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Abstract— We develop an online probabilistic metric-
semantic mapping approach for autonomous robots relying
on streaming RGB-D observations. We cast this problem as
a Bayesian inference task, requiring encoding both the geo-
metric surfaces and semantic labels (e.g., chair, table, wall)
of the unknown environment. We propose an online Gaussian
Process (GP) training and inference approach, which avoids the
complexity of GP classification by regressing a truncated signed
distance function representation of the regions occupied by
different semantic classes. Online regression is enabled through
sparse GP approximation, compressing the training data to
a finite set of inducing points, and through spatial domain
partitioning into an Octree data structure with overlapping
leaves. Our experiments demonstrate the effectiveness of this
technique for large-scale probabilistic metric-semantic mapping
of 3D environments. A distinguishing feature of our approach is
that the generated maps contain full continuous distributional
information about the geometric surfaces and semantic labels,
making them appropriate for uncertainty-aware planning.

I. INTRODUCTION

In the near future, robots may assist in many transporta-
tion, construction, security, and environmental monitoring
services. Safe application of autonomous systems to tasks,
specified in human-understandable terms, requires an under-
standing of both the 3-D geometry and the object identities,
affordances, and operational context of the environment. This
paper develops a metric-semantic mapping algorithm, using
streaming RGB-D measurements onboard a robot, to recon-
struct geometric surfaces and their semantic identity (e.g.,
chairs, tables, doors). We specifically focus on a probabilistic
approach so that confidence and quantile information may be
incorporated into decision-making in pursuit of certifiable
safety and autonomous uncertainty reduction.

To build geometric and semantic understanding of the
environment, robotic systems must discern patterns in infor-
mation obtained with every measurement. While the amount
of measured data keeps growing over time, the underlying
geometric and semantic structure of the scene may not.
Hence, an important objective for metric-semantic mapping
algorithms is to build expressive maps whose memory and
complexity requirements are affordable.

Occupancy mapping [1]-[8] is a problem in which one
seeks to distinguish between occupied and free space. For
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Fig. 1: RGB images (first column), segmented images (second
column), and depth images (third column) used by the proposed
approach for online construction of dense metric-semantic maps.

each point in space, we explicitly store occupancy infor-
mation, which may be made very accurate with sufficiently
dense point clouds or voxel grids. However, the memory
and computation requirements of such dense representa-
tions quickly become infeasible for large domains. Implicit
function representations of geometric surfaces, for example,
based on a Truncated Signed Distance Function (TSDF) [3],
[9]-[12] are attractive because they enable accurate con-
tinuous surface representations with a finite number of pa-
rameters. TSDF representations are also useful for collision
checking and human-understandable mesh generation. Ex-
isting work, however, either forgoes probabilistic represen-
tations in the interest of scalability or makes independence
assumptions amongst the map elements (voxels, points).

Classification of environment surfaces into semantic cate-
gories is important for context understanding and specifica-
tion of complex robot tasks [13]-[15]. However, classifica-
tion paradigms necessitate point estimates because efficient
probabilistic classification remains an open challenge in
machine learning, due to prior and data likelihoods not
being conjugate (one may employ Laplace approximations
to partially mitigate this challenge — see [16]).

For this reason, our focus is on TSDF regression for
different semantic categories but in a Bayesian setting.
Specifically, to incorporate spatial correlation into a prob-
abilistic resolution-free TSDF map of the 3-D environment,
we employ Gaussian Process (GP) regression. GPs are a
probabilistic framework amenable to continuous map rep-
resentations [17]-[19]. Unfortunately, onboard sensor data
is not a direct observation of TSDF and, moreover, GP re-
gression requires cubic complexity in the number of training
examples. To ameliorate these challenges, first, we propose
a transformation of the raw observations into a training
dataset of TSDF values specific to different semantic classes.



This data, however, grows over time, as the same scene is
observed multiple times, and is not necessarily representative
of the true underlying environment complexity. There are
various ways to address bottlenecks of non-parametric statis-
tics [20], [21], but in our setting, we observe that sensory data
collected from identical spatial locations can be compressed
significantly before GP training without affecting the TSDF
posterior. Moreover, we notice that points that are far away
in a map are unlikely to be correlated. In this regard, to
reduce the complexity, one might consider local kriging,
decomposing the spatial domain into subdomains and making
predictions at a test location using only the training points
contained within the subdomain. Unfortunately, discontinu-
ities at the boundaries of the subdomains make stitching
the domain together again difficult. Another ensemble meth-
ods construct multiple local estimators and use a weighted
combination of their predictions, as in Bayesian commit-
tee machines [22], [23], sparse probabilistic regression, or
infinite mixtures Gaussian process experts [24]. These ap-
proaches avoid the discontinuities present in local kriging
at significant computational cost. Inspired by the Octomap
framework [2], we propose an efficient alternative approach
to remove discontinuities that decomposes the environment
into an Octree of overlapping subdomains. Combining these
ideas leads to an online probabilistic mapping approach that
generates dense metric-semantic surfaces and, yet, remains
computationally and memory efficient even in large-scale
complex environments. Our main contributions are to:

« develop an online Gaussian Process training and infer-
ence algorithm that enables 3-D semantic segmentation
of the environment through TSDF regression,

« ensure controllable computation and memory complex-
ity while providing continuous probabilistic 3-D repre-
sentations of large-scale environments,

« evaluate the proposed metric-semantic mapping ap-
proach in simulated and real-world public datasets.

Our algorithm retains full distributional information and may
be used either offline, with all sensory data provided in
advance, or online, processing RGB-D observations incre-
mentally as they arrive.

II. PROBLEM FORMULATION

Consider a robot navigating in an unknown environment
represented as a subset of Euclidean space, X C R>. The
environment consists of two disjoint subsets, comprising
obstacles and free space, i.e., X = O U F. The obstacle
region O is a closed set that is a pairwise disjoint union of
N closed sets, i.e., O = vazl(’)i. Each subset O, denotes
the region occupied by object instances from one semantic
class. For example, O; may be the space occupied by all
chairs, while 0> may be the space occupied by all tables.

The robot is equipped with an RGB-D sensor that provides
observations of the objects in its vicinity at each time step
t. A semantic segmentation algorithm [25] is applied to the
RGB images to obtain the classes of observed objects, while
the depths of the object surfaces are provided by the depth
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Fig. 2: Sensor observation at time ¢ showing the depth X;;, A¢ 5
and class c;,;, c,; measurements obtained along sensors rays 7,,
1n; € E when the sensor is at position p; with orientation R. The
inducing points A (c.f. Sec. IV-A) close to the observed surface
are shown in gray.
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images. Example images are provided in Fig. 1. The sensed
information is defined formally below.

Definition 1. A sensor frame E = {n;}}, is a set of
vectors 7); € R3 such that e3Tnj = 1, where e; is the j-
th standard basis vector.

Definition 2. A sensor observation at time ¢ is a collection
of depth X\, ; € R, and object class ¢ ; € {1,..,N}
measurements acquired by the RGB-D sensor along the
directions of the sensor frame vectors n; € E.

At time ¢, the j-th sensor ray starts at the sensor position
p: € R3 and has direction ij, determined by the sensor
orientation R; € SO(3). The ray may have finite length if
it hits the obstacle set O. We define the relationship among
the object sets ; and the sensor observations A ;, ¢; ; next.
The space O;, occupied by the i-th object class, is defined
implicitly as the level set of a signed distance function.

Definition 3. The directional truncated signed depth func-
tion (DTSDF) h;(x,n) of object class (;, is the signed depth
from x € X to the boundary 9Q; in direction 7 € R3, i.e.,

i, m) —min (dy(x,00;),d) if x €O,
i\ X, = . .
K min (dy, (x,00;),d) ifx € X\ O,
dn(x,00;) = min{dZO | x+dn€8(’)i}, €))
where the depth is truncated to a maximum of d € R .
Def. 3 states that h;(py, ij) is the depth from sensor
position p to obstacle set O; along the direction R7n; of the
Jj-th ray at time ¢. The class observation c; ; is determined

by the object set OO; with minimum absolute DTSDF to p;
along R¢7;:

ct,j = argmin |h;(pe, Rem;)l. (2)
i€{1,...,N}



The depth observation ) ; is a noisy measurement of the
depth h., . (pt, R¢m;) to the nearest object class:

)‘tJ = h’ct,j (pta Rtnj) +e € N(Ov UQ); (3)

where o2 is the variance of the depth measurement noise.

These definitions are illustrated in Fig. 2.

Given sensor poses p:, R; and streaming onboard
observations X ;, ¢, ; for j € {1,...,M} and t €
{1,...,T}, the main objective of this work is to construct
a metric-semantic map of the observed environment online
by estimating the functions h;(x,m) for ¢ = 1,..., N.
Note that {h;} implicitly define the object sets O; =
{x € X | min, h;(x,n) < 0}. The DTSDF h;(x,n) is de-
fined for an arbitrary direction 7). To reduce the dimension
of its domain, we define its minimum over the directions 7.

Definition 4. The rruncated signed depth function (TSDF)
fi(x) of object class O; is the signed depth from x € X to
the boundary 00, i.e.,

fi(x) := hi(x,m") where n* = argmin |h;(x,n)| (4)

n

We propose an online Gaussian Process (GP) regression
approach to maintain a distribution GP (p1,;(x), ke i (x, %))
over the TSDF functions f;(x) conditioned on the sensor
observations {)‘k,jack,j}zg,jﬂ up to time ¢. In Sec. IV,
we discuss techniques for online training over a finite set
of inducing points and present the equations for inferring
the depth and class distributions at arbitrary (test) locations
x in the environment X. Since we target online training
and inference, in Sec. V, we partition the domain X into
overlapping regions, organized in an octree data structure,
and perform independent regression in each region.

III. GAUSSIAN PROCESS REGRESSION BACKGROUND

A Gaussian Process (GP) is a set of random vari-
ables such that the joint distribution of any finite subset
of them is Gaussian. A GP-distributed function f(x) ~
GP(po(x), ko(x,x")) is defined by a mean function po(x)
and a covariance (kernel) function ky(x,x’). The mean and
covariance are such that for any finite set X = {x1,...,x,},
the random vector f(X) := [f(x1),..., f(xn)] € R" has
mean with j-th element j(x;) and covariance matrix with
(4, k)-th element ko(x;,xx) for j,k = 1,..., K. Given a
training dataset D = {(x;,y;)}_; generated according to
y; = f(x;) + ¢; with noise ¢; ~ N(0,0%), the posterior
distribution of the random function f(x) can be obtained
from the joint distribution of the value f(x) at an arbitrary
location x and the random vector y := [y1, ... ,yn]T of the
measurements. In detail, the joint distribution is:

|:f(X):| ~N <|:/'L0(X):| [ko(X, X) ko(X,X) :|) (3)
Yy ,LL()(X) ’ ko(X,X) k‘o(X,X)+D ’
where D € R™ ™ is a diagonal matrix with D;; = 02-2,
while the corresponding conditional distribution f(x)|D ~
GP(pin(x), kn(x,x")) has mean and covariance functions:

fin(X) = pio(x) + ko(x, X) (ko(X, X) + D)y — po(X)),
kn(x,%") = ko(x,x") — ko(x, X) (ko(X, X) + D) 'ko(X, x').

Computing the GP posterior has cubic complexity in the
number of observations n due to the n X n matrix inversion.

IV. PROBABILISTIC METRIC-SEMANTIC MAPPING

While the sensor measurements {); ;, ¢ ;} are generated
according to the models in (2) and (3) that depend on
{hi(x,7m)}, we focus on approximating the TSDF functions
{fi(x)}, whose domains are lower-dimensional. Hence, the
sensor data {\; ;, ¢ ; };Vil is first transformed into training
sets Dy ;, suitable for updating the distribution of {f;(x)}.

A. Training Set Construction

The class measurements allow us to associate the sensed
data with a particular semantic class, while the depth mea-
surements allow us to estimate the points where the sensor
rays hit the object sets O;. In detail, we define the following
point sets for each detected semantic class at time ¢:

Gt,i = {)A( S R3 ’)A( = )\t,thT]j + p: and Ct,j = Z} (6)

The points X € G ; lie in the continuous space X’ and the
values f;(X) of the TSDFs are close to zero since the sensor
rays hit an object surface at these locations.

As shown in Prop. 1 below, the complexity of online
GP training can be improved by forcing the training data
to come from a finite set of points X C X, such as a
grid discretization (see Fig. 2). In detail, we choose points
x € Xy that are at most € > 0 away from the points in
G;,; and approximate their TSDF values f;(x) =~ g.:(x).
Precisely, the training data sets are defined at time ¢ as:

Dy = {(x,01:(x))|x € Xg,TF%x € Gy sit. ||x — X[|2 < €}
)
The TSDF value g¢;;(x) of a training point x is obtained
by projecting x to the depth image plane and approximating
its depth from the depth values of nearby pixels. In detail,
suppose 7); is the pixel closest to the projection of x (red
pixel in Fig. 2) and let X; € G;; be the coordinates of its
ray endpoint (blue point in Fig. 2). Let X,;45¢ and X, (two
cyan points in Fig. 2) be the ray endpoints of two adjacent
pixels. Then, g;;(x) is the signed distance from x to the
plane defined by X;, Xpign¢, and Xyp:
T(x —%;), n:=sign(m’(p; —%;))m,
o= (rigns = %) X (%up = %) ®

B [(Xright — %) X (Xup — X)| ’

gti(X):==m

where m is the normal of the plane and the signed distance
from p; to the plane is positive because the sensor is known
to be outside of the object set O;.

B. Gaussian Process Regression

Let GP(pi—1,4(x), ki—1,i(x,x")) be prior GP distributions
over the signed depth functions f;(x) conditioned on past
data D;_1,...,D1,. We take po;(x) = L where L is
truncation value in TSDF, and we use sparse matern covari-
ance function as the kernel kg ;(x,x’). Given the training
set D;; constructed at time ¢, we seek to compute the
posteriors f;(x) | Dy, ..., D1, ~ GP(uei(x), ke,i(x,x'))



for each semantic class i. The complexity of computing a GP
posterior scales cubically with the number of observations
in the training set D, ;, limiting the applicability to online
settings as mentioned in Sec. III. We make a key observation
that limiting the training data points x to come from a
finite set X%, as done in Sec. IV-A, may be used to reduce
the GP traning complexity from cubic in the number of
observations ), |D; ;|, which grows unbounded with time,
to cubic in the number of distinct observed points from X7.
We formalize this in the following theorem, establishing that
the GP posterior remains unchanged if we merge training
data obtained from the same spatial locations.

Proposition 1. Consider f(x) ~ GP(uo(x), ko(x,x’)). Let:

X={x1,...,X1 ,X2 ,...,X2  ,...,Xp ,...,Xn, }
Y:{y1,17"'7y1,m1)y2,17"'ayQ,m,zv"'7yn,17"'ay71/,mn}

be data generated from the model y; ; = f(x;) + n; ; with
ni; ~N(0,02) fori=1,...,nand j =1,...,m;. Let:

X:{Xla"'axn}v }}:

1 & 1
*E y1,'~--,fE Yn,j
{ml p J9 My, pt nJ}

be a compressed version of the data generated from the
model f(x;) with noise 7; ~ N (0, ) Then, f(x)|X,Y
and f(x)|X,Y have the same Gausstan Process distribution
GP(pn(x), kn(x,x")) with:

i (%) = p1o(x) + ko (x, X)(D + ko(X,
Fen (%, %X') = ko(x,X') — ko(x, X)(D + ko(

X, X)) ¢ — po(X)),
X /

X)) ko (X, X),

~ ~ 2
where D € R™*" is a diagonal matrix with D; ; = ”7
p . . . 1
¢ € R™ is a vector with elements (; 1= Z] 1 yw

Proof. See Appendix A. O

Prop. 1 shows that the complexity of online GP training
can be reduced without changing the posterior if the training
datasets U;D; ; are compressed. In detail, the theorem allows
us to summarize the data by simply keeping set of distinct
training points P;; C Xy, the number of times my ;(x)
that each point x € P;; has been observed up to time ¢
and the average of the measured TSDF values g, ;(x) :=
mi(x) e () g”(x) at the observed points. Assuming
same noise variance o2 at all primary observations, the pre-
cision matrix in Prop. 1 is €, ,; = (o%diag(m,;(P;;))~ ! +
ko.i(P¢.i, Ps.i)) 1. Given these statistics, the mean functions
t,i(x) and covariance functions k; ;(x,x’) of the GP distri-
butions of f;(x) can be obtained at any time ¢ from Prop. 1.

pi(X) = po(x) + ko(x, Pri) Qi (ge,i(Pei) — 1o(Pes)),
kt,i(X7 XI) = kO(Xa X/) - kO(Xv Pt,i)ﬂt,ik()(Pt,h Xl)7
)

We discuss the implementation details of online training and
prediction next.

1) Online GP Training: For each class i € {1,...,N},
we keep two hashmap data structures over A4 to represent
the number of observations m; ;(x) and the average TSDF

values g, ;(x). Given the sensor data D;y;; at time ¢ + 1,

we update the hashmaps for each (x,g) € D41 as:
Myg1,(X) = my(x) + 1

(10)

Gt+1,i(X) = gri(x) + (9 — 91,:(x))

mt+17i(x)

2) Online GP Prediction: If we need the online prediction
we should keep track of €2, ;, otherwise Q27 ; is sufficient.
At time step t + 1, in order to achieve €2, ; from £, ;,
we have two kind of new observation in D;44 ;. We either
have seen some of training points in P, ; again, let call them
P, or we have seen new training points P’ = Pit1i\ Pes.
First we update precision matrix regarding the first kind, let
Q' be the updated precision matrix for first j elements of
P. Let x be the j + 1-th element of P in order to update

precision matrix regarding x and achieving Qj 41 from QJ,
= . . _ a? o2

let 6 = m.Hlﬂ(x) —my(x), €= ) T ) and !

to be the index of €, ; corresponding with x:

’ To!
Tt dee ) = - o) e
! J l + elTQ;-el

Q= (9] (11)

J
3) Batch GP Prediction: Let 2 = Q\P\’

precision matrix € with second kind of new observation
we will have Qt+1 i» let X' = o?diag(me:(P)) 7 +

then if we update

kos(P',P"),K = koi(P:i,P),C = QK. E = (= —
K'C)"!,F = —CE then:
~ —1 - ~
Q K Q-FCT F
Q=L X :{ o E} (12)

C. Semantic Class Prediction

In this section, we discuss how to predict the semantic
class labels on the surfaces of the implicitly estimated object
sets O;. While we did not explicitly model noise in the
class observations in (2), in practice, semantic segmentation
algorithms may produce incorrect pixel-level classification.
This may lead to some sensor observations \; j, ¢; ; being
incorrectly included into the training set D ; of a different
object class. This happens, for example, if objects from
two different classes, say i; and o, are spatially close
to each other and, in an RGB image observation, parts
of the boundary of one are classified as belonging to the
other class. Over time, with multiple sensor observations,
the TSDF approximations for both classes i; and 75 may
contain training points x € A with small TSDF values,
indicating an object class surface. In order to predict the
correct object class when such a situation happens, we
compare the likelihoods of the different classes at surface
points given the posterior TSDF distributions of the functions
fi(x). In detail, consider a surface point, i.e., x € X such
that f;(x) = 0 for some class i. The likelihood that the class
label of x is c € {1,..., N} is provided below.

Proposition 2. Let GP(p11,;(x), ke i(x,%x")) be the distribu-
tions of the signed depth functions f;(x) at time t, determined
according to (9). Consider an arbitrary point x € X on the



Fig. 3: Illustration of the octree data structure in two dimensions.
For three nodes N”, N9, N®, the regions for their S(-), T () are
respectively filled and dashed with red, green, blue colors. For all
nodes Maxz(N) = 1, so node N9 splits. Note that there is no train-
ing point in the filled green region (7 (N 7)), but two training points
observed in S(NY). Additionally N” € children(N9),L(N") =
2. We see the cyan training point is in both Pi\fcb, Pi\’:

surface of the obstacle set O, i.e., x is such that f;(x) =0

for some class i € {1,..., N}. Then, the probability that the
true class label of x is c€ {1,...,N} is:

1 Nt,c(x)
ot,c(X) ¢( ot,c(x) )
Zi otl(X)(b(ﬁ:Ez;)
where ¢(-) is the density of the standard normal distribution

and o4 ;(x) := \/kt (%, x).

Proof. See Appendix B. O

P (arg;nin iG] = ¢

min | £,()| - o) -

The class distribution for an arbitrary point, not lying on
an object surface, may also be obtained, as shown in the
proof of Prop. 2, but is both less efficient to compute and
rarely needed in practice.

V. OCTREE OF GAUSSIAN PROCESSES

Prop. 1 allows us to compress the TSDF training data
over time to a finite set of distinct training points. However,
the complexity of GP training still scales cubically in the
number of distinct training points. To ensure that online
training is possible, we propose an octree data structure
with overlapping blocks to store the training points. We
train independent GPs in each of these blocks, which is
efficient since the number of training points per block is
small. The block overlap serves to eliminate discontinuities
in the resulting TSDF estimate. At test time, the TSDF value
of a query point is inferred using only the parameters of the
corresponding block according to Eq. 9.

An octree of training points is a tree data structure such
that each internal node has eight children, and recursively
subdivided into octants based on their number of training
points in order to partition a W -length side cube out of
environment. Each node N of the octree with point ctr(N)
as center of its cube has following specifications:

1) £(N): level of node N in the tree is £(N) > 0. In level
zero there is one node which is the root of the tree.

2) S(N) == {x € | |lx — ctr(N)|o < dgrgrr} is
support of node N. Set of points in the A7y that are
potent to be assigned to this node as observed training
points is S(N) N Xy. Node N splits into eight children
if number of observed training points in its support
exceeds Max(N).(6 > 1)

HTIV) = {x € X] |x — ctr(N)|w < 5%},
prediction for test points in this region is evaluated by
GP trained by observed training points in S(N).

4) children(N): Tt is empty if N is a leaf in the oc-
tree, otherwise is a set of eight nodes with their cen-
ters in {ctr(N) 4+ sye1 + syes + s.€3|85,8,,5. €
{+ 5%, — 37t ). Their level is £(N) + 1.

GP in each node will be calculated with observed training
points in S(IV). At time step ¢, for class ¢, let show observed
training points in node N, with Pi\; = P;;NS(N). The other
GP variables like inl are defined accordingly.

VI. EVALUATION

In this section, we apply our method to a 2-D simula-
tion, compare its performance to the incremental Euclidean
signed distance mapping method Fiesta [12] on the Cow
and Lady dataset [11], and demonstrate its 3-D semantic
reconstruction performance on the SceneNN dataset [26]. In
all experiments, sparse Matérn kernel (v = 3/2) [23] is used.

We set X to be a grid with resolution vozel size. Given
a query point X, we choose a cubic frame around it such that
(frame size — 1) X voxel size > 2 X e. All points from
Xy that lie in the cubic frame are chosen as training points
associated with x.

A. 2-D Simulation

In this section, we generate a random 2-D environment
(see Fig. 4), obtain random observations using a simulated
depth-class sensor, and then apply our method to obtain a
map. Then we compare it with the ground truth.

1) TSDF Accuracy: A sample of 2-D simulation with
its TSDF and boundaries (ground truth and constructed) is
shown in Fig. 4. Truncation value of TSDF is very dependent
on the frame size. Larger frame size allows estimating
larger truncation value, but incurs additional computational
cost. Our method provides continuous TSDFE. In order to
evaluate our method’s precision in estimating TSDF and its
resistance against noise, all test points are picked within
truncation value, out of a grid with its resolution to be half
of the voxel size. The result is shown upright in Fig. 5.

2) Classification Accuracy: In each map we pick random
points out of boundaries, and calculate the error in the
signed distance field and accuracy of class detection. For
each class we calculate precision and recall. Since everything
is symmetric for both classes red and blue, we present the
average over two classes as precision and recall. In Fig. 5 we
produce 50 random maps and take the average of mentioned
variables over all maps. As we see in all curves, they are
not very sensitive to class error probability. In Fig. 6 we
investigate the effect of the parameters of our algorithm on
measures Misclassification Rate i.e. the ratio of samples with
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Fig. 4: On the first row, from left, first two are ground truth of
environment and TSDF of the blue class, the third is constructed
TSDF with frame size = 10. On the second row, we see
constructed boundaries for different frame size = 10, 3,2. The
sharp edges are captured better in frame size 3 vs. 10, but using
frame size less that 3 caused missing parts of the boundaries.
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Fig. 5: On the left Misclassification Rate, Precision, Recall, Nor-
malized SDF Error are plotted for different class error probability
and noise variance on the rays. Upright shows SDF error, average
of SDF errors over 10 random maps with 100 random observations
for each, with vozxel size = 0.1, Maxz(N) =100, § = 1.2.

wrong detected class, Normalized SDF Error= _SDE emor_ J,
vozxel size

which SDF error is average of absolute value of difference
between estimated signed distance value and the real signed
distance value, FDR = 1— Precision, and FNR = 1 —Recall.
We see in all figures Misclassification Rate, FDR, and FNR
behave closely. Increasing Max(N) improves Normalized
SDF Error. At first the improvement is considerable, but
then even with exponential increase in Maz(N'), Normalized
SDF Error does not change significantly. Class measures at
first slightly improve. Increasing § also has a similar effect on
all the measures. Increasing Gaussian Process noise variance
at first improves all the measures, then it worsens them. Its
wrong chosen value is very crucial to misclassification rate,
but it changes very smoothly, i.e. if the value is in the right
region, its exact optimum value does not matter.

B. Cow and Lady Dataset

In this section, we investigate the performance of our
method on the cow and lady dataset, and compare it to
Fiesta which builds ESDF map incrementally for voxels, by
updating the effect of observed obstacles in two independent
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Gaussian Process noise variance

Misclassification Rate Normalized SDF Error
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Fig. 6: The default values are § = 1.5, Maz(N) = 100, Gaussian
Process noise variance — 1, voxel size = (.1. The class error
probability is 0.05 and the variance noise of the rays is 0.5. The
test points are out of boundaries consecutive average distance 0.05.
The measures are from 100 random observations in each map, then
getting average over 50 random maps, and classes.

queues, for inserting and deleting them. Increasing M ax(N)
improves SDF error which is significant at first, but then
improvement is not considerable. The time at first decreases,
because the number of leaves decreases, then it increases,
since the GP kernel matrix gets bigger. Increasing 6 improves
the SDF error, but not significantly. Although, it increases
time significantly. Increasing the GP noise variance improves
the SDF error at first, then it worsens it. It does not have a
meaningful effect on the time. When it is close to zero, it
affects the SDF error significantly. In Fig. 7 we can see our
method improved the error of Fiesta significantly, when the
voxel size varies. Fiesta’s parameters are set as their default.

C. SceneNN Dataset

For the 3-D reconstruction with classification evaluation
of our method we apply it to the dataset SceneNN [26].
In this part we evaluate on a test grid with resolution
W, then we consider the points out of the new grid
with confidence more than some threshold. Then we take the
mesh of zero value to be the surface. For the classification
we use Prop. 2. We can see the effect of different parameters
on the performance in Fig. 8. Increasing Max(N') improves
both classification and signed distance field. The improve-
ment after 100 is negligible, but time increases significantly.
Increasing 6 improves the TSDF specifically, since the shape
representation improves, but after 1.4 the improvement is
negligible. As we have seen in the 2-D simulation, choosing
the wrong value of GP variance is crucial to both TSDF and
the classification, but it is not sensitive to the optimal value.

VII. CONCLUSION

This paper developed a Bayesian inference method for
online probabilistic metric-semantic mapping via scalable
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Fig. 7: Training is done with 829 depth images, and their syn-
chronized pose out of Cow and Lady dataset. The left and right
axises determine the SDF error (m), and time(seconds). The default
parameters for our algorithm is Max(N) = 200, § = 1.5, Gaussian
Process noise variance = 25, vozel size = 0.1, frame size = 5,
and truncation value is 3 X voxel sitze. The error is verified with
respect to ground truth point cloud that is provided by the dataset.

Gaussian Processes regression of semantic class signed dis-
tance functions. Our method offers a promising direction
for semantic task specifications and uncertainty-aware task
planning. Future work will focus on improving the inference
speed and precision by considering alternative implicit func-
tions and incorporating probabilistic representation of other
environment characteristics such as texture and temperature.

APPENDIX A PROOF OF PROP. 1

Without loss of generality, assume pg(x) = 0. The
general result can be concluded by change of variables
f(x) — po(x). Let X, be an arbitrary finite set of query
points, and f, be the vector of evaluations of f over X,.
To prove the posterior GPs are identical, regardless of which
dataset is used for training, we will show that the Gaussian
distribution of f, conditioned on either dataset is the same.
Let £ := f(X)’ f = [fT’fI}T7 C = [yl,la“'ayn,mn]—r
and D € RXi=1™i*Xj=1™i pe a diagonal matrix such
that Dzz L, my g = = for 7 =1,. . Our
approach i is to calculate p(f., £|¢ ) from the joint dlstrlbutlon

p(£., £, ¢) for the first dataset. Then, if we repeat the process
for the second data set, calculating p(£,, £|¢), we end up with
the same normal distribution. If the marginal of £, is obtained
by integrating out f, the distributions p(f,|¢), and p(£,|)
remain the same. From conditional probability and since ¢
depends only on f, we have p(£, £,¢) = p(¢IE)p(£s, ). Let

b}

=[¢T fT]T Al [C ,£T]T. The log likelihood of z is:
2
) 1. .

logp ZZ M _ §fTQf7 (13)
=1 j=1 ’i
1

ko(X X) k’o(X,X*) _ Qll 912 _
where [kO(X*,X) WX X0)| T loL ] =%

For the first dataset, let H be a matrix with elements

H7(Zkomk+]):_§f0ri—1 nand j =1,...,m;
with zero at the rest of its entries. Slmllarly, for the second
dataset, let H to be a matrix with elements H = Um for
¢ =1,...,n and zero elsewhere. Rewrite (13): '
1
logp(z) —§ZTQij (14)
D! . H' 0 D! GT

ant = H dlag(Hl) + Qll 912 = |: G Q :|

0 Ql, Qo end

where 1 is a vector of ones. This means z ~ N (O, Qjm)

and hence f|¢ ~ N(— cndGC ,Q L), Similarly for sec-
ond dataset, define ;,; := DGt where G =
) jnt -— G and ) —

[HT,0]" and Q.4 is defined by adding diag(H1) to the
1

top left block of €. Again z ~ N(O, Qj,,t) SO we can

conclude f|¢ ~ N (— CndGC led) The equivalence of

the covariance matrices and means of tnese two normal
distributions follows from H1 = H1 and H¢ = H(. O

APPENDIX B PROOF OF PROP. 2
Letl.(z) := P { argmin [f;(x)| = ¢ and min; [f;(x)[ < |z|>
Since P (min; |£:(x)] < |2]) = 32, 1i(2):
P(w@mMﬁ&)—CImMﬁ()<VO
i 7 Z l(z ()Z)

The term we are interested in computing is lim,_,g El 1.z
Let x be an arbitrary (test) point, define p1; := . ;(x) and
0; =0y 4(x) fori =1,..., N. The GP prior of f; stipulates
that its value at x has a density function p(t) = =¢(*4).
Hence, P(|fi(x)| > 1) = 1 — (M7 + B(=17m).
Note that I.(z) corresponds to the probability that | f,(x)| <

| fi(x)] for all 4, since all f; are independent of each other:

le(2)

= o(5E) [t] — pi —[t] = p
ne = [ E 1;[(1 —o(MZry o= Ya
The claim is concluded by hm > (z) 1c¢>(_a—’i“). O
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