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Abstract— This paper introduces an algorithm for discov-
ering implicit and delayed causal relations between events
observed by a robot at arbitrary times, with the objective
of improving data-efficiency and interpretability of model-
based reinforcement learning (RL) techniques. The proposed
algorithm initially predicts observations with the Markov as-
sumption, and incrementally introduces new hidden variables
to explain and reduce the stochasticity of the observations. The
hidden variables are memory units that keep track of pertinent
past events. Such events are systematically identified by their
information gains. The learned transition and reward models
are then used for planning. Experiments on simulated and real
robotic tasks show that this method significantly improves over
current RL techniques.

I. INTRODUCTION

The advent of deep learning made a deep impact on most
areas of computing, and provided dramatically improved
solutions to many real-world problems. The appeal of deep
learning is due to its simplicity that requires minimal de-
sign efforts, combined with a capability to learn complex
functions from data. It did not take very long for this thrust
to reach and transform the area of reinforcement learning
(RL). The seminal work of [1] has shown that a simple neural
network (DQN) could be trained to play Atari video games at
a human level, using only raw screen images as observations
and keyboard inputs as actions. The work on DQN paved
the way for several new techniques that can be categorized
under the general umbrella of end-to-end visual RL. These
techniques avoid the tedious process of designing features
manually, and rely on convolutional layers to automatically
extract features from sensory inputs.

Despite the remarkable progress made by deep RL agents
in reaching human-level performance and beyond [1], they
continue to lag behind humans in terms of data efficiency.
Humans can immediately figure out the effects of their
actions on objects displayed on a screen after a few trials, and
build a model for reasoning and planning in order to improve
their scores. Model-based RL algorithms arguably require
less data than model-free ones [2]–[4]. But learning models
that are sufficiently accurate for planning is still a challenging
problem [5]. Inaccurate predictions generally result in sub-
optimal policies.

The difficulty in learning accurate predictive models can
be mostly attributed to the partial observability of the states.
In robotics, for example, the Markov condition is seldom
verified. Future states and rewards often depend on the entire
history of actions and observations.
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Fig. 1. Overview of the proposed system and the robotic setup used
in the experiment Learning to Paint

An example of that is unlocking a door and opening it
afterwards. The first action changes the hidden variable that
is the state of the door from locked to unlocked. Without
a memory of past locking/unlocking actions, a robot cannot
explain why the door opens sometimes and does not open
at other times based only on an image of the door. The
robot needs to infer the hidden causal link between the act
of unlocking the door and the ability to open it later in
the future. Other examples include filling or pouring liquids
from containers, turning electric switches and unscrewing a
lid and lifting it later in the future. In general, sequential
object manipulation tasks involve changing states of objects
in ways that cannot be easily perceived through vision,
but their effects can be observed in the later stages of
the task. Figure 1 shows an experiment performed in the
present work, where a robot learns to paint. The causal link
between dunking the paintbrush in a paint container and the
appearance of paint on the surface of the box later when
the brush is pressed against it is non-trivial because the
robot performs a large number of random exploratory actions
between the two events. The brush always looks the same,
even after the paint in it has dried. Thus, it is important to
remember the event of moving the brush into the container
in order to predict future observations.

LSTM and GRU architectures are general-purpose tools
for solving problems of partial observability by discovering
and remembering pertinent information. They tend, however,
to require large amounts of data, and they cannot be easily
interpreted. To address these two issues, we present here
an approach that combines the merits of general function



approximators such as neural networks with probabilistic
graphical models for representing hidden variables. Given
a stream of actions, observations and rewards, a neural
network is trained to predict future observations and rewards.
Simultaneously, a graphical model of causal relations be-
tween observations occurring at different time steps is also
gradually constructed. The values of the variables in the
graph are also provided to the neural network as additional
inputs along with the observations. The learned predictive
model is then utilized by the agent to select actions based
on their predicted future rewards.

II. RELATED WORKS

Learning POMDPs: The Baum-Welch algorithm is an
expectation-maximization technique that is traditionally used
to learn hidden Markov models and POMDPs [6]. This
algorithm requires knowing the number of hidden variables
in advance. It is sensitive to the initial values of parameters
and typically results in suboptimal solutions. Predictive state
representations (PSRs) [7], [8] are an alternative model to
represent partially observable environments without using
hidden states. While parameters of PSRs can be learned with
any consistent density estimator, discovering the core tests
is still an open problem. Moreover, the learning complexity
of these estimators is exponential in the length of history
that needs to be stacked to predict future observations. A
more efficient spectral approach proposed in [9] generalizes
PSRs by including features of test outcomes and histories,
instead of a stream of raw observations. For example, an
indicative feature might be the number of times we saw
a specific observation in the past three steps. The memory
variables introduced in the present work are closely related
to the indicative features. In contrast to [9], our algorithm
reasons about the causal relations between different regions
of the observation space and over different time intervals, and
returns an explicit graphical representation of the discovered
causal relations. Most recent efforts on learning partially ob-
servable dynamical models rely on recurrent neural networks
(RNN) and LSTM techniques in particular [2]–[4], [10], [11].
While the success of LSTM is not fully understood, it is
frequently attributed to the gating mechanisms that allows
information to be retained for a long time, but also to be
forgotten quickly.

Object-oriented RL: In vision-based RL, there is a clear
physical structure that can readily be exploited. Images can
be decomposed into segments of objects. Several models
utilizing object-oriented representations for learning and
planning have been proposed in the past [12]–[14]. Object-
sensitive deep RL is a closely related idea proposed in [15].
More recent works focused on learning these models, such
as the interaction networks [5], which can reason about how
objects in complex systems interact. The schema network,
proposed recently by [16], is an object-oriented generative
physics simulator capable of disentangling multiple causes
of events that occur in visual RL; it has been shown to
increase transferability of skills within variations of Atari
games. The schema networks are trained with an algorithm

for structure learning in graphical models, but no hidden
variables or delayed cause-effect relations were considered,
which are the focus of our work. Object-oriented RL has not
yet been applied to 3D games, to the best of our knowledge.

Memory models: Long-term dependencies in temporal
models were considered in some recent works [17], [18]. For
example, the method presented in [17] classifies trajectories
based on the probabilities of future observations after an
unknown number of steps. This approach is closely related
to ours, except that we look into past events instead of future
trajectories. [18] proposed another closely related approach
based on using the reconstruction loss in recurrent neural
nets as an auxiliary objective.

Attention mechanism: Attention mechanism is widely
used for selecting specific features or specific parts of
features dynamically according to the specified task. This
mechanism is usually characterized by aggregating a col-
lection of features through a weighted sum where weights
are functions of inputs rather than learnable parameters. One
of the successful applications of attention mechanisms is
caption generation for images. A preeminent work, [19],
defines attention weights as functions of visual features
from different parts of an input image and from states of
recurrent units in order to guide the architecture to focus on
pertinent regions of the image as it generates a caption. The
same mechanism was adopted in a more recent work [20].
Followup works explored various designs of the attention
function. For instance, [21] investigates two new modules,
one measures magnitudes of embedded features in attention
computation while the other one takes object information as
part of the input in order to obtain an attention module in
a higher level. [22] takes advantage of attention mechanism
to efficiently compress information from demonstrated tra-
jectories in the setting of imitation learning. In this work,
we focus on attention on specific events in the construction
of memory units. Considering the forget and input gate as
attention weights, LSTM inherently employs attention mech-
anisms [22]. We show that its attention tends to forget old
events, while our proposed algorithm avoids this drawback.

III. BACKGROUND AND NOTATIONS

Formally, a Markov Decision Process (MDP) is a tuple
(S,A, T,R, γ), where S is a set of states and A is a set
of actions. T is a transition function with T (s′|a, s) =
P (St+1 = s′|St = s,At = a) for s, s′ ∈ S, a ∈ A, and
R is a reward function where R(s, a, r) is the probability of
receiving reward r ∈ R for executing a in s. A policy π is a
distribution on the action to be executed in each state, defined
as π(s, a) = P (at = a|st = s). The value V π of a policy π
is the expected sum of rewards that will be received if π is
followed, i.e., V π(s) = E[

∑∞
t=0 γ

trt|S0 = s, π, T,R].
In robotics, states generally cannot be fully observed.

Instead, a robot perceives partial observations zt, in the form
of images, for example. The resulting process is a Partially
Observable MDP (POMDP). Formally, a POMDP is a tuple
(S,A,Z, T, F,R, γ) where (S,A, T,R, γ) is an MDP, Z is
a set of observations, and F is an observation likelihood



Fig. 2. Learning to open a door. The robot needs to first move its end-
effector to the region surrounding the card reader to unlock the door, before
attempting to open the door. The causal link between the two events is time-
delayed and hidden in the middle of all possible random trajectories that
are generated in the exploration phase. This work proposes an algorithm for
learning such models.

function: F (Z|S) is the probability of observing Z ∈ Z in
state S ∈ S.

We focus in this work on object-oriented POMDPs, where
a state S is described by one or several visible attributes
of objects, in addition to one or several hidden variables.
In other terms, S = (O1, O2, . . . , On,M1,M2, . . . ,Mm) ∈∏n
i=1Oi×

∏m
i=1Mi, wherein Oi is an attribute of an object

in the scene, and M i is a hidden variable. The list of
objects includes the robot or its end-effector. Oi and Mi

denote the domains of visible variable Oi and hidden variable
M i, respectively, which can be discrete or continuous. For
example, O1 is the position of a specific object in the image,
while O2 is its velocity, O3 is its size, O4 is its numerical
label, O5 is a Boolean attribute that indicates if the object
still exists in the scene or not, O5 is the position of a second
object in the image, and so forth. Observations correspond to
object attributes, i.e., Zt = (Oit)

n
i=1. To ease the notation, we

also consider the reward signal Rt as one of the observable
attributes Oit. Thus, the reward function is modeled and
learned in the same way as the transition function. We focus
hereafter on the general problem of predicting future states.

Hidden variables M1,M2, . . . ,Mm are unknown a
priori and need to be inferred from the observable entities.
Examples of hidden variables M i include past events,
or actions performed on the objects. In the previous
example, a door can be unlocked or locked at a given
time t, and the state of the door cannot be easily inferred
from vision alone. The state of the door is then a hidden
variable M i

t of state St. Its existence can be inferred by
discovering the causal link between the act of inserting
and turning a key in a door lock and the subsequent
ability to open the door later in the future, after executing
several possibly unrelated actions. Transition function T
is represented as a Dynamic Bayesian Network (DBN).
We denote by pa(Xt) the list of parents of variable X at
time t. Thus, function T is defined as T (St+1|St, At) =(∏n

i=1 P (Oi
t+1|pa(Oi

t+1), At)
)(∏m

i=1 P (M i
t+1|pa(M i

t+1), At)
)
,

wherein the values of Oit+1 and M i
t+1 are contained in St.

IV. PROPOSED APPROACH

The proposed algorithm receives a set of sampled data
trajectories D = {(zl0, al0, . . . , zlh, alh)}Ll=1, collected by
executing uniformly distributed random actions {alt} for
exploration. The algorithm returns a set of memory vari-
ables {M i}mi=1, and parents of each variable in {M i}mi=1 ∪
{Oi}ni=1. We initially assume that there are no hidden vari-
ables, and incrementally create new ones only when needed
to explain stochasticity of observations {zlt}. Algorithm 1
summarizes the main steps of this process.

A. Identifying highly stochastic variables

We start by setting k, the counter of hidden variables, to
0, and initialize the list of parents pa(Oit+1) for each object-
attribute Oi with {O1

t , . . . , O
n
t , At}. In other words, all

attributes of objects in a given state are considered as relevant
for predicting the next state. Next, factors P (Oit|pa(Oit))
of the transition function are estimated from sampled data
trajectories D = {(zl0, al0, . . . , zlh, alh)}Ll=1. This can be
achieved through any of the many existing density estimation
techniques, such as frequency counts of discretized variables
or the Kernel Density Estimation (KDE), as follows,

P (pa(Oi)) =
αw

hL

h∑
t=1

L∑
l=1

exp
(
−w

∑
X∈pa(Oi)

‖X−xi,lt ‖2
)
,

P (Oi, pa(Oi)) =
αw

hL

h∑
t=1

L∑
l=1

exp
(
− w‖Oi − oi,lt ‖2

−w
∑

X∈pa(Oi)

‖X − xi,lt ‖2
)
, (1)

wherein oi,lt (resp. xi,lt ) is the observed value of variable
Oi (resp. Xi) in trajectory l at time t. The algorithm
maintains a list that contains state variables that need further
explanation, i.e., variables with conditional probability dis-
tributions that have an entropy above a predefined threshold
ε. For example, in the painting experiments, the variable
that corresponds to the appearance of paint on the canvas
is highly stochastic, even when conditioned on the pose of
the brush with respect to the canvas and the executed motion.
Conditional entropy is defined as,

H(X|Y1, . . . Ym) =−
∑
x∈X

∑
y1∈Y

· · ·
∑
ym∈Y

(
p(x, y1, . . . , ym)

log
p(x, y1, . . . , ym)

p(y1, . . . , ym)

)
, (2)

The algorithm is safeguarded against entering infinite
loops by upper bounding the number of parents per variable
by max var. The algorithm processes the variables, one at
a time, until the open list is empty.

B. Searching for causes of uncertainty

The next step of the proposed algorithm consists in search-
ing in the history of executed actions and observed object-
attributes for events that can explain the stochasticity of each
one of the identified highly stochastic variables, denoted by



X (line 9). To this end, the algorithm iterates through all
attributes Oi of objects (lines 12-23). For each attribute Oi

of each object present in the scene, including the robot’s end-
effector, we search in the space Oi of all possible values for
the region that brings the maximum information gain to the
distribution of variable X . The region is defined as hyper-
ball, with a center ci ∈ Oi and a radius ri ∈ R. For example,
ci could be a 6-dimensional point in space that corresponds
to the pose of the robot’s end-effector (or the manipulated
object), and ri is a tolerance threshold. Searching in the
entire space Oi is computationally inefficient. Therefore, the
proposed algorithm concentrates the search in the regions of
space covered in the exploration data D. We thus start by
estimating the distribution of Oi as,

P (Oi) =
αw

hL

h∑
t=1

L∑
l=1

exp
(
− w‖Oi − oi,lt ‖2

)
. (3)

The center of the hyper-sphere is sampled from P (Oi),
while its radius ri is sampled uniformly in the interval
[0, radius(Oi)].

The center and radius of the sampled hyper-sphere are
optimized in the next step (lines 16-19) by following the
gradient of the information gain that occurs from adding the
event of visiting the hyper-sphere into the list of parents of
variable X . The information gain is defined as,

IG
(
(X|pa(X)), Y

)
= H(X|pa(X))−H(X|pa(X), Y ).

Therefore, selecting a new parent Y that maximizes
IG
(
(X|pa(X)), Y

)
corresponds to selecting a parent that

minimizes H(X|pa(X), Y ). In our case, Y corresponds to
the event of visiting Ball(ci, ri) at some point in the past.
Thus, we first define Ĥ, a form of H that is parameterized by
ci and ri, then compute the gradients of Ĥ

(
X|pa(X), Oi ∈

Ball(ci, ri)
)

with respect to both ci and ri, and use them
to update both parameters.

Boolean events Oi ∈ Ball(ci, ri) are discrete and non-
differentiable with respect to ci, ri. We thus employ a con-
tinuous relaxation where P

(
X, pa(X), Oi ∈ Ball(ci, ri)

)
is defined as

αw

hL

L∑
l=1

h∑
t=1

exp
(
− w‖X − xlt‖2 − w

∑
Y ∈pa(X)

‖Y − yi,lt ‖2
)

exp
(
− w min

t′∈{1,...,t−1}
‖oit′ − ci‖2 − ri

)
.

Ĥ
(
X|pa(X), Oi ∈ Ball(ci, ri)

)
is then defined by using

P
(
X, pa(X), Oi ∈ Ball(ci, ri)

)
in Equation 2. Although

the min operator in this definition is not differentiable, the
gradient of Ĥ can still be computed analytically at any
point (ci, ri) using well-known derivatives of exponential
functions, except on small boundaries in the space Oi, which
are the boundaries of the Voronoi regions generated by the
data points {oit}.

C. Creating memory units

After identifying key event Oi ∈ Ball(ci, ri) and opti-
mizing (ci, ri) through gradient-descent, we create a binary
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Fig. 3. Causality graph returned by Algorithm 1.

memory variable M (k) associated with it. Therefore, M (k) ∈
{0, 1}. Binary hidden variables {M (k)} are used to carry
pertinent information over time and preserve the Markov
assumption in the transition model. The transition function
for a memory variable M (k) associated with object-attribute
Oi is defined as follows.

P
(
M

(k)
0 = 0

)
= 1,

pa(M
(k)
t+1) = {M

(k)
t , Oi

t},
P
(
M

(k)
t+1 = 1|pa(M (k)

t+1)
)
= 1 if

(
M

(k)
t = 1 ∨ ‖oit − ci‖2 ≤ ri

)
,

P
(
M

(k)
t+1 = 0|pa(M (k)

t+1)
)
= 1 if

(
M

(k)
t = 0 ∧ ‖oit − ci‖2 > ri

)
.

Therefore, memory unit M i
t+1 is deterministic. It is ini-

tialized with 0, and it preserves its value over time until
the event ‖oit − ci‖2 ≤ ri occurs. This event corresponds to
object Oi being inside the sphere (ci, ri) at some time t.

This process is repeated until the entropy of variable X
drops below a pre-defined threshold after identifying from
the history data all hidden causes of X . Note also that the
same object attribute Oi can be associated with more than
one memory unit M (k). This happens for example when
different regions, with different centers and radii, in space
Oi of object Oi need to be visited in order for X to take
a certain value. For example, we show in the next section
how a robot can learn to identify four lug nuts that need to
be loosened before it can remove a tire. The locations of the
nuts are not known a priori to the robot.

V. EXPERIMENTS

The proposed approach is evaluated on two tasks. These
two are robotic experiments using the Gazebo simulator, we
also deploy the proposed approach on a real robot for the
painting task.

A video of the experiments is attached as a supplementary
material and uploaded to https://bit.ly/2TeGlzm.

A. Robotic Experiments

1) Painting: We formulate the painting problem illus-
trated in Figure 4 as a POMDP, where the state space
corresponds to the position of the paintbrush attached to
the robot’s end-effector, and a hidden binary variable that
indicates if the paintbrush is loaded. It is important to note
that the robot can observe only the position of the brush, and

https://bit.ly/2TeGlzm


Algorithm 1: Greedy Causal Graph Construction
Input: Set of observable variables {Oi}ni=1, and sampled data

trajectories D = {(zl0, al0, . . . , zlh, a
l
h)}

L
l=1;

Output: Set of memory variables {M i}mi=1, and parents of each
variable in {M i}mi=1 ∪ {Oi}ni=1 ;

1 openList← ∅; k ← 0;
/* Identifying highly stochastic variables */

2 for i := 1; i ≤ n; i← i+ 1 do
3 ∀t ≥ 0 : pa(Oi

t+1)← {O1
t , . . . , O

n
t , At};

4 Estimate P (Oi, pa(Oi)) from data D using Equation 1;
5 Estimate P (pa(Oi)) from data D using Equation 1;
6 Compute conditional entropy H(Oi|pa(Oi)) from

P (pa(Oi)) and P (Oi, pa(Oi)) by using Equation 2;
7 if

(
H(Oi|pa(Oi)) > ε

)
then openList.push(Oi) ;

8 while openList 6= ∅ do
9 X ← openList.pop();

/* Searching for causes of uncertainty */
10 repeat
11 max gain← 0;
12 foreach i ∈ {1, . . . , n} do
13 Sample an initial center-point ci ∼ P (Oi);
14 Sample an initial radius

ri ∼ Uniform
(
0, radius(Oi)

)
;

15 repeat
16 ∇ciĤ = ∂

∂ci
Ĥ
(
X|pa(X), Oi ∈

Ball(ci, ri)
)
;

17 ci ← ci − αcenter∇ciĤ;
18 ∇riĤ = ∂

∂ri
Ĥ
(
X|pa(X), Oi ∈

Ball(ci, ri)
)
;

19 ri ← ri − αradius∇riĤ;
20 until

(
(‖∇ciĤ‖2 < ε1) ∧(‖∇riĤ‖2 < ε2)

)
;

21 if Ĥ
(
X|pa(X), Oi ∈

Ball(ci, ri)
)
−H(X|pa(X)) > max gain then

22 max gain← Ĥ
(
X|pa(X), Oi ∈

Ball(ci, ri)
)
−H(X|pa(X));

23 imax ← i;

/* Adding hidden variables */
24 Create a memory unit M(k) associated with the event

Oimax ∈ Ball(cimax , rimax );
25 pa(X)← pa(X) ∪ {M(k)};
26 k ← k + 1;
27 until

(
H(X|pa(X)) < ε

)
∨

(
|pa(X)| ≥max var

)
;

not if it is loaded or unloaded. The action space corresponds
to movements of the end-effector in six directions. We use
the Gazebo simulator with the MoveIt! path planner to move
the end-effector between two adjacent cells. The length of
each episode is 100 time-steps. When the brush goes inside
the paint bucket, the binary variable switches from false
to true and remains so until the end of the episode. This
simple transition is difficult to learn because the binary
switch variable can never be observed, there is no immediate
evidence related to it, and the robot is even unaware of its
existence a priori. If the paintbrush was loaded, the robot
receives a reward of +1 when the brush touches the canvas.
In all other cases, the received reward is 0. The reward
function is also unknown and needs to be learned from the
observed trajectories. Given that the data is collected with a
random policy, the time difference between dipping the brush
in the bucket and touching the canvas can be arbitrarily long.

The robot receives data sequences {(zt, at, Rt)}100t=1, where

(a) Learning to paint in simulation

(b) Evaluating the learned policy with a real robot

(c) Learning to change a tire

Fig. 4. Tasks considered in the experiments

zt is a 3D position of the brush, at is a moving direction, and
Rt is an immediate reward. No other information is provided.
The robot is then tasked with learning to paint.

Using the proposed algorithm, the robot learned a state
transition model and a reward function from data. The
learned model was then used by the value iteration algorithm
to return a policy. The state transition function here is trivial,
but the reward function is less trivial and involves a hidden
variable related to the loading status of the brush. The
robot first noticed that the received rewards are seemingly
stochastic and searched for past events that might be behind
the variance in the received rewards. Searching for such
events is challenging because the data is simply a collection
of Brownian-like motions of the end-effector gathered using
a uniform exploratory policy. Nevertheless, the algorithm
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Fig. 5. Average reward per test episode as a function of the number of
time-steps in the training data. Stacking History refers to a variant of our
architecture where the hidden variables are replaced with a long history of
actions, observations and rewards.

succeeds in localizing a region of state space that must be
visited by the brush before pressing it on the canvas in
order to make paint appear on the canvas. The algorithm
systematically creates a memory unit associated with the
event of visiting that specific region of the state space, which
corresponds to dipping the brush in the bucket.

Results reported in Figure 5 show that our algorithm
converges to a nearly 100% success rate. The results are
averaged over 200 test episodes and five different initial
positions of the paint bucket and the canvas.

We also compared the proposed method to the state-of-the-
art model-free RL algorithm Proximal Policy Optimization
(PPO), with an LSTM unit. PPO is implemented with a
neural network that receives current position as input. The
input layer is followed by fully a connected layer with 128
and 256 units, followed by an LSTM layer with size of 256.
The learning rate is 10−4, batch size is 4, the number of
epoch is 2, discount factor is set to 0.99 and the number

Task Proposed LSTM GRU [23] [24]
Painting Reward 0 0.99/0.99 1/0.99 1/0.99 1/0.99 0.99/0.99
Painting Reward 1 0.90/0.96 0/0 0/0 0/0 0.08/0.152

Tire Reward 0 0.99/0.99 1/0.99 1/0.99 1/0.99 1/0.99
Tire Reward 1 0.96/0.97 0/0 0/0 0/0 0/0

TABLE I
RECALL / PRECISION IN PREDICTING THE TWO VALUES OF

REWARDS. LSTM AND GRU ARE BASED ON [25].

of workers is 8. Despite performing significantly better
than a version of our method that does not search for the
hidden variables, PPO underperformed in this task. Another
popular model-free RL algorithm A2C [26] is implemented
with the same setting as PPO. Its learning curve shows a
similar pattern as PPO but it increases more slowly. We also
compared our approach to a recent model-based RL approach
for POMDPs [25], where LSTM is used in one version and
GRUs are used in another version. Both versions failed to
learn to accurately predict the reward function using the same
data used by our approach, as shown in Table I. The model
learned by [25] was used for planning in a Monte Carlo
tree search where the groudtruth optimal path was always
provided intentionally within the set of sampled paths. But
the optimal path was not selected by the model and the
obtained policies were suboptimal, as shown in Figure 5.
A more recent variant of [25], another model-based method
[23] is evaluated. But it also does not manage to find the
optimal path. Attention model [24] is designed to focus
on parts of sequences, so we evaluate whether it can find
the target region in this task. Applying the same planning
procedure as above, its performance is better than the other
two model-based baselines, but it is still worse than the
proposed approach. So even though its performance may
keep increasing as more data is available, it is clearly less
efficient than the proposed approach.

2) Tire Removal: The painting experiments involve only
one hidden variable. To test the proposed algorithm on
problems with more variables, we designed a second task in
Gazebo where the robot is tasked with removing a tire. We
assume that the robot is already equipped with an automatic
drill on its end-effector, and the task consists in placing the
drill on the lug nuts to loosen them before moving to the
center of the wheel to take it off. The problem is formulated
in the same way as in the painting task, except that the hidden
variables now correspond to the status of each of four lug nut
(tight vs. loose). The wheel can be taken off only when the
end-effector is placed at the center of the wheel, after placing
it on four specific points corresponding to the lug nuts. A
reward of 1 is given when the task is successfully finished,
all other states have a reward of 0. Results are averaged over
five different positions of the nut lugs.

Results in Figure 5 and Table I confirm that the proposed
approach discovers the causal link between visiting four
specific regions of the state space and receiving a positive
reward at the end of the episode. As the number of hidden



variables increases, baseline algorithms easily get trapped
in local minima. The resulting learned policies tend to go
to the wheel’s center after only loosening one or two lug
nuts, which causes their performance to drop. Because of
the clipped loss, PPO agents have limited policy changes
at each update. Although it cannot improve much from the
initial random policy, PPO still avoids getting trapped in a
local minimum policy. A2C learns a similar policy in the be-
ginning, but gradually improves later. In all four model-based
baselines, [24] outperforms others in the painting experiment
but it cannot show a similar advantage in this second task.
Simultaneously keeping track of multiple regions may not
be trivial for current attention models.

VI. CONCLUSION

Model-based RL algorithms are known to be data-efficient
alternatives to model-free ones, but also to be highly sensitive
to modeling inaccuracies. Such inaccuracies are often due in
robotics to the partially observable nature of states that makes
predicted observations and rewards stochastic. In this work,
we presented a new algorithm that searches for past events
that can be the hidden causes behind the perceived noise
in the future. The proposed model systematically builds a
memory of these events and the times of their occurrences.
The proposed approach searches for confounding hidden
variables that once identified, can help reduce the noise of
the predictions. Future works include deploying tire removal
experiments on a real robot, as well as extending this
framework to learning by imitation.
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