




The depth observation λt,j is a noisy measurement of the

depth hct,j (pt,Rtηj) to the nearest object class:

λt,j = hct,j (pt,Rtηj) + ǫ ǫ ∼ N (0, σ2), (3)

where σ2 is the variance of the depth measurement noise.

These definitions are illustrated in Fig. 2.

Given sensor poses pt, Rt and streaming onboard

observations λt,j , ct,j for j ∈ {1, . . . ,M} and t ∈
{1, . . . , T}, the main objective of this work is to construct

a metric-semantic map of the observed environment online

by estimating the functions hi(x,η) for i = 1, . . . , N .

Note that {hi} implicitly define the object sets Oi =
{x ∈ X | minη hi(x,η) ≤ 0}. The DTSDF hi(x,η) is de-

fined for an arbitrary direction η. To reduce the dimension

of its domain, we define its minimum over the directions η.

Definition 4. The truncated signed depth function (TSDF)

fi(x) of object class Oi is the signed depth from x ∈ X to

the boundary ∂Oi, i.e.,

fi(x) := hi(x,η
∗) where η∗ = argmin

η

|hi(x,η)| (4)

We propose an online Gaussian Process (GP) regression

approach to maintain a distribution GP(µt,i(x), kt,i(x,x
′))

over the TSDF functions fi(x) conditioned on the sensor

observations {λk,j , ck,j}
t,M

k=1,j=1 up to time t. In Sec. IV,

we discuss techniques for online training over a finite set

of inducing points and present the equations for inferring

the depth and class distributions at arbitrary (test) locations

x in the environment X . Since we target online training

and inference, in Sec. V, we partition the domain X into

overlapping regions, organized in an octree data structure,

and perform independent regression in each region.

III. GAUSSIAN PROCESS REGRESSION BACKGROUND

A Gaussian Process (GP) is a set of random vari-

ables such that the joint distribution of any finite subset

of them is Gaussian. A GP-distributed function f(x) ∼
GP(µ0(x), k0(x,x

′)) is defined by a mean function µ0(x)
and a covariance (kernel) function k0(x,x

′). The mean and

covariance are such that for any finite set X = {x1, . . . ,xn},

the random vector f(X) := [f(x1), . . . , f(xn)]
⊤ ∈ R

n has

mean with j-th element µ0(xj) and covariance matrix with

(j, k)-th element k0(xj ,xk) for j, k = 1, . . . ,K. Given a

training dataset D = {(xj , yj)}
n
j=1 generated according to

yj = f(xj) + ǫj with noise ǫj ∼ N (0, σ2
j ), the posterior

distribution of the random function f(x) can be obtained

from the joint distribution of the value f(x) at an arbitrary

location x and the random vector y := [y1, . . . , yn]
⊤

of the

measurements. In detail, the joint distribution is:
[

f(x)
y

]

∼ N

([

µ0(x)
µ0(X)

]

,

[

k0(x,x) k0(x, X)
k0(X,x) k0(X,X) +D

])

, (5)

where D ∈ R
n×n is a diagonal matrix with Di,i = σ2

i ,

while the corresponding conditional distribution f(x)|D ∼
GP(µn(x), kn(x,x

′)) has mean and covariance functions:

µn(x) = µ0(x) + k0(x, X)(k0(X,X) +D)−1(y − µ0(X)),

kn(x,x
′) = k0(x,x

′)− k0(x, X)(k0(X,X) +D)−1k0(X,x′).

Computing the GP posterior has cubic complexity in the

number of observations n due to the n×n matrix inversion.

IV. PROBABILISTIC METRIC-SEMANTIC MAPPING

While the sensor measurements {λt,j , ct,j} are generated

according to the models in (2) and (3) that depend on

{hi(x,η)}, we focus on approximating the TSDF functions

{fi(x)}, whose domains are lower-dimensional. Hence, the

sensor data {λt,j , ct,j}
M

j=1 is first transformed into training

sets Dt,i, suitable for updating the distribution of {fi(x)}.

A. Training Set Construction

The class measurements allow us to associate the sensed

data with a particular semantic class, while the depth mea-

surements allow us to estimate the points where the sensor

rays hit the object sets Oi. In detail, we define the following

point sets for each detected semantic class at time t:

Gt,i = {x̂ ∈ R
3
∣

∣ x̂ = λt,jRtηj + pt and ct,j = i}. (6)

The points x̂ ∈ Gt,i lie in the continuous space X and the

values fi(x̂) of the TSDFs are close to zero since the sensor

rays hit an object surface at these locations.

As shown in Prop. 1 below, the complexity of online

GP training can be improved by forcing the training data

to come from a finite set of points X# ⊂ X , such as a

grid discretization (see Fig. 2). In detail, we choose points

x ∈ X# that are at most ǫ > 0 away from the points in

Gt,i and approximate their TSDF values fi(x) ≈ gt,i(x).
Precisely, the training data sets are defined at time t as:

Dt,i = {(x, gt,i(x))|x ∈ X#, ∃x̂ ∈ Gt,i s.t. ||x− x̂||2 ≤ ǫ}.
(7)

The TSDF value gt,i(x) of a training point x is obtained

by projecting x to the depth image plane and approximating

its depth from the depth values of nearby pixels. In detail,

suppose ηj is the pixel closest to the projection of x (red

pixel in Fig. 2) and let x̂j ∈ Gt,i be the coordinates of its

ray endpoint (blue point in Fig. 2). Let x̂right and x̂up (two

cyan points in Fig. 2) be the ray endpoints of two adjacent

pixels. Then, gt,i(x) is the signed distance from x to the

plane defined by x̂j , x̂right, and x̂up:

gt,i(x) := n⊤(x− x̂j), n := sign(m⊤(pt − x̂j))m,

m =
(x̂right − x̂)× (x̂up − x̂)

‖(x̂right − x̂)× (x̂up − x̂)‖
,

(8)

where m is the normal of the plane and the signed distance

from pt to the plane is positive because the sensor is known

to be outside of the object set Oi.

B. Gaussian Process Regression

Let GP(µt−1,i(x), kt−1,i(x,x
′)) be prior GP distributions

over the signed depth functions fi(x) conditioned on past

data Dt−1,i, . . . ,D1,i. We take µ0,i(x) = L where L is

truncation value in TSDF, and we use sparse matern covari-

ance function as the kernel k0,i(x,x
′). Given the training

set Dt,i constructed at time t, we seek to compute the

posteriors fi(x)
∣

∣Dt,i, . . . ,D1,i ∼ GP(µt,i(x), kt,i(x,x
′))



for each semantic class i. The complexity of computing a GP

posterior scales cubically with the number of observations

in the training set Dt,i, limiting the applicability to online

settings as mentioned in Sec. III. We make a key observation

that limiting the training data points x to come from a

finite set X#, as done in Sec. IV-A, may be used to reduce

the GP traning complexity from cubic in the number of

observations
∑

t |Dt,i|, which grows unbounded with time,

to cubic in the number of distinct observed points from X#.

We formalize this in the following theorem, establishing that

the GP posterior remains unchanged if we merge training

data obtained from the same spatial locations.

Proposition 1. Consider f(x) ∼ GP(µ0(x), k0(x,x
′)). Let:

X = {x1 , . . . ,x1 ,x2 , . . . ,x2 , . . . ,xn , . . . ,xn }

Y = {y1,1, . . . , y1,m1
, y2,1, . . . , y2,m2

, . . . , yn,1, . . . , yn,mn
}

be data generated from the model yi,j = f(xi) + ηi,j with

ηi,j ∼ N (0, σ2
i ) for i = 1, . . . , n and j = 1, . . . ,mi. Let:

X̂ = {x1, . . . ,xn}, Ŷ =

{

1

m1

m1
∑

j=1

y1,j , . . . ,
1

mn

mn
∑

j=1

yn,j

}

be a compressed version of the data generated from the

model f(xi) with noise η̂i ∼ N (0,
σ2
i

mi
). Then, f(x)|X,Y

and f(x)|X̂, Ŷ have the same Gaussian Process distribution

GP(µn(x), kn(x,x
′)) with:

µn(x) = µ0(x) + k0(x, X̂)(D̂ + k0(X̂, X̂))−1(ζ̂ − µ0(X̂)),

kn(x,x
′) = k0(x,x

′)− k0(x, X̂)(D̂ + k0(X̂, X̂))−1k0(X̂,x′),

where D̂ ∈ R
n×n is a diagonal matrix with D̂i,i =

σ2
i

mi
and

ζ̂ ∈ R
n is a vector with elements ζ̂i :=

1
mi

∑mi

j=1 yi,j .

Proof. See Appendix A.

Prop. 1 shows that the complexity of online GP training

can be reduced without changing the posterior if the training

datasets ∪tDt,i are compressed. In detail, the theorem allows

us to summarize the data by simply keeping set of distinct

training points Pt,i ⊂ X#, the number of times mt,i(x)
that each point x ∈ Pt,i has been observed up to time t

and the average of the measured TSDF values ḡt,i(x) :=
1

mt,i(x)

∑mt,i(x)
τ=1 gτ,i(x) at the observed points. Assuming

same noise variance σ2 at all primary observations, the pre-

cision matrix in Prop. 1 is Ωt,i = (σ2diag(mt,i(Pt,i))
−1 +

k0,i(Pt,i,Pt,i))
−1. Given these statistics, the mean functions

µt,i(x) and covariance functions kt,i(x,x
′) of the GP distri-

butions of fi(x) can be obtained at any time t from Prop. 1.

µt,i(x) = µ0(x) + k0(x,Pt,i)Ωt,i(ḡt,i(Pt,i)− µ0(Pt,i)),

kt,i(x,x
′) = k0(x,x

′)− k0(x,Pt,i)Ωt,ik0(Pt,i,x
′),

(9)
We discuss the implementation details of online training and

prediction next.

1) Online GP Training: For each class i ∈ {1, . . . , N},

we keep two hashmap data structures over X# to represent

the number of observations mt,i(x) and the average TSDF

values ḡt,i(x). Given the sensor data Dt+1,i at time t + 1,

we update the hashmaps for each (x, g) ∈ Dt+1,i as:

mt+1,i(x) = mt,i(x) + 1

ḡt+1,i(x) = ḡt,i(x) +
1

mt+1,i(x)
(g − ḡt,i(x))

(10)

2) Online GP Prediction: If we need the online prediction

we should keep track of Ωt,i, otherwise ΩT,i is sufficient.

At time step t + 1, in order to achieve Ωt+1,i from Ωt,i,

we have two kind of new observation in Dt+1,i. We either

have seen some of training points in Pt,i again, let call them

P̃, or we have seen new training points P
′ = Pt+1,i \ Pt,i.

First we update precision matrix regarding the first kind, let

Ω′
j be the updated precision matrix for first j elements of

P̃. Let x be the j + 1-th element of P̃ in order to update

precision matrix regarding x and achieving Ω′
j+1 from Ω′

j ,

let δ = mt+1,i(x)−mt,i(x), ǫ =
σ2

mt+1,i(x)
− σ2

mt,i(x)
, and l

to be the index of Ωt,i corresponding with x:

Ω′
j+1 = (Ω′

j

−1
+ δele

⊤
l )

−1 = Ω′
j −

(Ω′
jel)

⊤Ω′
jel

1
ǫ
+ e⊤l Ω

′
jel

(11)

3) Batch GP Prediction: Let Ω̃ = Ω′
|P̃|

, then if we update

precision matrix Ω̃ with second kind of new observation

we will have Ωt+1,i, let Σ′ = σ2diag(mt+1,i(P
′))−1 +

k0,i(P
′
,P

′),K = k0,i(Pt,i,P
′),C = Ω̃K,E = (Σ′ −

K⊤C)−1,F = −CE then:

Ωt+1,i =

[

Ω̃
−1

K

KT Σ′

]−1

=

[

Ω̃− FCT F

FT E

]

(12)

C. Semantic Class Prediction

In this section, we discuss how to predict the semantic

class labels on the surfaces of the implicitly estimated object

sets Oi. While we did not explicitly model noise in the

class observations in (2), in practice, semantic segmentation

algorithms may produce incorrect pixel-level classification.

This may lead to some sensor observations λt,j , ct,j being

incorrectly included into the training set Dt,i of a different

object class. This happens, for example, if objects from

two different classes, say i1 and i2, are spatially close

to each other and, in an RGB image observation, parts

of the boundary of one are classified as belonging to the

other class. Over time, with multiple sensor observations,

the TSDF approximations for both classes i1 and i2 may

contain training points x ∈ X# with small TSDF values,

indicating an object class surface. In order to predict the

correct object class when such a situation happens, we

compare the likelihoods of the different classes at surface

points given the posterior TSDF distributions of the functions

fi(x). In detail, consider a surface point, i.e., x ∈ X such

that fi(x) = 0 for some class i. The likelihood that the class

label of x is c ∈ {1, . . . , N} is provided below.

Proposition 2. Let GP(µt,i(x), kt,i(x,x
′)) be the distribu-

tions of the signed depth functions fi(x) at time t, determined

according to (9). Consider an arbitrary point x ∈ X on the
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Fig. 7: Training is done with 829 depth images, and their syn-
chronized pose out of Cow and Lady dataset. The left and right
axises determine the SDF error (m), and time(seconds). The default
parameters for our algorithm is Max(N) = 200, δ = 1.5, Gaussian
Process noise variance = 25, voxel size = 0.1, frame size = 5,
and truncation value is 3 × voxel size. The error is verified with
respect to ground truth point cloud that is provided by the dataset.

Gaussian Processes regression of semantic class signed dis-

tance functions. Our method offers a promising direction

for semantic task specifications and uncertainty-aware task

planning. Future work will focus on improving the inference

speed and precision by considering alternative implicit func-

tions and incorporating probabilistic representation of other

environment characteristics such as texture and temperature.

APPENDIX A PROOF OF PROP. 1

Without loss of generality, assume µ0(x) = 0. The

general result can be concluded by change of variables

f(x) − µ0(x). Let X∗ be an arbitrary finite set of query

points, and f∗ be the vector of evaluations of f over X∗.

To prove the posterior GPs are identical, regardless of which

dataset is used for training, we will show that the Gaussian

distribution of f∗ conditioned on either dataset is the same.

Let f := f(X), f̂ = [f⊤, f⊤∗ ]⊤, ζ = [y1,1, ..., yn,mn
]⊤,

and D ∈ R

∑n
j=1

mj×
∑n

j=1
mj be a diagonal matrix such

that D∑i−1

k=0
mk+j,

∑i−1

k=0
mk+j = 1

σ2
i

for j = 1, ...,mi. Our

approach is to calculate p(f∗, f |ζ) from the joint distribution

p(f∗, f , ζ) for the first dataset. Then, if we repeat the process

for the second data set, calculating p(f∗, f |ζ̂), we end up with

the same normal distribution. If the marginal of f∗ is obtained

by integrating out f , the distributions p(f∗|ζ), and p(f∗|ζ̂)
remain the same. From conditional probability and since ζ

depends only on f , we have p(f∗, f , ζ) = p(ζ|f)p(f∗, f). Let

z = [ζ⊤, f̂⊤]⊤, ẑ⊤ = [ζ̂
⊤
, f̂⊤]⊤. The log likelihood of z is:

log p(z) ∝
n
∑

i=1

mi
∑

j=1

−
1

2

(yi,j − f(xi))
2

σ2
i

−
1

2
f̂⊤Ωf̂ , (13)

where

[

k0(X,X) k0(X,X∗)
k0(X∗, X) k0(X∗, X∗)

]−1

=

[

Ω11 Ω12

Ω⊤
12 Ω22

]

= Ω.

For the first dataset, let H be a matrix with elements

Hi,(
∑i−1

k=0
mk+j) = −1

σ2
i

for i = 1, . . . , n and j = 1, . . . ,mi

with zero at the rest of its entries. Similarly, for the second

dataset, let Ĥ to be a matrix with elements Ĥi,i =
−mi

σ2
i

for

i = 1, ..., n and zero elsewhere. Rewrite (13):

log p(z) ∝ −
1

2
z⊤Ωjntz (14)

Ωjnt :=





D−1 H⊤ 0

H diag(H1) +Ω11 Ω12

0 Ω⊤
12 Ω22



 =

[

D−1 G⊤

G Ωcnd

]

,

where 1 is a vector of ones. This means z ∼ N (0,Ω−1
jnt),

and hence f̂ |ζ ∼ N (−Ω−1
cndGζ,Ω−1

cnd). Similarly for sec-

ond dataset, define Ω̂jnt :=

[

D̂−1 Ĝ⊤

Ĝ Ω̂cnd

]

, where Ĝ :=

[Ĥ⊤,0]⊤ and Ω̂cnd is defined by adding diag(Ĥ1) to the

top left block of Ω. Again, ẑ ∼ N (0, Ω̂
−1

jnt), so we can

conclude f̂ |ζ̂ ∼ N (−Ω̂
−1

cndĜζ̂, Ω̂
−1

cnd). The equivalence of

the covariance matrices and means of these two normal

distributions follows from Ĥ1 = H1 and Ĥζ̂ = Hζ.

APPENDIX B PROOF OF PROP. 2

Let lc(z) := P

(

argmin
i

|fi(x)| = c and mini |fi(x)| ≤ |z|

)

.

Since P (mini |fi(x)| ≤ |z|) =
∑

i li(z):

P

(

argmin
i

|fi(x)| = c

∣

∣

∣

∣

min
i

|fi(x)| ≤ |z|

)

=
lc(z)

∑

i li(z)

The term we are interested in computing is limz→0
lc(z)∑
i
li(z)

.

Let x be an arbitrary (test) point, define µi := µt,i(x) and

σi := σt,i(x) for i = 1, . . . , N . The GP prior of fi stipulates

that its value at x has a density function p(t) = 1
σi
φ
(

t−µi

σi

)

.

Hence, P(|fi(x)| ≥ t) = 1 − Φ( |t|−µi

σi
) + Φ(−|t|−µi

σi
).

Note that lc(z) corresponds to the probability that |fc(x)| ≤
|fi(x)| for all i, since all fi are independent of each other:

lc(z) =

∫ z

−z

φ
(

t−µc

σc

)

σc

∏

i 6=c

(

1− Φ
( |t| − µi

σi

)

+Φ
(−|t| − µi

σi

)

)

dt

The claim is concluded by lim
z→0

lc(z)
2z = 1

σc
φ
(

−µc

σc

)

.
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