


significantly decrease by offloading whole-body control to

the edge, communication loss or delays are an important

challenge as these feedback controllers are very susceptible

to delays to maintain proper operating conditions and resist

unexpected disturbances. This is especially important for

legged robots that need to walk in uncertain environments.

In this work, we propose and study the first edge-based

whole-body controller over a 5G communication link capable

of handling communication loss and delays as depicted in

Fig. 1. Our approach provides an efficient local control

algorithm to enhance the performance of a purely remote

controller in face of delays. The algorithm separates the

computationally expensive part of the control problem and

approximates it with a linear feedback controller based

on previously obtained information from the external, full

capacity controller. Together with the local information mea-

sured by the robot, it creates an approximately optimal con-

trol command to reduce the violation of task constraints and

thus achieve the tasks in the presence of delays. We present

a complete simulation environment including a realistic 5G

communication model and rigid-body dynamics. Extensive

simulations demonstrate the capabilities of the approach for

bipedal balancing and walking tasks in disaster response and

manufacturing environments.

II. BACKGROUND

A. Task-space inverse dynamics

In recent years, optimization-based task-space inverse dy-

namics [15]–[18] has become ubiquitous for the control of

legged robots as it provides a simple yet principled way

of formulating task-space inverse dynamics problems as

Quadratic Programs (QPs); and more importantly, allows

more flexible task descriptions using inequality constraints

(e.g. to impose actuation limits or friction cone constraints).

Denoting the robot configuration as q ∈ SE(3)×R
j , the

joint torque as τ ∈ R
j , where j is the number of the joints,

the dynamics of a robot in rigid contact can be written as

Mq̈ + h = STτ + JT

c f (1a)

Jcq̈ + J̇cq̇ = 0 , (1b)

where M is the generalized inertia matrix; h is a vector of

generalized forces including gravity, centrifugal and Coriolis

forces; ST maps actuated joints torques to the generalized

coordinates; f denotes the contact forces, and Jc is the

Jacobian of the contact points.

A task function s(q) maps the robot configuration to the

task space, and a desired closed-loop task-space controller

is given by s̈∗. For example, s(t) can be the Center of

Mass (CoM) position; and s̈∗ would be the desired CoM

acceleration computed from a desired closed-loop CoM

dynamics. Task-space inverse dynamics aims to find q̈, τ, f
that satisfy physical consistency constraints while achieving

several tasks as well as possible, i.e. getting s̈ − s̈∗ as

small as possible in the least-square sense. Note that τ is

uniquely determined by q̈, f from (1a) and that the dynamic

consistency equation can be reduced to a 6D equation [17]

by considering only the unactuated part of the dynamics. The

problem can therefore be formulated as a QP solving for the

stacked variable y = (q̈, f) ∈ R
n

minimize
y=(q̈,f)

1

2

∑

i

ωi

∥

∥

∥
Jiq̈ + J̇iq̇ − s̈∗i

∥

∥

∥

2

(2a)

subject to Ay ≤ b , (2b)

where ωi > 0 weights the relative importance of each task

and Ji =
∂si
∂q

is the Jacobian of task i that satisfies ṡi = Jiq̇.

Eq. (2b) summarizes all equality and inequality constraints

by stacking K constraints aTky ≤ bk, ∀k = 0, 1, . . . ,K into

the matrix A and the vector b, including the dynamic and

contact constraints equations (1). Note that in this section we

only describe kinematic tasks depending on q̈ for simplicity

but force tasks depending on f can be similarly formulated

and all results presented in the following trivially carry over

to this case.

B. Active-set method

We solve the constrained QP (2) using an active-set

method. Given y, a constraint aTky ≤ bk is called active

when aTky = bk. The active set A contains thus all equality

constraints and the inequality constraints that are satisfied

with equality, i.e. aTky = bk, ∀k ∈ A. Starting from an initial

guess of the active-set, an equality constrained problem

minimize
y=(q̈,f)

1

2

∑

i

ωi

∥

∥

∥
Jiq̈ + J̇iq̇ − s̈∗i

∥

∥

∥

2

(3a)

subject to Āy = b̄ , (3b)

is solved at each iteration of the active-set search. Ā and b̄
represent the constraints in the current iterate of the active

set. If at the current solution y∗ to (3), there are inequality

constraints being violated, one of them will be added (acti-

vated) to the active set. Otherwise, an inequality constraint

that prevents the solution from going closer to the optimum

will be removed (deactivated). The algorithm converges if no

inactive violated constraints remain and no active constraints

need to be deactivated. At this point the optimal active-set

Aopt is found, and we denote by Āopt, b̄opt the stacked matrix

and vector of the constraints aTky = bk, ∀k ∈ Aopt.

The solution y∗ to (3) is found by the Nullspace

method [19]. A structured formulation is given by the

publicly available solver in [14]: here the solution

y∗ = A‡b (4)

is found with the hierarchical inverse A‡. A and b denote

the stacked matrix and the stacked vector

A =
[

ĀT w1J
T

1 . . .
]T

(5)

b =
[

b̄T w1(−J̇1q̇ + s̈∗1)
T . . .

]T

, (6)

respectively. Note that A‡ is only given implicitly when

computing y∗ by a forward recursion using the Hierarchical

Complete Orthogonal Decomposition (HCOD) of A. This is

implied throughout the paper when using the expression A‡.

The computation of the HCOD requires O(2n3) operations,

while the complexity of the forward recursion is O(n2)
with n being the number of decision variables. This scheme



is potentially applicable to hierarchical problems with any

number of priority levels.

In the following, A‡
opt is associated to the HCOD of the

optimal active set Āopt, b̄opt found for (3).

C. 5G Cloud Edge Computing

Our goal is to study robotic control in scenarios where

some of the computation is offloaded to an edge server

over a 5G mmWave wireless link. The basic model is

shown in Fig. 1. The robot is equipped with a wireless 5G

mobile device, called the User Equipment (UE), which is

functionally similar to a smartphone. The UE communicates

wirelessly to a base station over a mmWave channel. In

5G terminology, the base station is called the gNB [20],

[21]. The mmWave bands are a key component of the 5G

standard which use high bandwidth signals transmitted in

narrow electronically steerable beams. These signals offer

massive peak rates (> 1Gbit/s) with very low latency (1–

2ms) over the airlink.

The latency over the airlink (the wireless connection

between the UE and gNB) is not the only component of

delay. In a traditional 4G cellular network, data must be

typically routed to centralized gateway before it can access

any third-party cloud services [22], [23]. This architecture

can add considerable delay—often in excess of 40ms [7].

To enable low end-to-end delay, 5G networks can combine a

low latency airlink with mobile edge cloud architecture [4].

As shown in Fig. 1, data from the base stations can be routed

to a mobile edge server that can host edge cloud services that

have much lower delay to the base stations—potentially as

low as a few milliseconds, depending on the deployment. As

per the latest 5G system architecture [24] defined by 3GPP

the 5G Core Network selects a User Plane Function (UPF)

close to the UE and executes the traffic steering from the

UPF to the local Data Network via a N6 interface.

The basic problem we consider in this work is how to

partition the control between the local computation on the

robot and remote computations on the edge server. The key

challenge is that, while 5G mmWave links offer very high

peak rates, the signals are intermittent due to blockage as

discussed in the introduction [9]–[12]. Thus, we wish to find

distributed control policies that can exploit low-latency cloud

resources when the wireless links are available, but are robust

during blockage and outage events.

III. LOCALLY ASSISTED REMOTE WHOLE-BODY

CONTROL

A. Structure of the QP solution

The QP solution (4) has several interesting properties:

First, the matrix A‡
opt depends only on the task Jacobians Ji

and the optimal active set normal Āopt. The matrix Āopt will

change as a function of q and q̇, but this change—similarly to

the Jacobians—will be rather slow. Thus, the matrix A‡
opt will

not change too much in a short period of time as long as the

optimal active set Aopt remains the same. This implies that

a delayed A‡
opt will still approximately enforce all the active

constraints if bopt is updated sufficiently fast. Fortunately,

bopt only depends on the generalized forces h, the robot

state q, q̇, the task reference s̈∗, the task Jacobian Ji, and

its time derivative J̇i. These quantities can all be stored

and updated efficiently without querying a remote server,

as forward kinematics and Jacobian computations can be

done in O(n), where n is the robot’s number of Degrees

of Freedom (DoFs). Constructing bopt from these quantities

also only requires basic matrix operations that a low-power

on-board computer can easily execute. Notably, all the error

feedback terms are contained in bopt which therefore renders

it the most important quantity for control, while the matrix

A‡
opt can be seen as a projector that changes slowly.

These properties naturally partition the optimal control

command into two parts:

1) the computation of A‡
opt which is expensive but less

susceptible to delays; and

2) the construction of bopt which contains the error feed-

back terms and is latency-critical but can be done

efficiently.

In this paper, we propose to offload the active-set search

and the computation of A‡
opt to the remote server, while

updating bopt locally on the robot. If the robot fails to recover

the latest decomposition A‡
opt due to communication delays

or packet loss, we approximate it with the most recently

received one. This still enables us to perform feedback con-

trol for all the tasks and to approximately enforce previously

active inequality constraints.

B. Control scheme

These insights together give rise to the following control

scheme illustrated in Fig. 2. At any time t, the robot

maintains a cache of the decomposition Â
‡

opt and the optimal

active set Âopt from the most recently successful communi-

cation with the remote server, and the robot measures its

state q, q̇ and constructs the vector bopt; then it sends q, q̇
to the remote controller to solve the full QP problem (2).

Meanwhile, the robot computes the approximate command

ŷ = Â
‡

optbopt .

Note that the active-set search is not continued according to

the changed right hand side bopt as it is potentially expensive

if a lot of active-set iterations are necessary. Instead, the last

found optimal active-set Âopt is used when computing the

approximate solution.

At time t + d, the robot receives a new decomposition

A‡
opt and the new optimal active set Aopt from the remote

controller, where the delay d depends on the communication

channel. The local cache is updated accordingly. Note that

this solution may not have been computed based on the state

q, q̇ measured at time t due to the previous delays.

Given the period of the control loop T (e.g. T = 1ms),
we can set a desired threshold 0 < d∗ < T such that the

robot applies a control command

y =

{

A‡
optbopt if d < d∗

ŷ otherwise .
(7)

At time t+ T , the process described above repeats.



y = ̂A‡
opt

b
opt

if time ≤ t + d*

A‡

opt
, #opt

time local remote

t + d

̂A‡
opt

, #̂opt

q, ·q

if time ≥ t + d*

t

y = A‡

opt
b

opt
̂A‡
opt

← A‡

opt #̂opt ← #opt

Fig. 2: Communication and computation flow between the

robot and the edge computer in the proposed control scheme.

C. Handling contact switches

The control scheme described above relies on the as-

sumption that the optimal active set does not change when

the communication delay occurs. This assumption is plau-

sible for tasks where no contact is broken or established

when blocking events occur, such as balancing without

external disturbances. However, for contact-switching tasks

such as walking, this assumption becomes problematic for

two reasons 1) the contact switches introduce very different

constraints and thus different optimal active sets; and 2) even

in the same contact mode, when the robot approaches the

contact switch, the optimal active set changes more fre-

quently due to the friction cone constraints being activated.

To resolve the first issue, we pre-compute the solution to

the new contact mode shortly before the contact switch by

imposing the new contact constraints on the current robot

state. This gives a valid approximation for low-speed loco-

motion because the state of the robot q, q̇ shortly before and

after the contact switch is similar. The solution differs mostly

due to the different contact forces and the corresponding

constraints. Therefore, if the contact switch does happen and

we have not yet obtained the corresponding optimal solution

from the remote server, we can use the pre-computed solution

and approximately enforce the new constraints. On the

other hand, for highly dynamic locomotion, the generalized

velocity q̇ may change significantly across contact switches;

to tackle this issue, a more sophisticated prediction of the

state q, q̇ is required, which we leave for future work.

While this pre-computation can in principle be performed

on the edge computer, it has to be completed before the

contact switch occurs. However, it is difficult to have a delay

upper bound in the 5G network and this upper bound might

anyway be too large compared to the timing of one step.

In this case, we additionally use the on-board computer to

perform the pre-computation. As we assume that the on-

board computer has very limited computational capabilities,

the QP needs to be started several control cycles prior to the

switch. The delay introduced by the on-board computation

can be considered upper-bounded by a constant in practice

as will be shown in the simulation experiments.

The second issue can also be mitigated in a similar

manner—we can solve the full QP problem (2) on-board

as well when the contact switch is happening, as the optimal

active set is more likely to be similar in a shorter period.

In our implementation, in the time window of length

100ms centered at the planned contact switch time, we

perform all computation—including the full QP, the local

controller, and the pre-computation (once per contact switch)

of the next contact mode—locally, i.e. on the on-board

computer. Note, in this case we choose to solve the full

QP every 5ms due to limited computational capacity. In

addition, the pre-computation will be initiated 10ms before

the planned contact switch time. The aforementioned choice

of numbers is reasonable for our simulated low-power on-

board computer, as later simulation experiments will show

that it takes less than 3ms to solve the full QP locally in the

worst case. We do still query the remote server to solve the

full QP at the same time, so that we get better approximation

when the communication with the server is faster than the on-

board computation. The increase in on-board computational

complexity is minimal as full QPs are only solved on-board

in a short period of time around contact switches at a much

lower speed than the control frequency.

It is worth noting that the way we handle contact switches

as described above heavily relies on the accurate knowledge

of when and how the contact switch will happen, resulting

in lack of robustness of our approach to unexpected con-

tacts. However, a principled handling of unexpected contact

switches is still an open problem for optimization-based

task-space inverse dynamics controllers even without control

delays. Addressing this issue therefore goes beyond the scope

of this paper and we leave the question of robustness to

unexpected contact changes to future research.

IV. SIMULATION EXPERIMENTS

In the following simulation experiments, we compare our

locally assisted remote control scheme (LA) with a purely

remote control scheme (PR). PR sends the measured robot

state to the remote controller to compute the optimal solution.

If the robot does not recover the latest command from

the remote controller, executes the most recently received

command. The goal of these experiments is to demonstrate

that our approach significantly improves robustness to delays

with limited computational overhead.

The simulation experiments consist of robot balancing and

walking tasks under two different delay settings: constant

delays and simulated stochastic delays in 5G networks.

The simulations were conducted on an Intel Xeon CPU at

3.7GHz. The on-board computer of the robot is emulated

by restricting the computation to a single core of the CPU at

1.2GHz. We simulate the 37-DoF humanoid robot Romeo

and use Pinocchio [25] for rigid body dynamics computation.

A. Robot tasks

Our control scheme is evaluated on two typical tasks for

legged robots, namely balancing and walking.

1) Balancing The task is achieved by stabilizing the CoM

of the robot while maintaining rigid contacts between





once and does not wait for any acknowledgement or ensure

packet delivery. Since our robotics automation loop discards

any packet that does not meet the specified time constraints,

re-transmission would only lead to excessive bandwidth

consumption and cause more delay.

Fig. 4 shows an instance of the delay profile in each of

the scenarios under these assumptions. We generated 100
different delay profiles for each scenario by randomizing the

initial positions of the robot and the blockages. The delay

profiles are then introduced into the robotics simulator to

assess the effect of the delay.

C. Metrics

We examine the control performance by measuring the

average CoM tracking error and the average violation of the

rigid contact constraint

1

N

N
∑

n=0

‖p− pd‖ and
1

N

N
∑

n=0

∥

∥

∥
Jcq̈ + J̇cq̇

∥

∥

∥
,

where N is the total number of the simulation steps; p and pd
denotes the actual and desired CoM position; the time indices

are dropped for notational simplicity. Due to symmetry, we

only report the constraint violation of the left foot for the

balancing task; for the walking task, we report the constraint

violation of the support foot.

Finally, whether a robot falls or not is used as a qualitative

metric to determine the failure or success of a task execution.

D. Results

a) Constant delays: Table II and Table III report the

performance of PR and LA in the balancing task and the

walking task respectively. The infinity symbol ∞ in the

tables indicates that the robot fell. The last row of the tables

shows the maximal tolerable delay for LA to achieve the

task without the robot falling. Recall that we require on-

board computation for the walking task—here we simply

assume that the on-board computation causes the same

respective constant delays; for instance, a 25ms constant

delay means that we solve the full QPs onboard every

25ms. Different constant delays can be interpreted as the

usage of different on-board computational capacities. Across

all delay levels, LA had lower tracking error and lower

constraint violation than PR. The maximal tolerable constant

delay was significantly increased by incorporating the local

controller in both the balancing task and the walking task.

An important implication of this result is that our approach

can also be used to address the delay caused by limited on-

board computational resources if the on-board computation

scheme is properly scheduled to produce bounded delays,

enabling purely local optimization-based whole-body control

on a low-power on-board computer. It is thus interesting for

future research to investigate the control performance and

power consumption of such schemes compared to our locally

assisted remote control scheme.

b) Simulated delays with blockage: As described in

Sec. IV-B, we simulated two different scenarios and gener-

ated 100 delay profiles for each scenario. For the balancing

task, both the naive remote controller PR and LA managed to

TABLE II: Balancing task performance of PR and LA under

various constant delays. The last row shows the maximal

delay LA can tolerate.

Delays
CoM error [cm] Constraint violation [m/s2]
PR LA PR LA

0ms 1.30 1.30 0.00 0.00
10ms 1.35 1.34 2.18 0.04
20ms 1.43 1.38 2.17 0.04
30ms 1.63 1.46 2.21 0.05
40ms 2.21 1.57 2.40 0.05
50ms ∞ 1.73 ∞ 0.06
90ms ∞ 2.53 ∞ 0.16

TABLE III: Walking task performance of PR and LA under

various constant delays. The last row shows the maximal

delay LA can tolerate.

Delays
CoM error [cm] Constraint violation [m/s2]
PR LA PR LA

0ms 1.68 1.68 0.00 0.00
3ms 4.52 1.68 5.21 0.02
5ms ∞ 1.71 ∞ 0.03
25ms ∞ 1.89 ∞ 0.41

keep the robot in balance with high success rate. However,

even though PR was able to complete the task, LA was still

advantageous in the sense that it reduced the CoM tracking

error and the constraint violation. As shown in Fig. 5, the

constraint violation was significantly reduced except when

the robot was being pushed.

For the walking task, we simulated on-board full QP

computation as described in Sec. III-C by restricting the

computation on a single core of the CPU at 1.2GHz within

a time window of length 100ms centered at the planned

contact switch time. In addition, the pre-computation for

contact switch was initiated 10ms before the contact switch.

While real hardware implementation will be required to

obtain a better estimate of the delay upper bound, 10ms
is a reasonable value as we will show later that the full QP

for the tasks can be solved in less than 3ms on a single

core of the CPU at 1.2GHz. The experiments have shown

that the naive approach PR could not prevent the robot from

falling on the ground in either of the scenarios, while LA

completed the walking task with a lower success rate in the

smart factory scenario. This suggests that higher delay peaks,

even with less frequent occurrence, is more damaging to the

control performance than frequent delay peaks of smaller

magnitude. This is particularly relevant when there is a large

change in the optimal active set, for example when changing

contacts.

Fig. 6 illustrates the control performance of LA in one

instance of the smart factory scenario. It can be seen that

there is a correlation between higher delays and larger

constraint violation; especially around 0.5 s and 4.2 s the

two delay peaks have caused very large constraint violation.

On the other hand, while the pre-computation of the contact

switch caused large discrepancy between the cached and the

true optimal active set, the control performance was not

significantly deteriorated due to the effective lower delay

permitted by the on-board computation of full QPs.






