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ABSTRACT

Digital signatures are a fundamental building block for ensuring
integrity and authenticity of contents delivered by the Named Data
Networking (NDN) systems. However, current digital signature
schemes adopted by NDN open source libraries have a high compu-
tational and communication overhead making them unsuitable for
high throughput applications like video streaming and virtual real-
ity gaming. In this poster, we propose a real-time digital signature
mechanism for NDN based on the offline-online signature frame-
work known as Structure-free and Compact Real-time Authentication
scheme (SCRA). Our signature mechanism significantly reduces the
signing and verification costs and provides different variants to
optimize for the specific requirements of applications (i.e. sign-
ing overhead, verification overhead or communication cost). Our
experiments results show that SCRA is a suitable framework for
latency-sensitive NDN applications.
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1 INTRODUCTION

Named Data Networking (NDN) [2, 14, 15] has emerged as an
innovative network architecture that fundamentally rethinks the
way content is distributed over networks. NDN allows consumers
to indicate the contents they want by just providing the “name” of
the content, rather than providing the content location.

An important requirement when dealing with content distribu-
tion is to assure content integrity and authenticity. Current designs
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of NDN systems have adopted the well known Public Key Infras-
tructure (PKI) for content authentication.

ECDSA [5] and RSA [7] are two signature schemes supported
by several open source NDN libraries [8, 9]. A drawback of these
traditional signature schemes is that they introduce a significant
computational overhead, adding a lot of latency to communication.
In real-time applications, like video conferencing, VR gaming etc.,
it is essential to keep the latency to a minimum to maintain a
certain quality of service. NDN provides a temporal in-network
storage caching for the recently requested data packets. However,
this technique is not sufficient to reduce communication latency.
It has been repeatedly shown that the aforementioned signatures
schemes impose a bottleneck in the overall communication for
real-time applications [3, 12, 13].

2 PROPOSED SCHEME

Structure-Free and Compact Real-time Authentication (SCRA) is
a suite of real-time digital signatures schemes that provide delay-
aware authentication for time-critical networks [13]. SCRA trans-
forms any aggregate signature into a signer efficient signature. It
pushes the costly signature generation operations to an offline
phase and uses efficient aggregation operations in the online phase
to generate the actual signatures for messages. We instantiate SCRA-
C-RSA in the context of NDN as it is proven to be both signer and
verifier efficient. The SCRA framework has three phases: offline,
online, and verification. We assume that trust has already been
established between the NDN content producer and the consumer.

SCRA-C-RSA is equivalently secure to its RSA origin and it is
characterized by signature immutability. Signature immutability
refers to the difficulty of computing valid aggregated signatures
from a set of other aggregated signatures [6].
Offline phase: This is a one-time setup operation performed by
the producer to generate a precomputed table of signatures (table
T') that is stored in memory for subsequent use. We leverage the
SHA-256 hashing algorithm to calculate the hash output of the
packets which are signed by the algorithm.

The producer first choose two parameters L and d such that
d - L = b, where L is the number of chucks the hash is sliced into,
d is the number of bits per chunk, and b is the number of bits of
the hash output (256 bits for the SHA-256 hashing algorithm). For
example, when L = 32 and d = 8, we divide the hash into 32 chunks
of 8 bits each. The producer then creates a precomputed signature
table I' that contains signatures calculated on all the different bit
combinations for each chunk. The chunks are indexed from i = 1
to L. Let j be a counter in the range 0 < j < 24 For all i and J,
the producer computes y; j < H(il|j)¥ mod n, where H is the
one-way hash function, i||j the concatenation of i and j, u is the
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SCRA-C-RSA SCRA-C-RSA
ECDSA-256 | RSA-3072 | (3072 bit key) ECDSA-256 | RSA-3072 | (3072 bit key)
L=32 | L=16 L=32 | L=16
Public key size (bytes) 91 422 422 422 Public key size (bytes) 91 422 422 422
Average signature size (bytes) 71 384 5.82 | 5.82 Average signature size (bytes) 71 384 384 384
Average signing time (msec) 0.059 1.49 0.22 | 0.11 Average signing time (msec) 0.13 3.17 0.50 | 0.26
Average verification time (msec) 0.10 0.063 0.040 | 0.02 Total packets signed 7,665 7,733 7,637 | 7,686
Average end-to-end delay (msec) 0.35 1.85 0.46 | 0.30 Average verification time (msec) 0.30 0.12 0.16 | 0.12
Table 1: Standalone message authentication with 100-packet Total packets verified 1,492 1,485 | 1,488 | 1,489

signature aggregation.

producer’s private key and n is the public modulus. Overall, the
total number of computations is L X 24,

Online phase: Once the producer constructs a data packet, it must
sign it before sending it to the forwarding daemon [11]. The pro-
ducer wire-encodes [10] the packet into a buffer and then hashes
the encoded message and slices it into L chunks of d bits. Now, the
producer simply fetches the precomputed signature from table I for
each chunk i (1 < i < L) ofthe hashed message: y; < I'[i] [hash[i]],
where y; is the cached precomputed signature in table T, hash[i] de-
notes the bits of the chunk i. Subsequently, the producer computes
the packet’s aggregated signature s < ]_[{.“:1 yi mod n.
Verification phase: The consumer just needs to have access to the
installed producer’s certificate (i.e. the public key) to authenticate
the data packet and must be aware in advance of the values of L and
b parameters in order to correctly verify the aggregated signature.
The verification procedure follows similar steps as the signing and
the offline phase. The data packet is wire-encoded into a buffer and
then hashed. Then, the hash is sliced into L chunks. Afterwards,
the chunk index is concatenated with the chunk bits and hashed
again. The consumer then calculates, x; « H(i||hash[i]). Finally,
the consumer uses the producer’s public key, e, and checks if s¢ =
]_[{.“:1 x; mod n. The equality of the two sides will result in the
successful authentication of the data packet.

3 REAL-TIME APPLICATION
OPTIMIZATIONS

Further optimization strategies for the specific real-time applica-
tions for NDN, that build up on the proposed signature framework,
can be applied.

k-packet signature aggregation: SCRA-C-RSA performs notably
better as more packet signatures are aggregated together. The costly
exponentiation occurring at the verification phase happens once
every k received NDN data packets. On the other hand, for the
already adopted schemes the verification must be executed for each
received data packet.

Probabilistic signing: In this approach, a producer can randomly
sign the packets periodically and save communication and compu-
tational cost instead of calculating and sending signatures for all
messages.

Different sizes for parameter L: As shown by the experimental
results (see Section 4), the value of L plays an important role in
the performance of our scheme. The choice of L affects the size
and the construction time of the T table as well as the signing and
verification times.

Inherent parallelizability of SCRA: SCRA is highly paralleliz-
able in all its three phases. One can leverage parallel algorithms or
hardware acceleration for even better performance.

Table 2: Real-time conferencing (NDN-RTC).

4 PERFORMANCE EVALUATION

In this section, we compare the performance of SCRA-C-RSA and
a against the traditional signature schemes ECDSA and RSA in
two contexts. We evaluate our approach in the NDN-CXX [9] and
NDN-CPP [8] open-source codebases. Our measurements have been
obtained from a machine equipped with an Intel® Core™ i7-9700
(8 Cores/12MB/8T/3.0GHz to 4.8GHz/65W) and 32GB of RAM.

We report the performance trade offs of SCRA-C-RSA for two
values of the parameter L; L = 32 and L = 16. For L = 32 the T
table is of size 3.14 MB and the construction time is 11.48 seconds
whereas for L = 16 is 402.65 MB and 23.2 minutes respectively. We
are using 128 security strength for factoring modulus as per NIST
recommendations [1].

Standalone Message Authentication: The experiment consists
of 10,000 interest-data packet exchanges between consumer and
producer. The algorithm aggregates the signature per 100 packets.
The NDN-CXX codebase has been used for this experiment. Table 1
presents the results of this experiment.

Real-time video conferencing: NDN-RTC [4] is a video confer-
encing library, implemented on top of NDN-CPP [8], designed to
provide low-latency real-time communication over NDN. The mes-
sage authentication functionality is handled in NDN-CPP which
is where our scheme is implemented. In this experiment we had a
producer application running for 100 seconds and consumer appli-
cation running for 50 seconds. We assume that the consumers are
not data publishers. Our scheme signs every manifest packet just
as the already adopted schemes do. Table 2 reports our results on
NDN-RTC implementation.

5 FUTURE WORK

As future work, we plan to propose changes to the bootstrapping
process and possibly add naming conventions to support SCRA-
based message authentication. The communicating entities must
be able to agree on the number of aggregated signatures and up-
date this number dynamically based on the error rate, the network
congestion etc. We also plan to modify the design of NDN-RTC [4],
in order to efficiently support signature aggregation using SCRA.
We plan to carry out a comprehensive performance analysis of our
scheme and compare it to the technique used in NDN-RTC, which is
based on signed manifests containing concatenated hashes of frame
segments. Finally, we will be investigating the impact of signature
aggregation for schemes with smaller signature sizes.
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