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Abstract

The high sample complexity of reinforcement

learning challenges its use in practice. A promis-

ing approach is to quickly adapt pre-trained poli-

cies to new environments. Existing methods for

this policy adaptation problem typically rely on

domain randomization and meta-learning, by sam-

pling from some distribution of target environ-

ments during pre-training, and thus face difficulty

on out-of-distribution target environments. We

propose new model-based mechanisms that are

able to make online adaptation in unseen target

environments, by combining ideas from no-regret

online learning and adaptive control. We prove

that the approach learns policies in the target en-

vironment that can recover trajectories from the

source environment, and establish the rate of con-

vergence in general settings. We demonstrate the

benefits of our approach for policy adaptation in

a diverse set of continuous control tasks, achiev-

ing the performance of state-of-the-art methods

with much lower sample complexity. Our project

website, including code, can be found at https:

//yudasong.github.io/PADA.

1. Introduction

Deep Reinforcement Learning (RL) methods typically re-

quire a very large number of interactions with environments,

making them difficult to be used on practical systems (Tan

et al., 2018). A promising direction is to adapt policies

trained in one environment to similar but unseen environ-

ments, such as from simulation to real robots. Existing ap-

proaches for policy adaptation mostly focus on pre-training

the policies to be robust to predefined distributions of dis-

turbances in the environment, by increasing the sample di-

versity during training (Peng et al., 2018; Tobin et al., 2017;
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Mordatch et al., 2015), or meta-learn policies or models that

can be quickly adapted to in-distribution environments (Finn

et al., 2017a; Nagabandi et al., 2019a;b; Yu et al., 2018a).

A key assumption for these approaches is that the distribu-

tion of the target environments is known, and that it can be

efficiently sampled during training. On out-of-distribution

target environments, these methods typically do not deliver

good performance, reflecting common challenges in gener-

alization (Na et al., 2020). If we observe how humans and

animals adapt to environment changes, clearly there is an

online adaptation process in addition to memorization (Stad-

don, 2016). We can quickly learn to walk with a slightly

injured leg even if we have not experienced the situation.

We draw experiences from normal walking and adapt our

actions online, based on how their effects differ from what

we are familiar with in normal settings. Indeed, this in-

tuition has recently led to practical approaches for policy

adaptation. The work in (Christiano et al., 2016) uses a pre-

trained policy and model of the training environment, and

learns an inverse dynamics model from scratch in the new

environment by imitating the behaviors of the pre-trained

policy. However, it does not involve mechanisms for ac-

tively reducing the divergence between the state trajectories

of the two environments, which leads to inefficiency and

distribution drifting, and does not fully capture the intuition

above. The work in (Zhu et al., 2018) uses Generative Ad-

versarial Imitation Learning (GAIL) (Ho & Ermon, 2016)

to imitate the source trajectories in the new environment,

by adding the GAIL discriminator to the reward to reduce

divergence, but relies on generic policy optimization meth-

ods with high sample complexity. In general, these recent

approaches show the feasibility of policy adaptation, but are

not designed for optimizing sample efficiency. There has

been no theoretical analysis of whether policy adaptation

methods can converge in general, or their benefits in terms

of sample complexity.

In this paper, we propose a new model-based approach for

the policy adaptation problem that focuses on efficiency

with theoretical justification. In our approach, the agent at-

tempts to predict the effects of its actions based on a model

of the training environment, and then adapts the actions to

minimize the divergence between the state trajectories in the

new (target) environment and in the training (source) envi-

ronment. This is achieved by iterating between two steps: a
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modeling step learns the divergence between the source envi-

ronment and the target environment, and a planning step that

uses the divergence model to plan actions to reduce the di-

vergence over time. Under the assumption that the target en-

vironment is close to the source environment, the divergence

modeling and policy adaption can both be done locally and

efficiently. We give the first theoretical analysis of policy

adaptation by establishing the rate of convergence of our

approaches under general settings. Our methods combine

techniques from model-based RL (Wang et al., 2019) and no-

regret online learning (Ross et al., 2011). We demonstrate

that the approach is empirically efficient in comparison to

the state-of-the-art approaches (Christiano et al., 2016; Zhu

et al., 2018). The idea of recovering state trajectories from

the source environment in the target environment suggests a

strong connection between policy adaptation and imitation

learning, such as Learning from Observation (LfO) (Torabi

et al., 2018; 2019a; Sun et al., 2019b; Yang et al., 2019).

A key difference is that in policy adaptation, the connec-

tion between the source and target environments and their

difference provide both new challenges and opportunities

for more efficient learning. By actively modeling the diver-

gence between the source and target environments, the agent

can achieve good performance in new environments by only

making local changes to the source policies and models. On

the other hand, because of the difference in the dynamics

and the action spaces, it is not enough to merely imitate

the experts (Bain & Sommut, 1999; Ross et al., 2011; Sun

et al., 2017). Traditionally, adaptive control theory (Åström,

1983) studies how to adapt to disturbances by stabilizing the

error dynamics. Existing work in adaptive control assumes

closed-form dynamics and does not apply to the deep RL

setting (Nagabandi et al., 2019a). In comparison to domain

randomization and meta-learning approaches, our proposed

approach does not require sampling of source environments

during pre-training, and makes it possible to adapt in out-

of-distribution environments. Note that the two approaches

are complementary, and we demonstrate in experiments

that our methods can be used in conjunction with domain

randomization and meta-learning to achieve the best results.

The paper is organized as follows. We review related work

in Section 2 and the preliminaries in Section 3. In Section

4, we propose the theoretical version of the adaptation al-

gorithm and prove its rate of convergence. In section 5 we

describe the practical implementation using deviation mod-

els and practical optimization methods. We show detailed

comparison with competing approaches in Section 6.

2. Related Work

Our work connects to existing works on imitation learning,

online adaptation, domain randomization and meta-learning,

and model-based reinforcement learning.

Imitation Learning. In imitation learning, there is typically

no separation between training environments and test en-

vironments. Existing imitation learning approaches aim to

learn a policy that generates state distributions (Tobin et al.,

2017; Torabi et al., 2019b; Sun et al., 2019b; Yang et al.,

2019) or state-action distributions (Ho & Ermon, 2016; Fu

et al., 2017; Ke et al., 2019; Ghasemipour et al., 2019) that

are similar to the ones given by the expert policy. The differ-

ence in the policy adaptation setting is that the expert actions

do not work in the first place in the new environment, and

we need to both model the divergence and find a new policy

for the target environment. In light of this difference, the

work (Zhu et al., 2018) considers a setting that is the closest

to ours (which we will compare with in the experiments). It

uses a state-action-imitation (GAIL(Ho & Ermon, 2016))

approach to learn a policy in the target environment, to gen-

erate trajectories that are similar to the trajectories of the

expert from the source environments. It also relies on using

the true reward signals in the target environment to train the

policy besides state imitation. In recent work, (Liu et al.,

2020) approaches a similar problem by using Wasserstein

distance between the states as the reward. It uses adversarial

training and model-free policy optimization methods. Our

approach is model-based and relies on reduction to Data

Aggregation (Ross et al., 2011) for efficiency. The reduc-

tion allows us to derive provable convergence guarantee

with the rate of convergence. Experimentally we show that

our approach is more sample efficient than model-free and

minmax-based imitation approaches in general.

Online Adaptation. Online adaptation methods transfer

policies by learning a mapping between the source and

target domains (Daftry et al., 2016; Tzeng et al., 2015). Such

methods have achieved success in vision-based robotics but

require extra kernel functions or learning feature spaces. In

contrast, we focus on control problems where the policy

adaptation is completely autonomous. (Christiano et al.,

2016) trains an inverse dynamics model (IDM) which can

serve as the target policy by inquiring the source policy

online. However, the approach does not focus on optimizing

sample efficiency, which is crucial for the use of policy

adaptation. In (Yu et al., 2018b), the agent selects from a

range of pre-trained policies online, and does not perform

further adaptation, and thus experiences problems similar to

domain randomization approaches.

Domain Randomization and Meta-Learning. Domain

randomization and meta-learning methods are popular ways

of transferring pre-trained policies to new environments.

These methods rely on the key assumption that the training

environments and test environments are sampled from the

same predefined distribution. Domain randomization meth-

ods train robust agents on diverse samples of target environ-

ments (Tobin et al., 2017; Mordatch et al., 2015; Antonova

et al., 2017; Chebotar et al., 2019). When the configuration
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Figure 1. (a) Halfcheetah of mass m using the source policy π(s) in the source environment M(s). (b) Halfcheetah of mass 1.5 ×m

using the source policy π(s) in the target environment M(t). (c) Halfcheetah of mass 1.5 ×m using the learned target policy π(t) in

M(t) with out method. Using the policy trained in the source environment without adapting it to the target environment yields suboptimal

results. The adapted policy π(t) can recover gaits close to the source trajectory.

of the target environment lies outside the training distribu-

tion, there is no performance guarantee. In meta-learning,

such as Model Agnostic Meta-Learning (MAML) (Finn

et al., 2017a;b; Nagabandi et al., 2018), meta-learned dynam-

ics policies and models can adapt to perturbed environments

with notable success including in physical robots. How-

ever, similar to domain randomization based approaches,

they experience difficulties on new environments that are

not covered by the training distribution. Our proposed ap-

proach focuses on online adaption in unseen environments.

It is orthogonal to domain randomization and meta-learning

approaches. We show in experiments that these different

approaches can be easily combined.

Model-based Reinforcement Learning. Model-based re-

inforcement learning (MBRL) provides a paradigm that

learns the environment dynamics and optimizes the control

actions at the same time. Recent work has shown that MBRL

has much better sample efficiency compared to model-free

approaches both theoretically and empirically (Tu & Recht,

2018; Chua et al., 2018; Sun et al., 2019a). Our setting is

different from the traditional MBRL setting. We consider

test environments that are different from the training envi-

ronment, and adapt the policy from the training environment

to the test environment.

3. Preliminaries

We consider finite-horizon Markov Decision Processes

(MDP) M = 〈S,A, f,H,R〉 with the following compo-

nents. S denotes the state space, and A the action space.

The transition function f : S × S × A → [0, 1] deter-

mines the probability f(s′|s, a) of transitioning into state

s′ from state s after taking action a. The reward func-

tion R : S → R is defined only on states. We write πθ

to denote a stochastic policy πθ : S × A → [0, 1] param-

eterized by θ. Each policy πθ determines a distribution

over trajectories {(si, ai, ri)}
H
i=1 under a fixed dynamics

f . The goal of the agent is to maximize the expected cu-

mulative reward J(θ) = Eπθ,f

[

∑H
h=1 R(sh)

]

over all pos-

sible trajectories that can be generated by πθ. Without

loss of generality, in the theoretical analysis we always as-

sume the normalized total reward is in the [0, 1] range, i.e.,

maxs1,...sH
∑H

h=1 R(sh) ∈ [0, 1].

We write the set {1, 2, . . . , N} as [N ], and the uniform

distribution over set A as U(A) throughout the paper. For

any two distributions d1 and d2, we use ‖d1−d2‖ to denote

the total variation distance between the two distributions.

4. Policy Adaptation with Data Aggregation

4.1. Basic Definitions

In policy adapation, we consider a pair of MDPs and call

them a source MDP and a target MDP. We define the source

MDP asM(s) := {S,A(s), f (s), H,R} and the target MDP

asM(t) := {S,A(t), f (t), H,R}. Note that the two MDPs

share the same state space and reward functions, but can

have different action spaces and transition dynamics. Fig.

1 demonstrates the problem of adapting a policy from a

source environment to a target environment. Because of

the difference in the action space and dynamics, directly

using good policies from the source environment (Fig.1(a))
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does not work in the target environment (Fig.1(b)). The

objective is to adapt the policy from the source to the target

environment to achieve good performance (Fig.1(c)).

We focus on minimizing the samples needed for adaptation

in the target MDP, by leveraging M(s) to quickly learn

a policy in M(t). To achieve this, we assume that a pre-

trained policy π(s) from M(s) achieves high rewards in

M(s). We wish to adapt π(s) to a policy π(t) that works

well inM(t). For ease of presentation, we consider π(s) and

π(t) as deterministic throughout the theoretical analysis.

Given a policy π, we write E
(s)
π (·) for the expectation over

random outcomes induced by π andM(s). We write d
(s)
π;h

to denote the state distribution induced by π at time step h

underM(s), and d
(s)
π =

∑H
h=1 d

(s)
π;h/H as the average state

distribution of π underM(s). We write ρ
(s)
π to represent

the distribution of the state trajectories from π: for τ =

{sh}
H
h=0, ρ

(s)
π (τ) =

∏H
h=1 f

(s)(sh|sh−1, π(sh−1)). For

the target MDP M(t), we make the same definitions but

drop the superscript (t) for ease of presentation. Namely,

Eπ(·) denotes the expectation over the randomness from π
and M(t), dπ denotes the induced state distribution of π
underM(t), and ρπ denotes the state trajectory distribution.

4.2. Algorithm

We now introduce the main algorithm Policy Adaptation

with Data Aggregation (PADA). Note that this is the theo-

retical version of the algorithm, and the practical implemen-

tation will be described in detail in Section 5. To adapt a

policy from a source environment to a target environment,

PADA learns a model f̂ to approximate the target envi-

ronment dynamics f (t). Based on the learned model, the

algorithm generates actions that attempt to minimize the di-

vergence between the trajectories in the target environment

and those in the source environment generated by π(s) at

M(s). Namely, the algorithm learns a policy π(t) that repro-

duces the behavior of π(s) onM(s) in the target MDPM(t).

Since the state space S is often large, learning a model f̂
that can accurately approximate f (t) globally is very costly.

Instead, we only aim to iteratively learn a locally accurate

model, i.e., a model that is accurate near the states that are

generated by π(t). This is the key to efficient adaptation.

The detailed algorithm is summarized in Alg. 1. Given a

model f̂e at the e-th iteration, we define the ideal policy π
(t)
e

π(t)
e (s) , argmin

a∈A(t)

‖f̂e(·|s, a)− f (s)(·|s, π(s)(s))‖. (1)

The intuition is that, assuming f̂e is accurate in terms of

modelling f (t) at state s, π
(t)
e (s) aims to pick an action such

that the resulting next state distribution under f̂e is similar

to the next state distribution resulting from π(s) under the

Algorithm 1 Policy Adaptation with Data Aggregation

Require: Source domain policy π(s), source dynamics

f (s), model class F
1: Initialize dataset D = ∅
2: Initialize f̂1
3: for e = 1, . . . T do

4: Define policy π
(t)
e as in Eq. 1

5: for n = 1, . . . N do

6: ResetM(t) to a random initial state

7: Uniformly sample a time step h ∈ [H]

8: Execute π
(t)
e inM(t) for h steps to get state s

9: Sample exploration action a ∼ U(A(t))
10: Take a inM(t) and get next state s′

11: Add (s, a, s′) into D (Data Aggregation)

12: end for

13: Update to f̂e+1 via MLE by Eq. 2

14: end for

15: Output: {π
(t)
e }Te=1

source dynamics f (s). We then execute π
(t)
e in the target

environmentM(t) to generate a batch of data (s, a, s′). We

further aggregate the newly generated data to the dataset

D (i.e., data aggregation). We update model to f̂e+1 via

Maximum Likelihood Estimation (MLE) on D:

f̂e+1 = argmax
f∈F

∑

s,a,s′∈D

log f(s′|s, a). (2)

Note that Algorithm 1 relies on two black-box offline com-

putation oracles: (1) a one-step minimization oracle (Eq. 1)

and (2) a Maximum Likelihood Estimator (Eq. 2). In Sec-

tion 5, we will introduce practical methods to implement

these two oracles. We emphasize here that these two ora-

cles are offline computation oracles and the computation

itself does not require any fresh samples from the target

environmentM(t).

4.3. Analysis

We now prove the performance guarantee of Alg.1 for policy

adaptation and establish its rate of convergence. At a high

level, our analysis of Alg. 1 is inspired from the analysis of

DAgger (Ross et al., 2011; Ross & Bagnell, 2012) which

leverages a reduction to no-regret online learning (Shalev-

Shwartz et al., 2012). We will first make the connection with

the Follow-the-Leader (FTL) algorithm, a classic no-regret

online learning algorithm, on a sequence of loss functions.

We then show that we can transfer the no-regret property of

FTL to performance guarantee on the learned policy π(t).

Our analysis uses the FTL regret bound Õ(1/T ) where T is

the number of iterations (Shalev-Shwartz et al., 2012). Since

our analysis is a reduction to general no-regret online learn-

ing, in theory we can also replace FTL by other no-regret
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online learning algorithms as well (e.g., Online Gradient De-

scent (Zinkevich, 2003) and AdaGrad (Duchi et al., 2011)).

Intuitively, for fast policy adaptation to succeed, one should

expect that there is similarity between the source environ-

ment and the target environment. We formally introduce the

following assumption to quantify this.

Assumption 4.1 (Adaptability). For any state action pair

(s, a) with source action a ∈ A(s) , there exists a target

action a′ ∈ A(t) in target environment, such that:

‖f (s)(·|s, a)− f (t)(·|s, a′)‖ ≤ ǫs,a,

for some small ǫs,a ∈ R
+.

Remark 4.2. When ǫs,a → 0 in the above assumption, the

target environment can perfectly recover the dynamics of the

source domain at (s, a). However, ǫs,a = 0 does not mean

the two transitions are the same, i.e., f (t)(s, a) = f (s)(s, a).
First the two action spaces can be widely different. Secondly,

there may exist states s, where one may need to take com-

pletely different target actions from A(t) in order to match

the source transition f (s)(·|s, a), i.e., ∃a′ ∈ A(t) such that

f (t)(·|s, a′) = f (s)(·|s, a), but a 6= a′.

Assumption 4.3 (Realizability). Let the model class F be

a subset of {f : S ×S ×A → [0, 1]}. We assume f (t) ∈ F .

Here we assume that our model class F is rich enough to

include f (t). Note that the assumption on realizability is

just for analysis simplicity. Agnostic results can be achieved

with more refined analysis similar to (Ross et al., 2011; Ross

& Bagnell, 2012).

We define the following loss function:

ℓe(f) , Es∼d
π
(t)
e

,a∼U(A(t))

[

DKL

(

f (t)(·|s, a), f(·|s, a)
)]

,

for all e ∈ [T ]. The loss function ℓe(f) measures the

difference between f (t) and f under the state distribution

induced by π
(t)
e underM(t) and the uniform distribution

over the action space. This definition matches the way

we collect data inside each episode. We generate (s, a, s′)
triples via sampling s from d

π
(t)
e

, a from U(A(t)), and then

s′ ∼ f (t)(·|s, a). At the end of the iteration e, the learner

uses FTL to compute f̂e+1 as:

f̂e+1 = argmin
f∈F

e
∑

i=1

ℓi(f).

Using the definition of KL-divergence, it is straightforward

to show that the above optimization is equivalent to the

following Maximum Likelihood Estimation:

argmax
f∈F

e
∑

i=1

Es∼d
π
(t)
e

,a∼U(A(t)),s′∼f(t)(·|s,a) [log f(s
′|s, a)] .

At the end of the episode e, the aggregated dataset D con-

tains triples that are sampled based on the above procedure

from the first to the e-th episode.

With no-regret learning on f̂e, assumptions 4.1, and 4.3, we

can obtain the following main results. We first assume that

the target environmentM(t) has a discrete action space, i.e.,

A(t) is discrete, and then show that the result can be easily

extended to continuous action spaces.

Theorem 4.4 (Main Theorem). Assume M(t) has a dis-

crete action space A(t) and denote A , |A(t)|. Among the

sequence of policies computed in Alg. 1, there exists a policy

π̂ such that:

Es∼dπ̂
‖f (t)(·|s, π̂(s))− f (s)(·|s, π(s)(s))‖

≤ O
(

AT−1/2 + Es∼dπ̂

[

ǫs,π(s)(s)

]

)

,

which implies that:

∥

∥

∥
ρπ̂ − ρ

(s)

π(s)

∥

∥

∥
≤ O

(

HAT−1/2 +HEs∼dπ̂

[

ǫs,π(s)(s)

]

)

,

where we recall that ρπ stands for the state-trajectory dis-

tribution of policy π underM(t) and ρ
(s)

π(s) stands for the

state-trajectory distribution of π(s) underM(s).

The full proof is in the Appendix A. The theorem shows

that our algorithm can provide a policy in the target en-

vironment that induces trajectories close to those induced

by the experts in the source environment. For instance, if

the target and source MDPs are completely adaptable (i.e.,

ǫs,a = 0 in Assumption 4.1 for all (s, a)) and the number

of iterations approach to infinity, then we can learn a policy

π̂ that generates state trajectories in M(t) that match the

state trajectories generated via the source policy π(s) at the

source MDPM(s).

Remark 4.5. The error Es∼dπ̂

[

ǫs,π(s)(s)

]

is averaged over

the state distribution induced by the learned policy rather

than in an ℓ∞ form, i.e., maxs,a ǫs,a.

Although the analysis is done on discrete action space, the

algorithm can be naturally applied to compact continuous

action space as follows. The proof of the following corollary

and its extension to the d-dimensional continuous action

spaces are in the Appendix.

Corollary 4.6 (Continuous Action Space). Assume A(t) =
[0, 1], f (t) and functions f ∈ F are Lipschitz continuous

with (and only with) actions in A(t). Among policies re-

turned from Alg. 1, there exists a policy π̂ such that:

‖ρπ̂ − ρ
(s)

π(s)‖ ≤ O
(

HT−1/4 +HEs∼dπ̂

[

ǫs,π(s)(s)

]

)

.

Remark 4.7. As we assume the reward function only de-

pends on states, ‖ρπ̂ − ρ
(s)

π(s)‖ ≤ δ implies |J (t)(π̂) −

J (s)(π(s))| ≤ ‖ρπ̂ − ρ
(s)

π(s)‖
(

maxs1...sH
∑H

h R(sh)
)

≤ δ
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due to the normalization assumption on the rewards. Thus,

though our algorithm runs without rewards, when π(s)

achieves high reward in the source MDPM(s), the algo-

rithm is guaranteed to learn a policy π̂ that achieves high

rewards in the target environmentM(t).

5. Practical Implementation

In Algorithm 1 we showed the theoretical version of our

approach, which takes an abstract model class F as input

and relies on two offline computation oracles (Eq. 1 and

Eq. 2). We now design the practical implementation by

specifying the parameterization of the model class F and

the optimization oracles. Algorithm 2 shows the practical

algorithm, and we explain the details in this section.

5.1. Model Parameterization

In the continuous control environments, we focus on stochas-

tic transitions with Gaussian noise, where f (t)(s, a) =
f̄ (t)(s, a) + ǫ, f (s)(s, a) = f̄ (s)(s, a) + ǫ′, with ǫ and ǫ′

fromN (0,Σ) and f̄ (t) and f̄ (s) being nonlinear determinis-

tic functions. In this case, we consider the following model

class with parameterization θ:

F = {δθ(s, a) + f̂ (s)(s, π(s)(s)), ∀s, a : θ ∈ Θ}.

where f̂ (s) is a pre-trained model of the source dynam-

ics f (s) and we assume f̂ (s) well approximates f (s) (and

one has full control to the source environment such as the

ability to reset). Then for each state s, f̂ (s)(s, π(s)(s)) is

a fixed distribution of the next state in the source environ-

ment by following the source policy. Define ∆π(s)

(s, a) ,

f̂ (s)(s, π(s)(s))− f (t)(s, a), which captures the deviation

from taking action a in the target environment to following

π(s) in the source environment. So δθ(s, a) is trained to

approximate the deviation ∆π(s)

(s, a). Note that learning

∆π(s)

is just an alternative way to capture the target dynam-

ics since we know f̂ (s)(s, π(s)) foresight, thus it should be

no harder than learning f (t) directly.

5.2. Model Predictive Control

For deterministic transition, Eq 1 reduces to one-step

minimization argmina∈A(t) ‖f̂e(s, a)− f̂ (s)(s, π(s)(s))‖2.

Since f̂e ∈ F , we have f̂e(s, a) = δθe(s, a) +

f̂ (s)(s, π(s)(s)), and the optimization can be further sim-

plfied to: argmina∈A(t) ‖δθe(s, a)‖2. We use the Cross En-

tropy Method (CEM) (Botev et al., 2013) which iteratively

repeats: randomly draw N actions, evaluate them in terms

of the objective value ‖δθe(s, a)‖2, pick the top K actions

in the increasing order of the objective values, and then refit

a new Gaussian distribution using the empirical mean and

covariance of the top K actions.

Algorithm 2 Policy Adaptation with Data Aggregation via

Deviation Model

Require: πs, f̂ (s), deviation model class {δθ : θ ∈ Θ},
explore probability ǫ, replay buffer D, learning rate η

1: Randomly initialize divergence model δθ
2: for T Iterations do

3: for n steps do

4: s← ResetM(t)

5: while current episode does not terminate do

6: With probability ǫ: a ∼ U(A(t))
7: Otherwise: a← CEM(A(t), s, δθ)
8: Execute a inM(t): s′ ← f (t)(s, a)
9: Update replay buffer: D ← D ∪ {(s, a, s′)}

10: s← s′

11: end while

12: end for

13: Update θ with Eq. 3

14: end for

We emphasize here we only need to solve a one-step opti-

mization problem without unrolling the system for multiple

steps. We write the CEM oracle as CEM(A(t), s, δθ) which

outputs an action a fromA(t) that approximately minimizes

‖δθ(s, a)‖2. Here, CEM(A(t), s, δθ) : S → A(t) can be

considered as a policy that maps state s to a target action a.

5.3. Experience Replay for Model Update

Note that Alg. 1 requires to solve a batch optimization prob-

lem (MLE in Eq. 2) in every iteration, which could be com-

putationally expensive in practice. We use Experience Re-

play (Adam et al., 2011; Mnih et al., 2013), which is more

suitable to optimize rich non-linear function approximators

(δθ is a deep neural network in our experiments). Given

the current divergence model δθ and the aggregated dataset

D = {s, a, s′} (aka, replay buffer) with s′ = f (t)(s, a),
we randomly sample a mini-batch B ⊂ D and perform a

stochastic gradient descent step with learning rate η:

θ ← θ − η
|B|∇θ

(

∑|B|
i=1 ‖f̂

(s)(si, π
(s)(si)) + δθ(si, ai)− s′i‖

2
2

)

.

(3)

5.4. Policy Adaptation with Data Aggregation

As show in Algorithm 2, we maintain a reply buffer that

stores all experiences from the target modelM(t) (Line 2)

and constantly update the model δθ using mini-batch SGD

(Eq. 3). Alg 2 performs local exploration in an ǫ-greedy

way. We refer our method as Policy Adaptation with Data

Aggregation via Deviation Model (PADA-DM).

Remark 5.1. Even being one-step, CEM(A(t), s, δθ) may

be computationally expensive, we could obtain a MPC-free

policy (target policy) by training an extra parameterized
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policy to mimic CEM(A(t), s, δθ) via techniques of Behav-

ior Cloning (Bain & Sommut, 1999). When we train this

extra parameterized policy, we name the method as PADA-

DM with target policy and we will show it does not affect

the performance of the overall algorithm during training.

However, during test time, such parameterized policy runs

faster than CEM and thus is more suitable to be potentially

deployed on real-world systems.

6. Experiments

In this section we compare our approach with the state-

of-the-art methods for policy adaptation (Christiano et al.,

2016; Zhu et al., 2018; Schulman et al., 2017; Finn et al.,

2017a) and show that we achieve competitive results more

efficiently. We also test the robustness of the approaches

on multi-dimensional perturbations. We then compare to

domain randomization and meta-learning approaches and

show how they can be combined with our approach. We

provide further experiments in Appendix D.

Following the same experiment setup as (Christiano et al.,

2016), We focus on standard OpenAI Gym (Brockman et al.,

2016) and Mujoco (Todorov et al., 2012) control environ-

ments such as HalfCheetah, Ant, and Reacher. We perturb

the environments by changing their parameters such as mass,

gravity, dimensions, motor noise, and friction. More details

of task designs are in Appendix B.1.

6.1. Comparison with Existing Approaches

We compare our methods (PADA-DM, PADA-DM with

target policy) with the following state-of-the-art methods

for policy adaptation. The names correspond to the learning

curves shown in Figure 2.

Christiano et al., 2016: (Christiano et al., 2016) uses a

pre-trained policy π(s) and source dynamics f (s), to learn

an inverse dynamics model φ : A× S × S → [0, 1], where

φ(a|s, s′) is the probability of taking action a that leads to

s′ from s.1 That is, π(t)(s) = φ(s, f (s)(s, π(s)(s))).

Zhu et al., 2018: (Zhu et al., 2018) proposed an approach

for training policies in the target domain with a new reward

λR(sh) + (1 − λ)Rgail(sh, ah), λ ∈ [0, 1]. Here Rgail is

from the discriminator from GAIL. Note that this baseline

has access to true reward signals while ours do not.

For additional baselines, we also show the performance

of directly running Proximal Policy Optimization (PPO)

(Schulman et al., 2017) in the target environment, as well

as directly using the source policy in the perturbed environ-

1In general an inverse model is ill-defined without first spec-
ifying a policy, i.e., via Bayes rule, φ(a|s, s′) ∝ P (a, s, s′) =

f (t)(s′|s, a)π(a|s). Hence one needs to first specify π in order to
justify the existence of an inverse model φ(a|s, s′).

ment without adapation.

Figure 3. The long-term learning curves. The x-axis is the number

of timesteps in natural logarithm scale.

Results. Figure 2 demonstrates the sample efficiency of

our methods compared to the other methods and baselines.

Both PADA-DM and PADA-DM with target policy con-

verge within 10k to 50k training samples in the target envi-

ronments. In contrast, (Christiano et al., 2016) requires 5

times more samples than our methods on average, and (Zhu

et al., 2018) and PPO require about 30 times more. At con-

vergence, our methods obtain the highest episodic rewards

in 7 out of 8 tasks above among the policy adaptation meth-

ods. The baseline performance of PPO is better than the

policy adaptation methods in HalfCheetah and Reacher (re-

call PPO uses true reward signals), but it takes significantly

longer as shown in Fig. 2. Note that in the Ant environment,

even at convergence our methods outperform PPO as well.

The only task where our methods failed to achieve top per-

formance is Ant-v2 0.6 std motor noise. In this environment,

the action noise causes high divergence between the tar-

get and source environments, making it hard to efficiently

model the domain divergence. All the adaptation methods

deliver bad performance in this case, indicating the difficulty

of the task.

We observe that the learning curves of PADA-DM and

PADA-DM with target policy are similar across all tasks

without sacrificing efficiency or performance. The target

policy can be directly used without any MPC step.

To further illustrate the sample efficiency of our method,

we compare the long-term learning curves in Fig. 3. We

plot the learning curves up to convergence of each method.

We further include a long-term version of Fig 2 and the

hyperparameters in the Appendix.

6.2. Performance on Multi-Dimensional Perturbations

We further evaluate the robustness of our methods by per-

turbing multiple dimensions of the target environment (Fig.

4). Note that online adaptation is particularly useful for

multiple-dimension perturbations, because they generate an

exponentially large space of source environments that are

hard to sample offline. In Fig. 4(b), we show that even

when perturbing 15 different degrees of freedom of the tar-
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provides robustness within the environments’ distribution,

and online adaptation in real target environment using our

approach further ensures robustness to out-of-distribution

environments. We also observe that our method provides the

most stable performance given the smallest test variances.

We include additional experiments and detailed numbers

of the performances of all methods (mean and standard

deviations) in Appendix D.4.

(a) (b)

Figure 5. Ablation experiments using domain randomization and

meta-learning. (a) Varying gravity. (b) Varying mass.

7. Conclusion

We proposed a novel policy adaptation algorithm that com-

bines techniques from model-based RL and no-regret online

learning. We theoretically proved that our methods gener-

ate trajectories in the target environment that converge to

those in the source environment. We established the rate of

convergence of the algorithms. We have shown that our al-

gorithm achieves competitive performance across a diverse

set of continuous control tasks with better sample efficiency.

A natural extension is to use our approach on simulation-to-

real problems in combination with domain randomization

and meta-learning.

As our experiments indicated that the combination of do-

main randomization and our online adaptation approach

together often yields good results, for future work, we plan

to investigate general theoretical framework for combining

domain randomization and online adaptive control tech-

niques.
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