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Abstract—This work demonstrates a novel approach to steering 

a magnetic swimming robot in two dimensions with a single pair of 
Maxwell coils. By leveraging the curvature of the magnetic field 
gradient, we achieve motion along two axes. This method allows us 
to control medical magnetic robots using only existing MRI 
technology, without requiring additional hardware or posing any 
additional risk to the patient. We implement a switching time 
optimization algorithm which generates a schedule of control 
inputs that direct the swimming robot to a goal location in the 
workspace. By alternating the direction of the magnetic field 
gradient produced by the single pair of coils per this schedule, we 
are able to move the swimmer to desired points in two dimensions. 
Finally, we demonstrate the feasibility of our approach with an 
experimental implementation on the millimeter scale and discuss 
future opportunities to expand this work to the microscale, as well 
as other control problems and real-world applications. 

I. INTRODUCTION 

In this work we introduce a novel approach to steering a 
magnetic swimming robot in two dimensions using a 

single pair of Maxwell coils. We move the robot along two 

dimensions by leveraging the curvature of the field gradient 
produced by the coils. The authors were inspired by work 

done in the area of developing medical magnetic swimming 
robots (also referred to as magnetic swimmers) to 
implement simultaneous control and imaging in the human 

body. Medical magnetic swimming robots have been 
developed to perform tasks such as microsurgical procedures 

and targeted drug delivery [1], and our proposed solution 
could be used to perform such tasks using a magnetic 

resonance imaging (MRI) machine, without requiring any 
extra hardware or posing any additional risk to the patient. 

Existing literature suggests that MRI machines are already 
popular tools for implementing magnetic swimmer 

procedures in the human body [2]-[6]. We present what we 
believe is a novel approach that would not only allow the 
medical community to use magnetic robot technology on 

patients more easily, but could also be extended to 
controlling a variety of tools with a reduced number of 

magnetic field gradients. 
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Fig. 1. Control of a magnetic swimming robot is achieved using a single pair 
of Maxwell coils, representative of the z-axis gradient of an MRI machine. 
Switching time optimization optimizes the timing of an ordered sequence of 
control inputs, and the curvature of the gradient field allows for motion in 
x- and z-directions. As the direction of the magnetic field gradient changes 
with time (shown in insets), the magnetic swimmer follows the lines of force, 
which have components in both x- and z-directions. 

One of the primary challenges to implementing 
simultaneous imaging and control with MRI machines is that, 

if all three pairs of gradient coils must be used to perform 

both imaging and control, then the coils must frequently 

alternate between the two functions. MRI machines use 
magnetic field gradients directed along the three principal 

axes, x, y and z, to linearly vary the strength of the signal 
emitted by protons along each direction and thereby encode 

the position of the signals to form an image [7]-[8]. (See Fig. 

1 for orientation of x, y, and z axes used throughout this 

work.) Rapid changes of the field gradient inside an MRI 

machine can lead to peripheral nerve stimulation (PNS) in the 
patient, with symptoms ranging from a mild tingling 

sensation to serious heart arrhythmia [8]-[10]. One way to 
avoid inducing PNS in the patient is to reduce the frequency 

of changes in gradient field configuration, preferably below 

100Hz [8]-[9]. However, infrequent images of the magnetic 

swimmer’s location makes it difficult to track a desired 
trajectory with sufficient precision as is required for most 

medical procedures [2],[4]. 

Our proposed solution differs from prior works because we 
use a single magnetic field gradient produced by the 

standard MRI configuration of a pair of Maxwell coils fixed in 



space along the z-axis for steering. We take advantage of the 

curvature of the z-direction gradient field to achieve 
nonholonomic motion in both x and z directions 

simultaneously, as shown in Fig. 1. We move the swimmer in 
the workspace by alternating maximum current input to one 

coil. 

The advantage to our proposed solution is that it allows us 

to simultaneously image and control a swimmer at 
sufficiently high imaging and command frequencies without 

approaching frequencies above 100Hz when PNS is induced 
[8]-[9]. Recent work has shown that imaging frequencies and 

control input rates must each be at least 24Hz - 30Hz in order 

to adequately control swimmers on the macro- [4] and 
micro-scales [11], respectively. If the same pair of Maxwell 

coils is used to produce the gradient field required for both 
imaging and control, then the coils would need to change the 

field at a frequency of approximately 30Hz×2 = 60Hz in order 
to multiplex the imaging gradient waveform with the control 

gradient waveform. This 60Hz frequency approaches the 
limit of 100Hz where PNS is induced. Instead, our proposed 

solution would separate the imaging functions onto the x- 
and y-oriented coils, while the z-oriented coils would 
perform the control function. In this way, each coil could 

operate in the 30Hz range, allowing for a larger safety margin 

to avoid PNS. 

Given this separation of functions where the x- and 

yoriented coils perform imaging tasks and the z-oriented 
coils apply the control commands, we need to optimize our 

control inputs. We use switching time optimization to 
compute the times at which we alternate the control inputs 

in order to move the swimmer to a goal location. 

In this paper we provide an initial characterization of this 
method experimentally, and suggest routes for further 

refinement for both medical purposes and other controls 
applications. 

The key contributions of this work are: 

(1) Development of a mathematical model and 

validation using an experimental setup. An off-line 
calibration method is also presented to adjust for the 

individual magnetic swimmer’s drag coefficient. 

(2) Demonstration of a method of nonholonomic 
position control with a gradient field produced by a single 

pair of coils, leveraging switching time optimization in order 

to move to a goal location. 

The rest of the paper proceeds with a review of past work 
in controlling magnetic robots with MRI machines, and in 

using switching time optimization for coordinating such 
control. Then we introduce the theory behind the magnetic 

field gradients used to propel a magnetic robot, and we 

present the dynamics model for such a robot, as well as our 

implementation of the switching time optimization 
algorithm. We demonstrate our control method with a 

millimeterscale robot and discuss our findings. Finally, we 
present our conclusions and proposals for future work. 

II. RELATED WORK 

In this section we first review existing methods for 

controlling magnetic tools with MRI machines, and the 
additional hardware necessary to do so. We then show how 
we leverage switching time optimization to develop a novel 

form of control that would not require any modifications to 
a standard MRI machine to achieve motion of the magnetic 

robot in two dimensions. 

We will show that our approach is different from prior 

works because it has a unique combination of features. First, 
we are able to control a magnetic swimmer in two directions 

as in prior works, but we are able to do so without making 
any modifications to the standard hardware used by an MRI 

machine. Secondly, we are able to simultaneously track the 
swimmer using the MRI machine without approaching the 
threshold of field gradient changes that induces PNS, as 

described above. Enabling control in two directions without 

modifying the hardware, while allowing for simultaneous 

imaging at frequencies well below the PNS threshold of 
100Hz, is unique to our approach as we will demonstrate in 

the literature review below. 

A. Swimming Robot Control with Magnetic Field Gradients 

Recent work on controlling magnetic swimmers with 

magnetic field gradients can be separated into two 
categories according to whether the solution used magnetic 

field gradients generated along two directions or one 
direction (consider the coordinate system in Fig. 1). The use 

of gradient fields in two directions has proven to be 
successful: for example, Steager et al. [11] used two pairs of 

electromagnets to produce gradient fields in the x and y 
directions to control micronscale robots to perform tasks at 
the cellular level, while imaging with a microscope camera. 

This work showed that magnetic field gradients can be used 
to control robots with micron-scale levels of precision. 

Mathieu and Martel [2], [4] also used magnetic field 

gradients in two directions to move spherical millimeter-

scale magnets through a swine model, alternating between 
control and imaging with the same MRI machine. These 

experiments in MRI machines demonstrate that it is possible 
to achieve two-dimensional control over magnetic swimmers 

while simultaneously imaging them using only a standard 

MRI machine [2], [4]. However, there is still a potential 

danger of inducing PNS in the approach proposed by Martel 

and Mathieu [2], [4] because as the frequency of changing 
between control and imaging increases, the likelihood of 

inducing PNS in the patient increases [8]-[10]. 

Other researchers have used magnetic field gradients 

generated along a single axis to control and image a 

swimmer, often simultaneously. An early example of this 

approach is the magnetic stereotaxis system developed by 
Grady et al. [12], which rotated a single coil about a canine’s 

head to move a 5 mm diameter magnet inside its brain. The 
coil created a magnetic field gradient which provided 



propulsion while the position of the coil relative to the 

patient determined the direction of the magnet’s motion 
[12]. Yesin et al. [13] used a similar approach by applying a 

propulsive force to micron-scale swimmers using a pair of 
Maxwell coils, while a pair of Helmholtz coils was used to 

saturate the magnetic material of the swimmers. Steering is 
achieved by rotating the setup and tracking is performed 

using a microscope camera [13]. These solutions show that a 
magnetic field gradient along a single direction is sufficient to 

propel a swimmer, although implementing the rotational 
control over the coils requires the development of additional 

hardware that is not currently available in common medical 

tools such as MRI machines. 

This section has demonstrated that although there are 

existing approaches to using MRI machines to control and 
image magnetic robots, these approaches either require 

modifications to the hardware, or potentially increase the 
risk of inducing PNS in the patient. In the next section, we will 

present switching time optimization and how we use it to 
develop a control policy that allows for two-dimensional 

control of magnetic robots with only the coils available in a 
standard MRI machine. 

B. Switching Time Optimization for Steering 

Switching time optimization is an appropriate means of 
optimizing the intervals between each control input in order 

to reach a goal location because we have a fixed set of 
control inputs where we can alternate turning on and off one 

coil to some maximum current value. We claim to have a 
novel application for this existing algorithm, and we will 
outline the solution to the switching time optimization 

problem by Johnson and Murphey [14] here. 

First, we define the dynamics given in (2) to (4) as per [14], 

where x˙ = fi(x(t),u(t),t) , τi ≤ t < τi+1. The dynamics, fi, are 
represented over the interval τi ≤ t < τi+1 and τi and τi+1 are two 

consecutive switching times. The state of the system is 

denoted by x(t) and the control inputs are given by u(t). 

Notice that in our situation, the dynamics of the system are 
fixed and do not change with position or control input; the 

discontinuity in our system is created by the abrupt change 
in control inputs u(t). When the direction of the magnetic 
field gradient changes abruptly, the swimmer comes to rest 

instantaneously at the moment of change of control input 

(because the hydrodynamic drag force acting on the 

swimmer is significantly larger than the swimmer’s inertia), 
causing a discontinuity in the swimmer’s dynamics. 

Our objective is to find a series of optimal switching times 
τ1...τN to optimize a terminal cost, m(x,t). In [14], the cost 

function is calculated as a running cost because the authors 

used example applications where the desired trajectory was 

known. In our case, we only know the goal location so we 

write our cost function as only the terminal cost, computed 
at the final time tf : 

J 

(1) 

where J represents the cost function and we denote the goal 
location as xd. We find the optimal switching times by solving 

a gradient descent problem where we update all of the 
switching times simultaneously: 

τnew =τold −αH−1 ∂J 

∂τ 

The step size is represented by α and H is the identity matrix 

in the case of the first order solution. To obtain the first order 
derivative of the cost function, we can write it as a product 

of the costate, ψ(tf ,τi), and Xi, which captures the 

discontinuities between switching times: 

 ∂J ·Xi 
=ψ(tf ,τi) ∂τi 

where Xi = fi−1(x(τi),u(τi),τi)−fi(x(τi),u(τi),τi). To compute the 

costate, we can backwards integrate the derivative of the 

costate from tf to τ1. The derivative of the costate given our 
cost function in (1) is: 

 

The initial condition for the backwards integration of the 

costate is: 

m(x(tf ),tf ) 

We present the details of our algorithm in the next section, 
where we use this method to obtain a schedule of switching 

times that allow us to drive a magnetic robot to a goal 

location using a single pair of Maxwell coils. 

III. SYSTEM MODEL AND CONTROL 

In this section we will first derive mathematical 
expressions for the constraints imposed by the environment 

due to the shape of the magnetic field gradient as well as by 

the dynamics of the magnetic robot. We will use these 
expressions to perform model-based control where we will 

solve for the switching times that drive our robot to a goal 
location. 

A. Magnetic Field Gradient Model 

The equations for a magnetic field produced by a pair of 

Maxwell coils can be written in terms of the vector potential, 

A(r) for a single loop of wire carrying a current I as [15]: 

0I 
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Fig. 2. A comparison of our model of the magnetic field produced by a pair 
of Maxwell coils with measured field data from our hardware setup. Here, 
one coil located at z = 0.06m has a current of 1.9A while the second coil has 
0 current. Note that the magnetic field values were truncated at 0.02T for 
the purpose of making the plot easier to read. The measured field data is 
shown in red with error bars (n = 5 for each data point). Inset compares 
measured field data to model at z = 0.04m. 
where r is the vector to a point in space, originating from the 

center of the loop, r0 is the vector from the center of the loop 
to a point on the loop circumference, and dl is a small length 

component along the circumference of the loop. The vector 
potential is integrated over the length of the loop, L. The 
permeability of free space is denoted by µ0, and the current 

in the wire is denoted by I. 

It is convenient to convert this expression to cylindrical 

coordinates (represented as ρ,φ and z) and rearrange terms 
to produce 

the following: 

0 

A  where π 

k  

K(k) and E(k) are the complete elliptic integrals of the first 
kind and of the second kind, respectively and a is the radius 
of the loop of wire. We can obtain the final expressions for 

the magnetic field in the ρ and z directions by taking the curl 

of A in cylindrical coordinates and writing the expressions for 

the components of the magnetic field in the ρ and z 
directions as follows: 

 0 z a +ρ +z 
Bρ(ρ,z)= E(k)−K(k) 

 µ0nI 1 a2−ρ2−z2 

Bz(ρ,z)= p 2+z2 (a−ρ)2+z2E(k)+K(k) 2π ( +a) 

Note that we have extended this model to account for n turns 

in a single Maxwell coil. In order to calculate the total 

magnetic field at a given point, we can add the influence of 
multiple fields together as Btotal

i (ρ,z) = Bi(ρ,z + d)+ Bi(ρ,z−d) 
where i =ρ,z. Note that the spacing between Maxwell coils, 

d, is . The magnetic field described by these expressions 

for our experimental setup is shown in Fig. 2. The solution 

presented here focuses on the midplane bisecting the 
Maxwell coils horizontally, thus the z-axis remains 

unchanged and the ρ-direction is equivalent to the x-
direction. 

B. Dynamics of a Single Link Magnetic Swimmer 

This work draws inspiration from [16], [17] to derive the 

equations of motion for a single link swimming robot. We 
require two reference frames to model the motion of the 

robot, as shown in Fig. 3. First we have the global frame 
where we describe the robot’s position as (z,x,θ) ∈ R2×S1, 

where z and x are the global positions of the swimmer. The 

orientation of the tangential axis (ˆt) of the swimmer in the 
global frame is θ. Note that to remain consistent with our 

magnetic field model above, we use z and x as our position 
coordinates. Second, we define a body frame fixed to the 

swimmer’s center of gravity. The motion of the body frame 

is described by ˆt and nˆ. 

In order to write the equations of motion for the magnetic 
robot, we can assume that it will accelerate due to the 

applied magnetic field gradient. Even though the swimmer is 
in a low Reynolds number environment, the magnetic 

 

Fig. 3. The single link swimmer sees a combination of forces and torques (red 
arrows) acting on it from the fluid as well as the externally applied magnetic 
field (magnetic components shown as blue arrows). F∇B is the magnetic field 
gradient pulling force on the swimmer, and Fh is the hydrodynamic drag 
opposing the motion of the swimmer. τB is the torque generated by the 
misalignment between the externally applied magnetic field and the 
magnetic moment of the swimmer, m. τh is the hydrodynamic drag torque 
opposing the rotation of the swimmer. Inset shows the actual magnetic 
swimmer used in all experiments presented here. 

field gradient will cause the swimmer to accelerate as it 
approaches a source of magnetic field; this is confirmed in 



our experimental results. Therefore, we can write the 

acceleration of the swimmer in the world frame as follows: 

z¨  (2) x¨ 

 (3) 

 θ¨ = 1(τB −τh) (4) 

J 

where m is the mass of the swimmer and we overload 
notation to represent the robot’s rotational inertia as J. The 

force due to the magnetic field gradient, F∇B, can be written 

as F∇B = ∇(mB ·B). We use mB to represent the magnetic 
moment of the swimmer and B represents the net magnetic 

field acting on the swimmer at its current location. We 
assume that the swimmer’s magnetic moment is 

homogeneous throughout its body, given its small size, and 

that it is aligned with the tangential axis, ˆt, of the swimmer. 

We assume that the hydrodynamic drag force acting on the 
swimmer can be calculated as Fh = −cdragv, where cdrag is the 

coefficient of drag for the swimmer shape in the direction 
perpendicular to the velocity, v. We define a coefficient of 

friction for drag acting in the tangential and normal 
directions, ct and cn. Based on resistive force theory [16], [17], 

we make the assumption that for a long slender body, the 

drag in the normal direction is twice the drag in the 
tangential direction. The hydrodynamic drag in the body 

frame is: 

Fh  

Where v  

After calculating the hydrodynamic drag in the body frame, it 
is possible to decompose it into its components in the global 

coordinate frame and incorporate into the equations of 

motion (see Fig. 3 for coordinate frames). The rotational 

acceleration of the swimmer in the global frame depends on 

two torques: the torque due to the misalignment between 
the externally applied magnetic field and the swimmer’s 

magnetic moment, and the torque due to hydrodynamic drag 

experienced while rotating. We can write the torque due to 

the magnetic field as τB = m×B. Lastly, we can obtain the 

torque due to hydrodynamic drag by integrating the drag 

acting over each segment of the swimmer in the normal 
direction in the body frame. The final expression in the body 

frame is: 

 L2 L3 

 τh = − cnvT nˆ cnθ˙ 

4 where again we overload 

notation to say that L is the tangential length of the robot’s 
body. Ultimately, both the magnetic and hydrodynamic 

torques are acting out of the plane about the z-axis, which 
has the same direction in both of our coordinate frames so 

no additional mathematics are required to transform from 

the local to the global frame. 

C. Switching Time Optimization for Steering 

The mathematical model for the magnetic field and the 

swimmer’s dynamics can be used to simulate different paths 

through the fluid. We define one of these paths as a motion 
primitive, i.e. as the robot’s trajectory through the 

workspace due to the magnetic field gradient created by a 
single control input for a given time interval. In Fig. 1, we 

demonstrate how combining two motion primitives can 
result in a net translation through the workspace. 

We use switching time optimization to optimally combine 

a series of motion primitives together into a trajectory 
leading to a goal location. To reduce the number of possible 

control inputs and corresponding motion primitives, we have 
limited the control inputs to the maximum current (as 

defined by the coil manufacturer) delivered to one coil at a 

time. We also assume that the order of the sequence of 

control inputs is known. 

 

Fig. 4. The experimental setup consists of a pair of Maxwell coils arranged 
around a container filled with glycerin, which creates a low Reynolds 
number environment for the magnetic single link swimmer. The coils are 
powered via a motor controller that modulates current from a power supply. 
The experiments are recorded by a camera positioned above the workspace. 
Inset shows a sample time lapse image of motion primitive test. 

IV. RESULTS 

In this section, we first introduce our experimental setup. 

Secondly we demonstrate our motion primitives and use the 
data to obtain the drag coefficient of the robot via gradient 

descent. Finally, we test our algorithm on two cases: (1) 

moving the swimmer in one half of the workspace above the 

z-axis and (2) in the full workspace. 

A. Experimental Setup 

We use a pair of Maxwell coils (3B Scientific Physics) to 

generate a magnetic field gradient. The coils receive power 
from a power supply (Tekpower) via a motor controller (Basic 

Micro). The coils are arranged around a workspace√ with a 

length equivalent to 3 of the radius of the coils (this is the 

defined separation of a pair of Maxwell coils). The workspace 
is a container filled with glycerin and marked on the bottom 

with a grid pattern; a ruler is included for scale. A camera 



(Logitech) positioned overhead records the experiments. The 

single link swimmer is constructed by mixing an epoxy with a 
ferromagnetic powder (Magnequench) and cutting the cured 

material into a rectangular prism of approximate dimensions 
3mm × 3mm × 0.1mm. The magnetization of the swimmer is 

characterized on a vibrating sample magnetometer prior to 
experimentation. The swimmer is made buoyant by 

attaching a small piece of foam to the top of the magnetic 
component and the N and S poles are marked on the 

swimmer’s surface (see Fig. 3 inset). 

B. Motion Primitive Tests 

We experimentally demonstrated our two motion 

primitives by sending maximum current to one coil at a time 
and recording the resultant motion of the robot in the 
workspace. We processed the videos using ImageJ and the 

TrackMate plugin [18] to collect the trajectory data, and then 
used gradient descent to fit our drag coefficient, cdrag, to the 

average trajectory obtained from n = 8 tests for 2 different 
control inputs. The average trajectory obtained 

experimentally for a single corresponding control input is 
plotted against the model’s output calculated with the 

average drag coefficient in Fig. 5. 

Although our experimental setup was sufficiently complex 

for these initial tests, we found some potential areas of 
improvement. First, the coils tended to heat up over time; 

 

Fig. 5. Plot comparing simulation to experimental results for a single motion 
primitive. Left: The average of the experimental results obtained from n = 8 
test runs is shown with the standard deviation displayed as blue shading 
around the averaged trajectory. The simulation results are plotted in red for 
comparison. The magnetic field gradient is also shown as a vector field in 
the workspace. Right: a corresponding example time lapse image for this 
motion primitive. 

 

Fig. 6. Model and experimental results for test case 1, moving through one 
half of the workspace. The start location was (-0.02,0.04)m and goal location 
was (-0.01, 0.03)m. Top: plot of the progress of our switching time 
optimization algorithm as it converges on a solution (purple represents early 
solutions and dark blue represents solutions near convergence). Bottom: 
experimental results (n = 5) with the model prediction overlaid, using the 
optimized switching time values. After applying a fitted polynomial to the 
magnetic field model, we plot the trajectory again, showing improved 
agreement with the experimental results. 

during the 8 test runs, the power drawn by the coils 

increased by approximately 6% and resulted in a 20% 
increase in swimmer velocity over consecutive tests. By 
adding a cooling system to the coils, we could extract excess 

heat and maintain more uniform performance of the coils. 
Secondly, our camera and background grid were sufficiently 

precise to obtain tight standard deviations, as shown in Fig. 

5, but they could be improved by adding additional lighting, 

and a higher resolution camera. 

C. Demonstration of Switching Time Optimization 

We ran the switching time optimization algorithm 

presented above on our dynamics model, seeking to obtain 
the optimal path to move between two points in the 

workspace. We ran the algorithm on two tuples of start 

points and goal locations in the workspace. We chose these 
tuples to test the algorithm’s ability to plan a trajectory 

within one half of the workspace above the z-axis and 
through the entire workspace, crossing the z-axis. For both of 



these tests, we show the model’s predicted trajectory 

compared to the experimental results of following the 
optimized switching times. 

In Fig. 6, we see that our switching times did not, 
experimentally, produce a trajectory that resulted in the 

swimming robot reaching the goal location. The 
experimental results (n = 5) showed that the swimmer 

consistently overshot the goal location. Since we fit our 
model’s drag coefficient to the swimmer using experimental 

data, we posit that the remaining source of the error is a 
discrepancy between our model of the magnetic field and the 

true magnetic field produced by our coils. 

To demonstrate that the magnetic field model was the 
primary source of error in our approach, we overfit to our 

experimental dataset using a bivariate second-order 
polynomial to fit our theoretical model to the measured 

magnetic field (i.e. to the data points illustrated in Fig. 2). We 

found that the resulting predicted trajectory for case 1 

showed better agreement with our experimental results than 
our purely theoretical model. This is shown in Fig. 6 by the 

”Fitted Model” curve. 

The second test case revealed that we could not cross the 
z-axis in the workspace, and our model also made this 

prediction. In Fig. 7, we can see that as the swimming 

 

Fig. 7. Top: Time lapse image of test case 2 showing that the magnetic robot 
cannot cross the z-axis. The lines of force generated by the magnetic field 
gradient are horizontal at the z-axis, preventing the robot from crossing the 

axis from above. Bottom: model shows agreement with experimental 
results. 

robot approaches the z-axis, its motion in the x-direction 
asymptotically decreases. This agrees with our magnetic field 
gradient model (see Fig. 5), which shows that the lines of 

force at the z-axis are completely horizontal, so there is no 
way for the swimming robot to move below the z-axis when 

approaching from above. 

V. CONCLUSIONS 

In this work we demonstrated control in two dimensions 
given an environment with nonholonomic constraints 

created by the magnetic field gradient from a single pair of 
Maxwell coils. We used switching time optimization to 

determine when to alternate between two control inputs to 
move the swimmer to a goal location in the workspace. We 
demonstrated that our theoretical approach approximately 

matched experimental results on the millimeter scale. 

The primary advantage of the solution presented here is 

that it allows for simultaneous imaging and control of a 
magnetic swimmer in the human body using existing MRI 

machines without requiring additional hardware, and 
without increasing the patient’s risk of experiencing PNS. In 

addition, this control approach could be extended to the 
microscale in order to allow doctors to leverage 

microswimmer technology in the clinic. 

One of the opportunities for future development of this 

work is to allow for a variable number of control inputs and 
more flexibility in the control order. Currently, in order to 
find the optimal switching times, the sequence of control 

inputs must be known a priori. We also believe our switching 

time optimization approach could be used to solve the 

problem of simultaneous steering and imaging with an MRI 
machine another way, by combining the control and imaging 

gradients in all three axes at appropriate time intervals so 
that the patient would not be at great risk of experiencing 

PNS. A potential next step is to implement this solution in an 

actual MRI machine in vitro. 
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