uniform workload – using more than two cores in fact
degrades the overall system throughput! Finally, the plot with
the (/) marker corresponds to the results obtained using the
non-uniform workload and per-host dispatching. We see that
non-uniform workload degrades the performance of NM: while
the scaling is still approximately linear, NM cannot keep with
the line rate even with 22 cores.

Takeaway. When profiling the performance of an NF, we
must carefully analyze various performance critical factors,
i.e., NF state, operations and workloads, and conduct per-
formance benchmarking under various representative settings.
Importantly, our empirical results suggest that in general per-
TAG traffic dispatching would yield the best performance by
avoiding state sharing. However, we should also note this
may not always be possible: besides the issue of non-uniform
workloads, an TAG may be too big to be processed by a single
core so that state sharing becomes unavoidable.

V. SFC PERFORMANCE PROFILING

In this section we explore the interplay of the performance
critical factors identified earlier and expound on the new issues
that arise when profiling SFC performance. We will use the
four-NF chain presented in §II-B (see also in Fig. 11): ACL
→ NM → L4LB → L3FW, in our experiments.

Competing NF States, TAGs with Differing Granularities,
and Their Interplay with Workload Characteristics. As for a
single NF, we can characterize the complexity of an SFC by
adding up the number of instructions per NF, and in particular,
obtain the total number of packet and state operations that
the SFC must perform on each packet. The total SFC state
requirement can be measured by summing up the size of each
NF state. The new challenge lies in that the stateful NFs in
an SFC have their own scopes and induce TAGs with likely
differing granularities. (Here we can exclude stateless NFs
from consideration – their states only add to the total state size,
but induce no traffic affinity among packets.) How should we
characterize the workload then? The workload characteristics
discussed in §III-C are all defined with respect to the state
scope/TAG. To get around this issue, we consider simply the
finest and coarsest TAG granularities induced by all (stateful)
NFs in an SFC. For the simple four-NF chain, the finest is per-
flow TAGs induced by L4LB, and coarsest is per-host TAG
induced by NM. The finest TAGs lead to more state entries,
and thus have highest state requirements. On the other hand,
the coarsest TAGs (which typically produce largest volumes
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of packets per TAG) are the ones that likely create shared
state entries, and thus serve as a primary performance-critical
factor in deciding on traffic dispatching strategies. We note
that in general there may be multiple finest TAG granularities
as well as multiple coarsest TAG granularities, each defined by
a different set of header fields. A fuller exploration of these
issues and their implications in workload characterization is
beyond the scope of this paper and is left as future work.

Interplay of NF States & Workload Characteristics, and Im-
pact on SFC Performance. Continuing the discussion in §IV-B,
we examine the interplay of NF states and workload charac-
teristics on NF/SFC performance. Earlier we have shown that
the performance of an individual NF decreases as the number
of NF state increases (see Fig. 4). These experiments are
done for randomly generated uniform workloads (with “worst-
case” temporal/spatial localities). We show that the situations
can be more complex in general. We first introduce a unified
metric to measure the temporal locality based on stack distance
used in programming languages [18], [19]. As illustrated in
Fig. 8, a stack is used to emulate a LRU cache (of infinite
size), whose depth is a pre-specified parameter, which we
set as the total state size of NF/SFC. If a flow state is first
referenced, the flow id (state entry) is pushed onto the stack
and its stack distance is set to the stack depth (equals 3 in
Fig. 8); if a packet of the same flow, e.g., packet 5, arrives,
the stack distance of the flow id entry is now 2. We compute
the average stack distance of each state entry (corresponding
to a TAG), and define the (normalized) temporal locality
(TL) as TL = 1

log2(2+avg stack distance) . TL closer to 1
indicates better temporal locality; smaller TL is, worse the
temporal locality. With TL, we are able to accommodate (and
compare) varying temporal localities of TAGs with differing
granularities induced by stateful NFs in an SFC in a single
unified metric.

To systematically generate workloads with varying TL
values, we start with a workload (say, with n flows) and re-
order/re-mix the flows and their packets. As stated earlier,
playing flows one by one yields the best TL value. We can

interleave packets from f1 and f2, and then those of f3 and
f4, etc., to reduce TL slightly. We can carry out this process
with increasing larger groups of flows. When packets from
f1, . . . , fn follow each other one by one, it yields the worst
TL value. This process can be carried out in the same time
with TAGs with coarsest, e.g., by ordering the flows based
on src_ip while mixing the packet orders of the flows.
Likewise, we can vary the state size by changing, e.g., # of
flows or src_ip’s. The following experiments are conducted
using the workloads thus generated. The number of flows
(the finest TAG granularity) is used as a proxy for state size.
Fig. 9 (best viewed in color) compares the performance of
the four-NF SFC as a function of TL. We see that increasing
temporal locality improves the SFC performance – there is a
temporal locality critical point (marked as TLx) for each given
state size x beyond which the SFC can always attain the best
performance. The same results are re-plotted in Fig. 10 as a
function of state size. We see that the BPP identified in Fig. 4 is
also determined by the TL in the workload: higher TL delays
BPP, beyond which SFC performance degrades rapidly; this
also indicates that with higher TL, fewer memory accesses
are L3/DRAM-bound.

Scaling SFC: Traffic Dispatching for Minimizing Shared
State vs. Load Balancing. In studying scaling individual
NFs, we have shown that shared state incurs a significant
performance penalty; it is best to use a traffic dispatching
strategy to minimize the shared state. When scaling SFC,
the situation becomes more complex. We illustrate using the
four-NF SFC: if we dispatch traffic per-host using src_ip,
coarsest TAG induced by NM, we avoid sharing any state.
However, a per-host TAG may contain a large number of (5-
tuple) flows – the finest TAG induced by L4LB – which causes
the state size to exceed the BPP (cf. Fig. 4) and therefore an
increasing rate of L3/DRAM bound memory accesses. This
will slow down the performance of a core operating on such a
per-host TAG. We first note that if the workload is highly
uniform, i.e., the average number of flows in the per-host
TAGs is (nearly) the same, then per-host traffic dispatching
is still the best strategy. This is shown in Fig. 12 where the
blue dot plot corresponds to the performance of the four-NF
SFC with the uniform workload. Here the uniform workload
contains 20 per-host TAGs, each with an equal number of
flows; we increase the number of flows (per host-TAG) and
devote more cores to scale out the SFC. We see that using
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the per-host traffic dispatching strategy, we are able to attain
linear performance scaling in this case. Now we investigate
what happens when the workload is non-uniform. We generate
a non-uniform workload also containing 20 per-host TAGs,
but half of them containing 10 times as many flows as the
other half. We consider two dispatching strategies and the
results are shown in Fig. 12: the per-host strategy (the orange
square plot) and the per-flow (w/o lock) strategy (the green
diamond plot). Here under the per-host strategy, all (host)
TAGs assigned to some cores are “elephant” hosts. We see
that with such a non-uniform workload and per-host traffic
dispatching strategy, its scaling performance is, in fact, worse
than the per-flow traffic dispatching strategy despite that the
latter introduces shared states. This is because the loads of the
cores under the per-host strategy are not balanced. This can be
seen in Fig. 13, where the average number of DRAM-bound
accesses per packet of a light-loaded core ‘B’ vs. a heavy-
loaded core ‘A’ under the per-host strategy are shown; for
comparison, the number of DRAM-bound memory accesses
of two cores under the per-flow strategy are also shown, which
is balanced with fewer DRAM-bound accesses per packet.
Hence when devising traffic dispatching strategies for scaling
out SFC, we must take into account the trade-off between
shared state vs. load balancing. For reference, the results for
the per-flow (w/ lock) strategy are also plotted in Fig. 12
(the red stars). If strong consistency is required, better state
management mechanisms are needed, e.g., by using lockless
data structures [20], [21].

Takeaway. Profiling SFC performance not only requires
measuring the overall SFC operational complexity and state
requirements, but also quantifying the interplay of stateful
NF states in an SFC and workload characteristics. Generating
representative workloads that can account for the competing
and sometimes conflicting NF states, TAGs of differing gran-
ularities and their impact on SFC performance is important.
When scaling out SFC, we must also carefully consider the
trade-offs between shared state and unbalanced loads so as to
devise better traffic dispatching strategies.

VI. PERFORMANCE BOUNDS AND EVALUATION

We put forth a simple method for profiling, estimating and
bounding NF/SFC performance on a multi-core server under
diverse target workloads.

Basic Methodology. The first step is to understand the
expected throughput achieved by running the SFC on a single
core, given a target traffic demand W and an SFC instance
to be executed on this target demand. Here we assume that
we have some knowledge of the workload statistics and

characteristics (e.g., obtained from past network data) that can
be used to guide us in generating synthetic workloads with
matching workload characteristics. Our methodology obtains
an upper bound and a lower bound on the SFC performance
on a single core by looking up a performance profile table.

This profile table is obtained by generating synthetic work-
loads with varying state sizes (as measured by the number of
5-tuple flows) and normalized temporal localities in discrete
increments, and then benchmark the SFC performance on a
single core using these workloads. The synthetic workload
generation and SFC benchmarking processes are similar to
what we have used in generating the results in Figs. 9 &
10. Now given a target traffic demand with the workload
characteristics characterized by, say, the expected number of
flows per second, wl, and TL value, tl, we use these two
parameters to look up the performance profile table to find
two closest points within which (wl, tl) falls: (ŵl1, t̂l1) and
(ŵl2, t̂l2) such that ŵl1 ≤ wl ≤ ŵl2 and t̂l1 ≥ tl ≥ t̂l2.
The corresponding performance measures, P (ŵl1, t̂l1) and
P (ŵl2, t̂l2) produce an upper and a lower bound on P (wl, tl),
the SFC performance on the target workload using a single
core. Here we assume that the target workload falls within the
throughputs achievable by the SFC on a single core.

The final step of our methodology aims to provide the
scaling performance bound for SFC instances running on n
cores. As shown in §IV&V, if cores share the state with lock,
the overall performance is bounded by the shared state and
almost won’t scale up with the increase of the cores. Otherwise
without shared state, the key factor affecting the scaling per-
formance becomes the traffic dispatching strategy. We present
how to obtain the lower and upper scaling performance bound
under the following two situations. One situation assumes
a traffic dispatching strategy is given, then we model the
performance bound for the given strategy and workload. With
n cores, the target demand is divided into n sub-workloads,
{w̄i, i = 1, . . . , n}. As our performance profile table has
provided the bound for core i the steered workload wi, where
we mark the lower bound as p(wi) and the upper bound as
p(w̄i). The scaling performance for n cores P is bounded by∑n

i=1 p(wi) ≤ P ≤
∑n

i=1 p(w̄i). Another situation where we
are allowed to select a best traffic dispatching strategy from a
set of policies pre-specified, we can repeat the process of the
first situation for each dispatching policy and select the best
estimates as the final bounds.

Case Study using Real Traffic. We evaluate the estimates
produced by the simple profiling model using a real network
packet trace of (˜1Tb) from [1]. We divide the dataset into mul-
tiple segments of varying sizes and workload characteristics.
The statistics (the number of flows and normalized temporal
locality) for 8 sample workload segments are shown along
the x-axis of Fig. 14. To obtain the real performance results,
we run the four-NF SFC on these workloads. The results are
shown in Fig. 14 as marked by the green × markers. The
corresponding estimated upper and lower bounds obtained by
looking up the performance profile table are shown in Fig. 14
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with the 4 and O markers. We see that for these 8 workloads,
the performance obtained from experiments on the real traffic
falls within the upper and lower bound estimates. These results
show both the validation of our methodology and the accurate
of the performance profiling model.

VII. RELATED WORKS

NFV performance profiling. Based on static program analy-
sis, Bolt [11] employs source code analysis of NFs to generate
performance contracts and [22] generates the adversarial work-
load instead of typical benchmarking workload to quantify
worst-case performance for NFs. Both of these works ignore
the scaling issues. Works [23], [24], build runtime framework
to diagnose NFV performance but focus on anomaly detection.
In particular, [25] investigated the performance under various
attack traffic but only for single NF Deep Packet Inspection
(DPI), while our framework focus on normal workloads and
is general to different NFs and SFCs. Other relevant to our
work are those in [26], [27] which examine the impact of
multi-core NUMA architecture on NFV performance. None
of those works above take both the competing NF states, dif-
ferent granularities of TAGs and their interplay with workload
characteristics into consideration while profiling, which are
part of key insights provided by this paper.

NFV scalability. One key challenge in scaling SFC is NF
state management, which have been investigated in several
studies [15], [16], [14]. Different mechanisms, such as in-
memory data store [15], [14] and distributed shared space [16]
are proposed to improve the scaling performance of NF. While
these studies provide valuable insights to our work, they do
not consider the impact of fine-grained state resources re-
quirements on NF performance. Our work takes both the SFC
specific constraints and micro-architecture of multi-core server
into consideration, towards the first step to systematically
identify the critical factors for scaling performance.

VIII. CONCLUSION
We have presented a conceptual framework to characterize

NF/SFC behavior with an accompanying set of key concepts
and metrics. To the best of our knowledge, our study is
the first that illuminates various key factors affecting NFV
performance in a multi-core server environment and identifies
the key challenges in profiling and scaling SFC performance.
Based on the observations and results obtained, we put to-
gether a systematic methodology to guide network operators
in profiling the performance of individual NFs and SFCs.
Our results shade lights on future NFV research directions,
e.g., developing automated NFV performance profiling and
adaptive runtime systems that dynamically provision system
resources for NEC to meet changing traffic demands.
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