
Neural Lyapunov Control

Ya-Chien Chang
UCSD

yac021@eng.ucsd.edu

Nima Roohi
UCSD

nroohi@eng.ucsd.edu

Sicun Gao
UCSD

sicung@eng.ucsd.edu

Abstract

We propose new methods for learning control policies and neural network Lyapunov
functions for nonlinear control problems, with provable guarantee of stability. The
framework consists of a learner that attempts to find the control and Lyapunov
functions, and a falsifier that finds counterexamples to quickly guide the learner
towards solutions. The procedure terminates when no counterexample is found by
the falsifier, in which case the controlled nonlinear system is provably stable. The
approach significantly simplifies the process of Lyapunov control design, provides
end-to-end correctness guarantee, and can obtain much larger regions of attraction
than existing methods such as LQR and SOS/SDP. We show experiments on how the
new methods obtain high-quality solutions for challenging robot control problems
such as path tracking for wheeled vehicles and humanoid robot balancing.

1 Introduction

Learning-based methods hold the promise of solving hard nonlinear control problems in robotics.
Most existing work focuses on learning control functions represented as neural networks through
repeated interactions of an unknown environment in the framework of deep reinforcement learning,
with notable success. However, there are still well-known issues that impede the immediate use of
these methods in practical control applications, including sample complexity, interpretability, and
safety [5]. Our work investigates a different direction: Can learning methods be valuable even in
the most classical setting of nonlinear control design? We focus on the challenging problem of
designing feedback controllers for stabilizing nonlinear dynamical systems with provable guarantee.
This problem captures the core difficulty of underactuated robotics [25]. We demonstrate that neural
networks and deep learning can find provably stable controllers in a direct way and tackle the
full nonlinearity of the systems, and significantly outperform existing methods based on linear or
polynomial approximations such as linear-quadratic regulators (LQR) [17] and sum-of-squares (SOS)
and semidefinite programming (SDP) [21]. The results show the promise of neural networks and
deep learning in improving the solutions of many challenging problems in nonlinear control.

The prevalent way of stabilizing nonlinear dynamical systems is to linearize the system dynamics
around an equilibrium, and formulate LQR problems to minimize deviation from the equilibrium.
LQR methods compute a linear feedback control policy, with stability guarantee within a small
neighborhood where linear approximation is accurate. However, the dependence on linearization
produces extremely conservative systems, and it explains why agile robot locomotion is hard [25].
To control nonlinear systems outside their linearizable regions, we need to rely on Lyapunov meth-
ods [13]. Following the intuition that a dynamical system stabilizes when its energy decreases over
time, Lyapunov methods construct a scalar field that can force stabilization. These fields are highly
nonlinear and the need for function approximations has long been recognized [13]. Many existing
approaches rely on polynomial approximations of the dynamics and the search of sum-of-squares
polynomials as Lyapunov functions through semidefinite programming (SDP) [21]. A rich theory
has been developed around the approach, but in practice the polynomial approximations pose much
restriction on the systems and the Lyapunov landscape. Moreover, well-known numerical sensitivity

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

issues in SDP [18] make it very hard to find solutions that fully satisfy the Lyapunov conditions. In
contrast, we exploit the expressive power of neural networks, the convenience of gradient descent for
learning, and the completeness of nonlinear constraint solving methods to provide full guarantee of
Lyapunov conditions. We show that the combination of these techniques produces control designs
that can stabilize various nonlinear systems with verified regions of attraction that are much larger
than what can be obtained by existing control methods.

We propose an algorithmic framework for learning control functions and neural network Lyapunov
functions for nonlinear systems without any local approximation of their dynamics. The framework
consists of a learner and a falsifier. The learner uses stochastic gradient descent to find parameters
in both a control function and a neural Lyapunov function, by iteratively minimizing the Lyapunov
risk which measures the violation of the Lyapunov conditions. The falsifier takes a control function
and Lyapunov function from the learner, and searches for counterexample state vectors that violate
the Lyapunov conditions. The counterexamples are added to the training set for the next iteration of
learning, generating an effective curriculum. The falsifier uses delta-complete constraint solving [11],
which guarantees that when no violation is found, the Lyapunov conditions are guaranteed to hold
for all states in the verified domain. In this framework, the learner and falsifier are given tasks that
are difficult in different ways and can not be achieved by the other side. Moreover, we show that the
framework provides the flexibility for fine-tuning the control performance by directly enlarging the
region of attraction on demand, by adding regulator terms in the learning cost.

We experimented with several challenging nonlinear control problems in robotics, such as drone
landing, wheeled vehicle path following, and humanoid robot balancing. We are able to find new
control policies that produce certified region of attractions that are significantly larger than what can
be established previously. We provide a detailed analysis of the performance comparison between the
proposed methods and the LQR/SOS/SDP methods.

Related Work. The recent work of Richards et. al. [24] has also proposed and shown the effectiveness
of using neural networks to learn safety certificates in a Lyapunov framework, but our goals and
approaches are different. Richards et. al. focus on discrete-time polynomial systems and the use of
neural networks to learn the region of attraction of a given controller. The Lyapunov conditions are
validated in relaxed forms through sampling. Special design of the neural architecture is required
to compensate the lack of complete checking over all states. In comparison, we focus on learning
the control and the Lyapunov function together with provable guarantee of stability in larger regions
of attraction. Our approach directly handles non-polynomial continuous dynamical systems, does
not assume control functions are given other than an initialization, and uses generic feed-forward
network representations without manual design. Our approach successfully works on many more
nonlinear systems, and find new control functions that enlarge regions of attraction obtainable
from standard control methods. Related learning-based approaches for finding Lyapunov functions
include [6, 7, 10, 22]. There is strong evidence that linear control functions are all we need for
solving highly nonlinear control problems through reinforcement learning as well [20], suggesting
convergence of different learning approaches. In the control and robotics community, similar learner-
falsifier frameworks have been proposed by [23, 16] without using neural network representations.
The common assumption is the Lyapunov functions are high-degree polynomials. In these methods,
an explicit control function and Lyapunov function can not be learned together because of the bilinear
optimization problems that they generate. Our approach significantly simplifies the algorithms
in this direction and has worked reliably on much harder control problems compared to existing
methods. Several theoretical results on asymptotic Lyapunov stability [2, 4, 3, 1] show that some
very simple dynamical systems do not admit a polynomial Lyapunov function of any degree, despite
being globally asymptotically stable. Such results further motivates the use of neural networks as a
more suitable function approximator. A large body of work in control uses SOS representations and
SDP optimization in the search for Lyapunov functions [14, 21, 9, 15, 19]. However, scalability and
numerical sensitivity issues have been the main challenge in practice. As is well known, the number
of semidefinite programs from SOS decomposition grows quickly for low degree polynomials [21].

2 Preliminaries

We consider the problem of designing control functions to stablize a dynamical system at an equilib-
rium point. We make extensive use of the following results from Lyapunov stability theory.

2

Definition 1 (Controlled Dynamical Systems). An n-dimensional controlled dynamical system is

dx

dt
= fu(x), x(0) = x0 (1)

where fu : D → Rn is a Lipschitz-continuous vector field, and D ⊆ Rn is an open set with 0 ∈ D
that defines the state space of the system. Each x(t) ∈ D is a state vector. The feedback control is
defined by a continuous function u : Rn → Rm, used as a component in the full dynamics fu.

Definition 2 (Asymptotic Stability). We say that system of (1) is stable at the origin if for any
ε ∈ R+, there exists δ(ε) ∈ R+ such that if ‖x(0)‖ < δ then ‖x(t)‖ < ε for all t ≥ 0. The system is
asymptotically stable at the origin if it is stable and also limt→∞ ‖x(t)‖ = 0 for all ‖x(0)‖ < δ.

Definition 3 (Lie Derivatives). The Lie derivative of a continuously differentiable scalar function
V : D → R over a vector field fu is defined as

∇fuV (x) =

n
∑

i=1

∂V

∂xi

dxi

dt
=

n
∑

i=1

∂V

∂xi

[fu]i(x)

It measures the rate of change of V along the direction of the system dynamics.

Proposition 1 (Lyapunov Functions for Asymptotic Stability). Consider a controlled system (1) with
equilibrium at the origin, i.e., fu(0) = 0. Suppose there exists a continuously differentiable function
V : D → R that satisfies the following conditions:

V (0) = 0, and, ∀x ∈ D \ {0}, V (x) > 0 and ∇fuV (x) < 0. (2)

Then, the system is asymptotically stable at the origin and V is called a Lyapunov function.

Linear-Quadratic Regulators (LQR) is a widely-adpoted optimal control strategy. LQR controllers
are guaranteed to work within a small neighborhood around the stationary point where the dynamics
can be approximated as linear systems. A detailed description can be found in [17].

3 Learning to Stabilize with Neural Lyapunov Functions

We now describe how to learn both a control function and a neural Lyapunov function together, so
that the Lyapunov conditions can be rigorously verified to ensure stability of the system. We provide
pseudocode of the algorithm in Algorithm 1.

3.1 Control and Lyapunov Function Learning

We design the hypothesis class of candidate Lyapunov functions to be multilayered feedforward
networks with tanh activation functions. It is important to note that unlike most other deep learning
applications, we can not use non-smooth networks, such as with ReLU activations. This is because we
will need to analytically determine whether the Lyapunov conditions hold for these neural networks,
which requires the existence of their Lie derivatives.

For a neural network Lyapunov function, its input is any state vector of the system in Definition (1)
and the output is a scalar value. We write θ to denote the parameter vector for a Lyapunov function
candidate Vθ. For notational convenience, we write u to denote both the control function and the
parameters that define the function. The learning process updates both the θ and u parameters to
improve the likelihood of satisfying the Lyapunov conditions, which we formulate as a cost function
named the Lyapunov risk. The Lyapunov risk measures the degree of violation of the following
Lyapunov conditions, as shown in Proposition (1). First, the value of Vθ (x) is positive; Second, the
value of the Lie derivative ∇fuVθ (x) is negative; Third, the value of Vθ(0) is zero. Conceptually, the
overall Lyapunov control design problem is about minimizing the minimax cost of the form

inf
θ,u

sup
x∈D

(

max(0,−Vθ(x)) + max(0,∇fuVθ(x)) + V 2
θ (0)

)

.

The difficulty in control design problems is that the violation of the Lyapunov conditions can not just
be estimated, but needs to be fully guaranteed over all states in D. Thus, we need to rely on global
search with complete guarantee for the inner maximization part, which we delegate to the falsifier
explained in Section 3.2. For the learning step, we define the following Lyapunov risk function.

3

Definition 5 (Lyapunov Falsification Constraints). Let V be a candidate Lyapunov function for a
dynamical system defined by fu defined in state space D. Let ε ∈ Q+ be a small constant parameter
that bounds the tolerable numerical error. The Lyapunov falsification constraint is the following
first-order logic formula over real numbers:

Φε(x) :=

(n
∑

i=1

x
2

i ≥ ε

)

∧

(

V (x) ≤ 0 ∨∇fuV (x) ≥ 0

)

where x is bounded in the state space D of the system. The numerical error parameter ε is explicitly
introduced for controlling numerical sensitivity near the origin. Here ε is orders of magnitude smaller
than the range of the state variables, i.e.,

√
ε ≪ min(1, ||D||2).

Remark 1. The numerical error parameter ε allows us to avoid pathological problems in numerical
algorithms such as arithmetic underflow. Values inside this tiny ball correspond to disturbances that
are physically insignificant. This parameter is important for eliminating from our framework the
numerical sensitivity issues commonly observed in SOS/SDP methods. Also note the ε-ball does not
affect properties of the Lyapunov level sets and regions of attraction outside it (i.e., D \Bε).

The falsifier computes solutions of the falsification constraint Φε(x). Solving the constraints requires
global minimization of a highly nonconvex functions (involving Lie derivatives of the neural network
Lyapunov function), and it is a computationally expensive task (NP-hard). We rely on recent progress
in nonlinear constraint solving in SMT solvers such as dReal [11], which has been used for similar
control design problems [16] that do not involve neural networks.

Example 1. Consider a candidate Lyapunov function V (x) = tanh(a1x1+a2x2+ b) and dynamics
ẋ1 = −x2

2 and ẋ2 = sin(x1). The falsification constraint is of the following form

Φε(x) := (x2
1+x2

2) ≥ ε∧ (tanh(a1x1+a2x2+ b) ≤ 0∨a1(1− tanh2(a1x1+a2x2+ b))(−x2
2)

+ a2(1− tanh2(a1x1 + a2x2 + b)) sin(x1) ≥ 0))

which is a nonlinear non-polynomial disjunctive constraint system. The actual examples used in our
experiments all use larger two-layer tanh networks and much more complex dynamics.

To completely certify the Lyapunov conditions, the constraint solving step for Φε(x) can never fail to
report solutions if there is any. This requirement is rigorously proved for algorithms in SMT solvers
such as dReal [12], as a property called delta-completeness [11].

Definition 6 (Delta-Complete Algorithms). Let C be a class of quantifier-free first-order constraints.
Let δ ∈ Q+ be a fixed constant. We say an algorithm A is δ-complete for C, if for any ϕ(x) ∈ C, A
always returns one of the following answers correctly: ϕ does not have a solution (unsatisfiable), or
there is a solution x = a that satisfies ϕδ(a). Here, ϕδ is defined as a small syntactic variation of the
original constraint (precise definitions are in [11]).

In other words, if a delta-complete algorithm concludes that a formula Φε(x) is unsatisfiable, then it is
guaranteed to not have any solution. In our context, this is exactly what we need for ensuring that the
Lyapunov condition holds over all state vectors. If Φε(x) is determined to be δ-satisfiable, we obtain
counterexamples that are added to the training set for the learner. Note that the counterexamples are
simply state vectors without labels, and their Lyapunov risk will be determined by the learner, not
the falsifier. Thus, although it is possible to have spurious counterexamples due to the δ error, they
are used as extra samples and do not harm correctness of the end result. In all, when delta-complete
algorithms in dReal return that the falsification constraints are unsatisfiable, we conclude that the
Lyapunov conditions are satisfied by the candidate Lyapunov and control functions. Figure 1(c)
shows a sequence of counterexamples found by the falsifier to improve the learned results.

Remark 2. When solving Φε(x) with δ-complete constraint solving algorithms, we use δ ≪ ε to
reduce the number of spurious counterexamples. Following delta-completeness, the choice of δ does
not affect the guarantee for the validation of the Lyapunov conditions.

3.3 Tuning Region of Attraction

An important feature of the proposed learning framework is that we can adjust the cost functions
to learn control and Lyapunov functions favoring various additional properties. In fact, the most
practically important performance metric for a stabilizing controller is its region of attraction (ROA).

5

References

[1] Amir A. Ahmadi and Raphaël M. Jungers. Lower bounds on complexity of lyapunov functions
for switched linear systems. CoRR, abs/1504.03761, 2015.

[2] Amir A. Ahmadi, M. Krstic, and P. A. Parrilo. a globally asymptotically stable polynomial
vector field with no polynomial lyapunov function. In 2011 50th IEEE Conference on Decision
and Control and European Control Conference.

[3] Amir A. Ahmadi and Pablo A. Parrilo. Stability of polynomial differential equations: Complex-
ity and converse lyapunov questions. CoRR, abs/1308.6833, 2013.

[4] Amir Ali Ahmadi. On the difficulty of deciding asymptotic stability of cubic homogeneous
vector fields. In American Control Conference, ACC 2012, Montreal, QC, Canada, June 27-29,
2012, pages 3334–3339, 2012.

[5] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. CoRR, abs/1606.06565, 2016.

[6] F. Berkenkamp, R. Moriconi, A. P. Schoellig, and A. Krause. Safe learning of regions of attrac-
tion for uncertain, nonlinear systems with gaussian processes. In 2016 IEEE 55th Conference
on Decision and Control (CDC), pages 4661–4666, Dec 2016.

[7] Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 908–918. Curran Associates, Inc., 2017.

[8] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural Lyapunov control (project website),
https://yachienchang.github.io/NeurIPS2019.

[9] G. Chesi and D. Henrion. Guest editorial: Special issue on positive polynomials in control.
IEEE Transactions on Automatic Control, 54(5):935–936, May 2009.

[10] Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A
lyapunov-based approach to safe reinforcement learning. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural
Information Processing Systems 31, pages 8092–8101. Curran Associates, Inc., 2018.

[11] Sicun Gao, Jeremy Avigad, and Edmund M. Clarke. Delta-Complete decision procedures
for satisfiability over the reals. In Automated Reasoning - 6th International Joint Conference,
IJCAR 2012, Manchester, UK, June 26-29, 2012. Proceedings, pages 286–300, 2012.

[12] Sicun Gao, Soonho Kong, and Edmund M. Clarke. dReal: An SMT solver for nonlinear
theories over the reals. In Automated Deduction - CADE-24 - 24th International Conference on
Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings, pages 208–214,
2013.

[13] Wassim Haddad and Vijaysekhar Chellaboina. Nonlinear dynamical systems and control: A
lyapunov-based approach. Nonlinear Dynamical Systems and Control: A Lyapunov-Based
Approach, 01 2008.

[14] D. Henrion and A. Garulli. Positive Polynomials in Control, volume 312 of Lecture Notes in
Control and Information Sciences. Springer Berlin Heidelberg, 2005.

[15] Z. Jarvis-Wloszek, R. Feeley, Weehong Tan, Kunpeng Sun, and A. Packard. Some controls
applications of sum of squares programming. In 42nd IEEE International Conference on
Decision and Control (IEEE Cat. No.03CH37475), volume 5, pages 4676–4681 Vol.5, Dec
2003.

[16] James Kapinski, Jyotirmoy V. Deshmukh, Sriram Sankaranarayanan, and Nikos Arechiga.
Simulation-guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th
International Conference on Hybrid Systems: Computation and Control, HSCC ’14, pages
133–142. ACM, 2014.

9

[17] Huibert Kwakernaak. Linear Optimal Control Systems. John Wiley & Sons, Inc., New York,
NY, USA, 1972.

[18] Johan Löfberg. Pre- and post-processing sum-of-squares programs in practice. IEEE Transac-
tions on Automatic Control, 54(5):1007–1011, 2009.

[19] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feedback motion
planning. The International Journal of Robotics Research, 36(8):947–982, 2017.

[20] Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems
31, pages 1805–1814. Curran Associates, Inc., 2018.

[21] Pablo A. Parrilo. Structured semidefinite programs and semialgebraic geometry methods in
robustness and optimization. PhD thesis, California Institute of Technology, 2000.

[22] C.E. Rasmussen and C.K.I. Williams. Gaussian Processes for Machine Learning. Adaptative
computation and machine learning series. University Press Group Limited, 2006.

[23] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control lyapunov functions from
counterexamples and demonstrations. Autonomous Robots, 43(2):275–307, 2019.

[24] Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. The lyapunov neural network:
Adaptive stability certification for safe learning of dynamical systems. In Proceedings of The
2nd Conference on Robot Learning, volume 87 of Proceedings of Machine Learning Research,
pages 466–476, 29–31 Oct 2018.

[25] Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying,
and Manipulation (Course Notes for MIT 6.832). 2019.

10

