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Abstract— This paper introduces a new technique for learn-
ing probabilistic models of mass and friction distributions of
unknown objects, and performing robust sliding actions by us-
ing the learned models. The proposed method is executed in two
consecutive phases. In the exploration phase, a table-top object
is poked by a robot from different angles. The observed motions
of the object are compared against simulated motions with
various hypothesized mass and friction models. The simulation-
to-reality gap is then differentiated with respect to the unknown
mass and friction parameters, and the analytically computed
gradient is used to optimize those parameters. Since it is difficult
to disentangle the mass from the friction coefficients in low-data
and quasi-static motion regimes, our approach retains a set of
locally optimal pairs of mass and friction models. A probability
distribution on the models is computed based on the relative
accuracy of each pair of models. In the exploitation phase,
a probabilistic planner is used to select a goal configuration
and waypoints that are stable with a high confidence. The
proposed technique is evaluated on real objects and using a real
manipulator. The results show that this technique can not only
identify accurately mass and friction coefficients of non-uniform
heterogeneous objects, but can also be used to successfully slide
an unknown object to the edge of a table and pick it up from
there, without any human assistance or feedback.

I. INTRODUCTION

Pre-grasp sliding manipulation of objects is a useful skill
that is necessary when an object is too thin relative to
the size of a robotic hand to be directly grasped from a
flat surface. This skill is also useful for the execution of
tool-use grasps where the orientation of an object needs to
be modified before picking up the object. For example, a
pre-grasp sliding manipulation approach that was recently
developed [1] consists in performing a sequence of non-
prehensile actions such as side-pushing and top-sliding to
relocate an object to the edge of a table so that part of
the object sticks out of the table. The object could then be
grasped by a robotic hand without colliding with the table.

Most existing methods for pre-grasp sliding manipulation
require the existence of predefined geometric and mechanical
models of the target object [2]–[7]. Such models are neces-
sary for selecting appropriate pushing forces and ensuring
the balance of the object when it is moved to the edge of the
support surface. In this work, we relax this assumption and
consider the general problem of side-pushing an unknown
object toward a stable goal configuration.

The proposed approach consists in first identifying the
mass distribution of the target object, and its coefficients of
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Fig. 1. Robotic setup used in the experiments. In this scenario, the robot
pushes a book into a desired final pose through consecutive pushes. The
choice of contact points and pushing directions is non-trivial as it depends
on the mass distribution and the friction coefficients of different parts of
the object, which are unknown a priori.

friction with the support surface, from observed motions and
rotations of the object. While there are many techniques for
identifying mechanical properties of objects from data [2],
[8]–[15], existing works identify only the friction parameters,
and assume that the mass distribution is known. Moreover,
several existing methods assume that the bottom surface of
the object has a uniform homogenous friction everywhere.
In this work, we consider a grid-based representation of
the target object. The object is modeled as a large set of
small cuboids that are attached to each other. The mass and
coefficient of friction of each cuboid can be different from
the others. The analytical gradient of the object’s motion is
then used to learn the mechanical properties of each cuboid.

The problem of identifying the mass distribution and fric-
tion coefficients of an unknown object is under-determined.
From the small number of data points collected by the
robot by pushing the object, there is a large subspace of
possible mass and friction values that can be identified
and that explain the observed motions equally well. This
problem is particularly pronounced in quasi-static motions,
where the mass of the object cannot easily be disentangled
from its friction with the support surface. To solve this
problem, the full spectrum of possible mass and friction
values should be retained. Therefore, our method returns a
probability distribution of the mass and friction parameters
that can be used to deal with this problem of uncertainty.



In a nutshell, we perform several gradient-descent searches
starting from different random initial points, and retain all
the local minima. A soft-max function is then applied on the
values of the local minima to obtain a probability distribution
on possible mass and friction values.

The obtained distribution is used, in a second phase, for
robust probabilistic planning. Planning here refers to the
problem of finding a stable goal configuration and a sequence
of side-pushing actions that displace the object to the goal
while preserving its balance. Probabilistic planning consists
in searching for actions in a multiverse simulation [16],
wherein next states are sampled from various models of mass
and friction of the object, with different probabilities. The
sequence of actions that has the highest success probability
is then selected and executed. The proposed technique for
probabilistic model identification and manipulation planning
is evaluated both in simulation and on real objects and
robot. The results clearly confirm the advantage of using
this technique to safely manipulate unknown objects.

II. RELATED WORK

Past works have explored the mechanics of pushing [2],
[8]–[15]. For example, Mason [8] studied the rotation and
translation of an object pushed at a single contact point.
Lynch and Mason [9] also proposed an algorithm for sta-
ble pushing with a robotic end-effector. Yoshikawa and
Kurisu [15] showed that a regression method can learn pivot
points of a pushed object. A similar setup was considered
in [10] with a constraint to ensure positive friction coeffi-
cients. The limit surface is an important concept in these
works, it is defined as a convex set of all friction wrenches
that can be applied on an object, and it is generally approxi-
mated as an ellipsoid [11], or a higher-order polynomial [2],
[12]–[14]. In contrast to our method, these works identify
only the friction parameters, and assume that the mass
distribution is known. Moreover, the present work focuses on
safe planning when the identified mass and friction models
are uncertain due to the small number of actions used to
identify the models in a quasi-static regime, in contrast to
prior works [17]–[19] that consider deterministic models.

Pre-grasp sliding was also considered in prior works
with deterministic pre-defined models [1], [20], [21], black-
box model identification [22], or model-free reinforcement
learning [23].

III. PROBLEM SETUP AND NOTATIONS

We revisit the problem of pre-grasp sliding manipulation
presented in [1]. In this problem, the robot’s task consists
in grasping a rigid object placed on a table. The object
cannot be easily grasped, so the robot slides it to the table’s
edge where part of it sticks out of the table and becomes
exposed. The robot can then easily grasp it from there. In
this work, we consider the same problem, but for objects with
unknown shape and material properties. The problem then
consists in 1) selecting pushing actions to explore the object
and gather data points about it, 2) inferring the mass and
friction distributions of the object from the observed motions,

3) selecting a stable goal configuration xdT from which the
object can be grasped, and 4) planning a sequence of side-
pushing actions that displace the object from its current pose
x0 to the desired final pose xdT .

The object is represented as a set of small cuboids. The
object is thus divided into a large number of connected cells
1, 2, . . . , n, using a regular grid structure, wherein each cell
i has its own local mass and coefficient of friction. The
object’s pose xt at time t ∈ [0, T ] is given as a vector
xt = [p1x,t, p

1
y,t, θ

1
t , . . . , p

n
x,t, p

n
y,t, θ

n
t ]T , where (pix,t, p

i
y,t)

is the ith cell’s 2D position on the surface, and θit is its
angle of rotation. The object’s generalized velocity at time
t is denoted as ẋt = [ṗix,t, ṗ

i
y,t, θ̇

i
t]
n
i=0. The object’s mass

matrix M is a diagonal 3n× 3n matrix, where the diagonal
is [I1,M1,M1, I2,M2,M2, . . . , In,Mn,Mn], Ii is the
moment of inertia of the ith cell of the object, and Mi is
its mass. Ii = 1

6Miw
2 where w is the width of a cuboid.

µ is a 3n × 3n diagonal matrix, where the diagonal is
[µ1, µ1, µ1, µ2, µ2, µ2, . . . , µn, µn, µn]. µi is the coefficient
of friction between the ith cell of the object and the surface.

An external generalized force denoted by F is an 1 ×
3n vector [f1x , f

1
y , τ

1, . . . , fnx , f
n
y , τ

n]T , where [f ix, f
i
y] and

τn are respectively the force and torque applied on cell i.
External forces are generated from the contact between the
object and a fingertip of the robotic hand used to push the
object. We assume that at any given time t, at most one cell
of the object is in contact with the fingertip.

A ground-truth trajectory T g is a state-action sequence
(xg0, ẋ

g
0, F0, . . . , x

g
T−1, ẋ

g
T−1, FT−1, x

g
T , ẋ

g
T ), wherein

(xgt , ẋ
g
t ) is the observed pose and velocity of the pushed

object, and Ft is the external force applied at time t, as
defined above. A corresponding simulated trajectory T
is obtained by starting at the same initial state x̂0 in the
corresponding real trajectory, i.e., x̂0 = x0, and applying
the same control sequence (F0, F1, . . . , FT−1). Thus, the
simulated trajectory T results in a state-action sequence
(xg0, ẋ

g
0, F0, x1, ẋ1, F1, . . . , xT−1, ẋT−1, FT−1, xT , ẋT ),

where xt+1 = xt + ẋtdt is the predicted next pose. Velocity
ẋt is a vector corresponding to translation and angular
velocities in the plane for each of the n cells, it is predicted
in simulation as ẋt+1 = V (xt, ẋt, Ft,M, µ). The goal is to
identify mass distribution M and friction map µ that result
in simulated trajectories that are as close as possible to the
real observed ones. Therefore, the objective is to solve the
following optimization problem,

(M∗, µ∗) = arg min
M,µ

loss(M, µ), (1)

loss(M, µ)
def
=

T−2∑
t=0

‖
(
xgt+1 + V (xgt , ẋ

g
t , Ft,M, µ)dt

)
− xgt+2‖2.

Since xt is a vector containing all cells’ positions, the loss is
the sum of distances between each cell’s ground-truth pose
and its predicted pose, which is equivalent to the average
distance (ADD) metric as proposed in [24].

IV. DETERMINISTIC MASS AND FRICTION
IDENTIFICATION

In [17], it has been shown that the gradient of the loss
function in Equation 1 with respect to mass parameters M
and friction map µ can be computed analytically, and used



to search for ground-truth values (M∗, µ∗) by using the
gradient-descent method. The algorithm proposed in [17],
consists in initializing (M, µ) with arbitrary positive values,
and repeatedly using (M, µ) to generate a simulated trajec-
tory (xg0, ẋ

g
0, F0, x1, ẋ1, F1, . . . , xT−1, ẋT−1, FT−1, xT , ẋT ),

which will then be used to update (M, µ) as follows:

µ← µ− αrate

T−2∑
t=0

Diag
(
xt+1 − xgt+1

)
W t
µ,

M←M− αrate

T−2∑
t=0

Diag
(
xt+1 − xgt+1

)
W t
M, (2)

wherein αrate is a predefined step-size, and W t
µ and W t

M are
weighting matrices provided in [17] and computed based
on the manipulated object’s geometry, current position and
velocity. While this approach is shown to return an accurate
map of the frictional forces on the surface of a non-uniform
object, it cannot disentangle the friction from the mass if
all the data points correspond to quasi-static motions. In
other terms, the product mass×friction of the identified
mass and friction of each cell in the object is close to its
ground-truth value, and it is accurate enough to predict
the translation and rotation of the object under various
pushing actions. However, it cannot tell which part of the
product mass×friction is mass and which part is friction.
For example, if the ground-truth friction force at some cell
of the object is M∗i × µ∗i = 10g N, where g = 9.8, then
the update equations 2 can typically identify a value for
Mi and for µi such that Mi × µi ≈ M∗i × µ∗i = 10g N
and so that the translation and rotation of the object
can be predicted accurately in quasi-static motions on
a flat surface. But the identified individual values for
mass and friction can be very far from the ground-truth
values. For example, any pair of values from the set
{(1kg, 98 N

kg ), (98kg, 1 N
kg ), (2kg, 49 N

kg ), (20kg, 4.9 N
kg ), . . . }

can be returned by the deterministic identification algorithm
proposed in [17].

V. PROPOSED APPROACH

While the exact value of the mass of each cell of the
object is relatively irrelevant in quasi-static motions, that
is not the case when the object is pushed to the edge
of the table and where one needs to predict if it remains
stable there or if it drops, which is necessary for pre-grasp
sliding manipulation. In the following we propose a solution
to this problem by first presenting a probabilistic model
identification approach that returns a distribution on joint
mass and frictions maps, instead of single point estimates.
We then show that the probabilistic model can be used for
robustly selecting stable goal configurations and planning
pre-grasp sliding manipulation actions.

A. Probabilistic Mass and Friction Model

We generalize the deterministic model presented in Sec-
tion III into a probabilistic one. The probabilistic model
is given by a set of mass and friction maps denoted by
Θ = {(M(1), µ(1)), (M(2), µ(2)), . . . (M(K), µ(K))} and a

probability measure P : Θ → [0, 1]. Each (M(k), µ(k))
corresponds to one of K sampled models, and is defined as
explained in Section III. Thus, M(k) is a diagonal matrix,
where the diagonal corresponds to the moment of inertia and
the mass of each cell of the object, and µ(k) is a diagonal
matrix, where the diagonal corresponds to the coefficients
of friction between each of the n cells of the object and
the support surface. We assume that: ∀k ∈ {1, . . . ,K},∀i ∈
{1, . . . , n} : µ

(k)
i ∈ [0, µmax], andM(k)

i ∈ [0,Mmax] where
µmax and Mmax are given upper bounds. We will explain
in the following how models in Θ are sampled and how their
probabilities are computed.

B. Inference of Probabilistic Models

The proposed inference algorithm consists in collecting a
real-world trajectory (xgt , ẋ

g
t , Ft)

T
t=0 of ground-truth object

poses and velocities that result from a sequence of se-
lected exploratory pushing forces (Ft)

T
t=0. Different models

(M(k), µ(k)) of mass and friction distributions are then
returned by the algorithm, with different probabilities. Each
one of the models is obtained by upper-bounding the mass
and the friction with a different limit, and using the gradient-
descent method to search for values of mass and friction that
minimize the simulation-to-reality gap.

The main steps of this search process are explained in
Algorithm 1. The set Θ of sampled models is initially empty.
The first pushing action is selected arbitrarily as no prior
information about the object’s mass or friction distributions is
available. The magnitudes of all the pushing actions are small
to avoid moving the object out of the robot’s workspace.
At each iteration of the algorithm, an action is selected
by calling the subroutine ActionSelection presented in
Algorithm 2, which will be explained in the next subsection.
The returned action FT is applied on the object. The next
pose and velocity of the object (xgT+1, ẋ

g
T+1) is extracted

from recorded depth images after removing the background.
The inner loop of the algorithm (lines 7-27) consists in

setting different upper bounds for mass and friction and
optimizing (M(k), µ(k)) to produce simulated trajectories
of the pushed object that are as close as possible to the
recorded ground-truth. In the first half of the total number of
iterations K, the upper bound of the mass per cell is fixed
to Mmax ∈ R whereas the upper bound of the friction is
gradually increased at each iteration. In the second half, the
upper bound of the friction is fixed to µmax ∈ R whereas the
upper bound of the mass per cell is gradually increased at
each iteration. Other combinations of mass and friction upper
bounds can also be considered as well. The provided upper
limits are the same for every cell in the object, whereas the
mass and friction maps learned by the algorithm are highly
heterogenous, as will be shown in the experiments.

At each iteration k of the inner loop, the state of the
object in simulation (x0, ẋ0) is reset to the ground-truth
initial state (xg0, ẋ

g
0) (line 13). Both the mass matrix M(k)

and the friction matrix and µ(k) are initialized to half their
maximum values (lines 14-15). In the next steps (lines
17-25), M(k) and µ(k) are iteratively used to predict in



simulation the trajectory of the manipulated object under
the same forces {Ft}Tt=0, and updated so that the predicted
pose xt+1 is as close as possible to the observed ground-
truth xgt+1. The sum of the differences over all time-steps
is denoted by loss(k). The mass and friction matrices are
updated by using the stochastic gradient of the loss (lines
21-22), wherein Diag

(
xt+1−xgt+1

)
is a diagonal matrix that

contains
(
xt+1 − xgt+1

)
in the main diagonal, in accordance

with the definitions of M and µ provided in Section III.
The mass and friction are increased or decreased depending
on the signs in the error vector

(
xt+1 − xgt+1

)
, which

corresponds to the reality gap.
Finally, the models identified from the full sequence

of pushing actions are weighed based on their respective
accuracies, using a soft-max function (line 30). The soft-max
operator returns a probability distribution over competing
models of mass and friction distributions. Each of these
models corresponds to a local minimum of the reality-to-
simulation loss, obtained by gradient-descent. Despite the
fact that most of these models achieve a very small loss in
predicting the motion of the object on a flat surface, they vary
significantly in the way they attribute the observed motion to
the mass or to the friction coefficients. While this difference
is not consequential on a flat surface, it is important for
predicting the balance of the object when it is pushed all
the way to the edge of the support surface.

C. Active Exploration

The data used to identify the material properties of the
manipulated object is actively collected by the robot. Al-
gorithm 2 summarizes three different strategies that can be
followed for selecting the pushing forces. First, a finite set
S of candidate forces is generated by randomly sampling
contact points from the object’s contour, along with pushing
directions and force magnitudes. The simplest strategy con-
sists in returning a randomly selected force FT ∈ S. Another
strategy selects the action that is most different from the
previously executed forces {F0, . . . , FT−1}, to increase the
diversity of the data and to poke different parts of the object.
The third strategy consists in simulating the effect of each
force F ∈ S on each possible (mass,friction) model from
the set of identified models Θ. The action that leads to the
highest disagreement between the models is then selected.

D. Robust Planning with Inferred Models

After a set Θ of possible (mass, friction) models is
identified in the exploration phase by using Algorithm 1,
Algorithm 3 is called to plan a new sequence of pushing
actions that displace the object into a desired final pose xdT .
We start by generating a sequence of intermediate poses,
i.e., waypoints, by using the rapidly-exploring random tree
(RRT ∗) algorithm. Our algorithm then generates a sequence
of pushing forces (Ft)

T−1
t=0 that track the waypoints. At each

step in the sequence, a force Ft is selected and optimized
so that, when executed, the resulting pose of the object
is as close as possible to the nearest waypoint. There are
several heuristics that can be used to select a force Ft that

Algorithm 1: Inference of Probabilistic Mass and
Friction Models with Differentiable Physics

Input: Learning rate αrate; Total number of pushing actions
nb actions; Upper bounds µmax and Mmax;

Output: A set Θ of mass and friction maps, and a
corresponding probability distribution P ;

1 Sample a random contact point from the object’s contour,
and use the robot’s fingertip to push the object from the
sampled point with a small random force F0; Record the
observed new state (xg1, ẋ

g
1);

2 Θ← ∅;
3 for T = 1, nb actions do
4 FT ← ActionSelection(Θ, {F0, . . . , FT−1});
5 Apply FT ; Record the observed new state

(xgT+1, ẋ
g
T+1);

6 Θ← ∅;
7 for k = 1,K do
8 if k ≤ K

2
then

9 µ
(k)
max ← 2k

K
µmax; M(k)

max ←Mmax;
10 else
11 µ

(k)
max ← µmax; M(k)

max ← ( 2k
K
− 1)Mmax;

12 end
13 (x0, ẋ0)← (xg0, ẋ

g
0); x1 ← xg1;

14 M(k) ← 1
2
IM(k)

max;
15 µ(k) ← 1

2
Iµ

(k)
max;

16 loss(k) ← 0;
17 for t = 0, T − 2 do
18 ẋt+1 ← V (xt, ẋt, Ft,M(k), µ(k)) ;

. Predicting velocity

19 xt+2 ← xt+1 + ẋt+1dt; . Predicting next pose

20 loss(k) ← loss(k) + ‖xt+2 − xgt+2‖2;
21 µ(k) ← µ(k) − αrateDiag

(
xt+1 − xgt+1

)
W t
µ;

22 M(k) ←M(k)−αrateDiag
(
xt+1−xgt+1

)
W t
M;

23 µ(k) ← arg min
µ′∈[0,Iµ(k)

max]
‖µ′ − µ(k)‖∞;

24 M(k) ←
arg minM′∈]0,IM(k)

max]
‖M′ −M(k)‖∞ ;

. Projecting the gradients

25 end
26 Θ← Θ ∪ {(M(k), µ(k))};
27 end
28 end
29 for k = 1,K do

30 P (M(k), µ(k)) = e
− 1
τ
loss(k)∑K

i=1 e
− 1
τ
loss(i)

;

31 end

moves the object to the nearest waypoint xtarget at time-
step t. In this work, we use the following strategy. We start
by computing the expected center of mass of the object

as, x̂ =
∑K
k=1 P (M(k), µ(k))

∑
i∈{1,...,n}(M

(k)
i )(pix,t,p

i
y,t)∑

i∈{1,...,n}M
(k)
i

We

then find a cell i from the object’s outer envelope as

i = arg maxi∈{1,...,n}

(
x̂−xtarget

)(
(pix,t,p

i
y,t)−x̂

)T
‖x̂−xtarget‖2‖(pix,t,piy,t)−x̂‖2

. In other
terms, i is the outer cell that is most aligned to the axis
x̂ − xtarget. The direction of the pushing force is always
selected as the opposite of the surface normal at the contact
point. The next step consists in simulating the pushing force
and predicting the next state of the object (line 12) according
to each (mass, friction) model in Θ. The expected gap (or



Algorithm 2: ActionSelection(Θ, {F0, . . . , FT−1})
1 Create a set S of random candidate forces applied on

random contact points in the object’s contour;
2 if SelectionMode = random then
3 FT ← RandomSample(S) ;
4 end
5 if SelectionMode = mostDifferent then
6 FT ← arg maxF∈S mint∈[0,T−1] ‖Ft − F‖2 ;
7 end
8 if SelectionMode = mostDistinctive then
9 Dmax ← 0;

10 foreach F ∈ S do
11 D ← 0;
12 foreach (M(i), µ(i)), (M(j), µ(j)) ∈ Θ do
13 D ← D + ‖V (x0, ẋ0, F,M(i), µ(i))
14 −V (x0, ẋ0, F,M(j), µ(j))‖2;
15 end
16 if D > Dmax then
17 Dmax ← D; FT ← F ;
18 end
19 end
20 end
21 return FT ;

cost) of the simulated action is the weighted average of the
distances between predicted poses, according to different
models, and the target pose xtarget, wherein the weights
are the probabilities of the various models. This process is
repeated by perturbing the location of the contact point, and
retaining at the end the one that yields the minimum gap
from the target pose.

E. Application: Pre-Grasp Sliding Manipulation

The proposed probabilistic model identification technique
is used in Algorithm 4 to perform pre-grasp sliding ma-
nipulation of unknown objects. The algorithm integrates the
previous ones to solve the problem of pushing an unknown
object to the edge of a table and grasping it safely from
there. We assume that the goal region is known. First,
we start by using Algorithm 1 to explore the object and
identify a set Θ of possible (mass, friction) models and their
probabilities P . We then search for a configuration in the
goal region that satisfies two criteria: 1) the object can be
grasped without colliding with the support surface, and 2)
the object is stable with a sufficiently high probability. To
this end, a large number of object poses in the goal region
are sampled and verified. Sampled poses that do not allow
for a collision-free form-closure grasp are eliminated. Also,
for each sampled pose, we use the identified mass models to
predict in simulation the stability of the object. The failure
probability is computed by adding together the probabilities
of all mass models where the object is predict to fall from the
table. Only goal configurations that ensure the stability of the
object with a probability higher than 1− ε are selected. The
robust planning algorithm 3 is then used to select a sequence

Algorithm 3: Robust Planning with Inferred Models
Input: A set Θ of mass and friction maps, and a

corresponding probability distribution P ;
Output: A sequence of pushing forces (Ft)

T−1
t=0 ;

1 Find a set Xwaypoint of waypoints by calling
RRT ∗(x0, x

d
T );

2 ẋ0 ← 0; t← 0;
3 while Xwaypoint 6= ∅ do
4 xtarget = arg minx∈Xwaypoint ‖x− xt‖2;
5 repeat
6 gapmin ← ‖x0 − xdT ‖2;
7 repeat
8 Select cell i from the contour of the object;
9 Choose the direction of the force (f ix, f

i
y) as the

opposite of the object’ surface normal at cell i;
F i ← [0, 0, 0, . . . , f ix, f

i
y, 0, . . . , 0, 0, 0];

10 gap← 0;
11 foreach (M(k), µ(k)) ∈ Θ do
12 gap← gap+P (M(k), µ(k))‖xt + ẋtdt+

V (xt, ẋt, F
i,M(k), µ(k))dt− xtarget‖2;

13 end
14 if gap ≤ gapmin then
15 gapmin ← gap;

Ft ← [0, 0, 0, . . . , f ix, f
i
y, 0, . . . , 0, 0, 0];

16 end
17 until timeout;
18 ẋt+1 ← V (xt, ẋt, Ft,M, µ); xt+1 ← xt + ẋtdt;
19 t← t+ 1;
20 until minx∈Xwaypoint ‖x− xt‖2 ≤ ε;
21 Xwaypoint ←

Xwaypoint\{arg minx∈Xwaypoint ‖x− xt‖2};
22 end

of pushing actions to displace the object to the selected goal
configuration.

VI. EXPERIMENTS

We report here the results of experiments on pre-grasp
sliding manipulation both in simulation and using a real robot
and objects to evaluate the proposed approach. A video of
the experiments is attached as a supplementary material.

A. Experimental Setup

The experiments are performed on both simulated and real
robot and six objects: a book, a hammer, a box, a wrench,
a snack, and a spray gun. The simulation experiments are
performed using the physics engine Bullet and models of
the robot and objects. In the real setup, we used a Kuka
robot with a Robotiq 3-finger hand and an RGB-D camera.

B. Compared Methods

The proposed algorithm is compared against the
following methods. Planning with Uniform Mass
Distribution plans each object’s trajectory assuming
it has a uniform mass and friction. Thus, each cuboid in
the object has the same mass and coefficient of friction as
the other cuboids. Deterministic Planning with
Identified Mass Distribution uses Algorithm 1
to learn the material properties from the same data as
our method, but samples one model of mass and friction



Box Hammer Wrench

mass×friction mass friction mass×friction mass friction mass×friction mass friction

Book Snack Spray Gun

mass×friction mass friction mass×friction mass friction mass×friction mass friction

Fig. 2. Cuboid representations of real objects, along with samples from distribution P of joint models returned by Algorithm 1 using a real robot to
collect data. Red indicates higher values. Note how different combinations of mass and friction maps can result in the same frictional forces.

Algorithm 4: Pre-Grasp Sliding Manipulation of
Unknown Objects

Input: Point cloud of an object’s upper surface; Maximum
mass and friction mmax, umax ∈ R; Desired goal
region G; Failure probability threshold ε;

1 Create a 3D shape S of the object by projecting its upper
surface down on the support surface;

2 Decompose the 3D shape into a grid of n small cuboids;
3 Let xg0 be the vector of ground-truth positions and rotations

of the n cuboids at time 0; ẋg0 = 0;
4 Use Algorithm 1 to manipulate the object and identify a set

Θ of possible joint mass and friction models and their
corresponding probabilities P ;

5 Sample a goal configuration xd ∈ G where 1) a
form-closure grasp of the object is available, and 2) the
probability that the object remains stable under gravity,
according to the identified mass distribution, is higher
than a threshold 1− ε;

6 Use Algorithm 3 to obtain a new sequence of forces
(Ft)

Texecution
t=0 to push the object to xd;

7 Execute the sequence (Ft)
Texecution
t=0 with the robotic hand;

8 Apply a form-closure grasp to pick up the object;

(M(k), µ(k)) ∼ P , and plans the object’s entire trajectory
based on the sampled model. All the results of this method
are averaged over ten samples of (M(k), µ(k)) ∼ P . Note
that each of the sampled models is already locally opti-
mal and yields accurate predictions of the sliding motions.
Because ground-truth mass and friction are known in the
simulation experiments, we also compare the proposed al-
gorithm with Planning with Ground-truth Mass
Distribution which provides an upper bound.

C. Model Identification Results with Real Robot and Objects

Figure 2 shows qualitative results obtained from Algo-
rithm 1 and five pushing actions per object. Each object is
represented by a set of cuboids shown in the first rows. The
number of cells per object varies from 28 to 88 depending
on the size of the object. Notice that models of the same
object have different mass and friction maps, however, they
produce similar frictional forces given by the product of the
mass with the friction at each cell. This ambiguity justifies
the need for probabilistic reasoning about the models to avoid
pushing the object into unbalanced configurations.

Fig. 3. The average predicted cell position error (in meters) as a function of
the number of training data. The results indicate that active action selection
does not offer any clear advantage over a random strategy in this task.



Fig. 4. The average predicted cell position error of real objects (in meters)
with different numbers of training examples, given the same upper bounds
for the mass and friction coefficients as the ones used in [17].

D. Balance Prediction with Real Objects

Figure 5 evaluates the accuracy of the proposed algorithm
in selecting goal configurations based on the stability of the
object. We manually placed each of the six real objects in 10
random poses on the edge of a round table where the form-
closure grasp of the object is available. And we recorded
whether the objects fell or stayed on the table in each pose.
Planning with Uniform Mass Distribution
and Deterministic Planning with Identified
Mass Distribution returned any pose that is predicted
to be stable in simulation using the identified or provided
models. The proposed algorithm returns any pose where the
object is predicted to remain balanced with a probability
higher than the threshold of 0.90. The reported results
are averaged over 100 independent trials per object. The
proposed probabilistic method obtained the highest success
rate, because it considers many possible mass models, with
different probabilities, and selects the safest goal poses.
The other methods select one mass model per trial for
predicting the balance of the object. Again, note that all the
mass and friction models here are obtained from the same
identification process, and they are all local minima of the
loss function with virtually similar objective values.

E. Pre-grasp Sliding Manipulation

1) Simulation Experiments: Each of the objects is placed
in 100 random rotations at the center of a round table with a
radius of 0.5m. After identifying the models of each object
from five pushing actions, the goal is to select a sequence
of pushing actions that displace the object into graspable
goal configurations at the edge of the table. To make the
experiments more challenging, we added a control noise to
the simulator so that planning does not perfectly match with
execution. Figure 6 (a) shows that in all of the 100 trials
with random initial object poses, the proposed method suc-
cessfully placed the object in graspable and balanced poses.
Planning with Uniform Model Identification failed mostly

Fig. 5. Percentages of stable goal configurations selected by different
methods using real robot and objects

because it chose unstable poses as a goal due to the fact
that most objects do not have a uniform mass. Deterministic
Planning with Identified Mass Distribution also dropped the
object when it chose inaccurate mass maps, which results
in selecting unstable goal poses. As shown in Figure 4, all
the identified mass models perfectly predicted the motions of
the objects while they were entirely on the surface because
they were used jointly with inaccurate friction maps that
compensate for the mass in the product mass×friction, as
shown in Figure 2. The proposed method achieves the highest
success rate, with a slightly higher number of pushing actions
than other methods, as shown in Figure 6 (b).

2) Real Robot Experiments: We repeated the same exper-
iment as the previous one using the real robotic setup with
a hammer set in 10 different initial poses on the table. The
Kuka robot repeatedly observes the object’s pose on the table
and pushes the object toward pre-grasp poses, using Algo-
rithm 4. Once the object reaches a goal pose, the robot grasps
the object by inserting its fingers around it and aligning the
approaching direction to the surface normal of the contact
point. Figure 7 shows the percentage of successful grasps
resulting from the entire process of Algorithm 4. The lower
success rate of Planning with Uniform Mass Distribution
and Deterministic Planning with identified Mass Distribution
mostly comes from unstable goal pose selections. The Uni-
form Mass Distribution shows much lower success rate than
simulation results. This is because reachable object poses
with the real robot are more limited than in simulation,
and plans obtained from inaccurate mass distributions lead
into pushing the object out of the workspace. The proposed
method was able to avoid those situations by considering
many plausible models simultaneously and choosing actions
that are most guaranteed to succeed.

VII. CONCLUSION

Manipulating non-uniform objects safely requires accurate
models of mass and friction maps. In this work, we proposed
a new method for identifying such models automatically



(a) Percentage of successful grasps

Method # of Actions
Planning with Uniform Mass 6.05 (±1.76)
Deterministic Planning 5.69 (±1.96)
Probabilistic Planning (Proposed) 6.27 (±1.82)
Planning with Ground-truth Mass 5.46 (±1.44)

(b) Average number of executed actions

Fig. 6. Simulation results on pre-grasp sliding manipulation

Fig. 7. Real robot results on pre-grasp sliding manipulation

from data collected by using a robotic manipulator. When
the data is limited and collected from quasi-static motions,
it is not possible to disentangle mass from friction. Therefore,
the proposed approach returns a probability distribution over
several plausible models. We have also shown that the
inferred probability distribution can be used to plan side-
pushing actions that displace an object into the edge of
a support surface while keeping it balanced. The object
can then be grasped easily from the edge. Future work
includes investigating other probabilistic mass and friction
representations, as well as inferring models of objects in
highly cluttered scenes where contact and collisions between
different unknown objects may occur.
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