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Abstract
Precise in-hand manipulation is an important skill for a robot to perform tasks in human environ-
ments. Practical robotic hands must be low-cost, easy to control and capable. 3D-printed under-
actuated adaptive hands provide such properties as they are cheap to fabricate and adapt to objects
of uncertain geometry with stable grasps. Challenges still remain, however, before such hands can
attain human-like performance due to complex dynamics and contacts. In particular, useful models
for planning, control or model-based reinforcement learning are still lacking. Recently, data-driven
approaches for such models have shown promise. This work provides the first large public dataset
of real within-hand manipulation that facilitates building such models, along with baseline data-
driven modeling results. Furthermore, it contributes ROS-based physics-engine model of such
hands for independent data collection, experimentation and sim-to-reality transfer work.
Keywords: Data-driven models; Within-hand manipulation; Underactuated hands.

1. Introduction

Underactuated hands with compliant fingers offer an appealing grasping solution due to their adapt-
ability to objects of uncertain size and shape. They enable stable and robust grasps via open-loop
control without tactile sensing (Odhner and Dollar, 2015; Deimel and Brock, 2016). Furthermore,
the open-source underactuated robotic hands considered in this work (Ma and Dollar, 2017) are easy
to fabricate using 3D-printing and to modify. However, due to uncertainties in the manufacturing
process, the hands can easily differ in size, weight, friction and inertia. On top of that, passively
elastic joints in underactuated hands are difficult to model. Consequently, precise analytical models
for such hands are often unavailable as they are hard to derive (van Hoof et al., 2015). A rela-
tively new direction in this context, is the development of data-driven models proposed by Sintov
et al. (2019), which brings the promise of enabling accurate enough predictions and adaptiveness to
individual systems that can be used for planning and control (Kimmel et al., 2019).

To facilitate further efforts on data-driven research of adaptive hands, this paper provides an
experimental setup using both real data and simulations. The dataset could be used for different
tasks, including: identifying a model of the hand from data to acquire a mapping of states and
actions to new states (Sintov et al., 2019); failure identification to predict whether the hand drops
an object given a state and an action (Calli et al., 2018); and model transfer learning to minimize
the data needs for updating an existing model for a new hand, a new object, or even environment
changes (Bocsi et al., 2013; Makondo et al., 2015). This allows researchers to propose and evaluate
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algorithms for modeling, reinforcement learning, transfer learning and failure detection. In addition,
this work provides a framework for sim-to-real transfer learning.

Figure 1: Adaptive hand during
data gathering. The
dual-arm robot is used
to automate the collec-
tion process and acquire
a wide dataset.

Datasets in robotic manipulation are an efficient plat-
form for advancing research and comparing to the state-of-
the-art (Yu et al., 2016). As such, we provide the Rutgers
Underactuated-hand Manipulation (RUM)1 dataset. RUM in-
cludes data for several hands with various objects using an au-
tonomous data collection process involving an industrial robot
that decreases data uncertainty (Fig. 1). To the best of the au-
thors’ knowledge, this is the first large dataset for within-hand
manipulation with underactuated hands. In previous work by
Sintov et al. (2019), modeling for adaptive hands was pre-
sented using a small scale dataset collected manually and care-
fully in an exhausting procedure. In this large scale automated
collection, data variance is much larger which presents chal-
lenges in prediction accuracy.

Furthermore, we present an easily accessible ROS-
Gazebo-based model of adaptive hands (Fig. 4) along with
open-source code to control the hand, collect and process data.
The simulation enables the use of two and three finger hands,
Model-T42 and Model-O (Ma and Dollar, 2017), respectively.
While the simulation is based on some linear assumptions and
only approximates the behaviour of a real hand, it can be used
for prototyping and bootstrapping. Users are able to vary hand
properties, such as geometry, friction, spring stiffness, and maximum actuator load, so that different
hands can be simulated. In addition, a user can choose the set of features (e.g., object position and
velocity, joint angles and angular velocities, etc.) to include in the state as well as the allowed ac-
tions (e.g., discrete or continuous) for learning purposes. Users can alternatively build new models
to independently collect data using the provided open-source code.

2. Related Work

Compliance in underactuated hands makes the derivation of models challenging due to the com-
plex responses of the passive joints and uncertainties in the internal (e.g., joint friction) and external
(e.g., between fingers and object) friction (van Hoof et al., 2015). A gripper configuration is directly
dependent on the forces being applied to each of the fingers. Without tactile sensing, a precise fric-
tional model is required to estimate such forces, which is difficult to estimate at every point on the
contact surface. Typical frictional models assume uniformity of surfaces (Yu et al., 2016). For this
reason, along with the inability to control individual joint positions of an underactuated system,
physically accurate models are difficult to derive. Modeling tools for underactuated manipulation
have been introduced in prior work (Laliberté and Gosselin, 1998; Odhner and Dollar, 2011; Roc-
chi et al., 2016). These efforts examine joint configurations, torques, and energy with simplified
frictional models. A popular modeling technique applies a hybrid parallel/serial approach using
screw theory, which further simplifies derivation (Borras and Dollar, 2013). These techniques tend

1. Rutgers Underactuated-hand Manipulation (RUM) dataset - Webpage and source code, https://github.com/
avishais/underactuated_hand_tools
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to be sensitive to assumptions in external constraints and are mostly suitable for simulation. The
lack of good models for adaptive hands has led to the data-based modeling approach presented by
Sintov et al. (2019). Consequently, in this paper we provide a framework that could facilitate fur-
ther advancement and benchmarking of modeling approaches for adaptive hands (Calli et al., 2015;
Cruciani et al., 2020).

A data-based model is commonly formed as a transition model that maps a given state and action
to the next state (Punjani and Abbeel, 2015). Such models are important for model-based RL (Poly-
doros and Nalpantidis, 2017) and planning (Kimmel et al., 2019). They are often obtained through
non-linear regression in a high-dimensional space. Stochastic models, such as Dynamic Bayesian
Networks (DBN) (Nguyen et al., 2013) and Locally Weighted Bayesian Regression (LWBR) (Bag-
nell and Schneider, 2001), provide a probability distribution over predictions. Another common
approach for stochastic modeling of dynamical systems is Gaussian Processes (GP) (Rasmussen
and Williams, 2005; Ko et al., 2007; Deisenroth et al., 2014). They have achieved efficient learn-
ing, but rely on good coverage of the underlying space during training. Data-driven models have
been used to learn the probability distribution of an object after a grasp (Paolini et al., 2014) or
during regrasping (Paolini and Mason, 2016). A hybrid modeling approach combining analytical
and data-based models showed improved accuracy in feed-forward control (Reinhart et al., 2017).
The tools we provide in this work would enable to build data-based models for adaptive hand and
enable benchmarking with the state-of-the-art.

3. The RUM dataset

We consider the 2-finger Model-T42 hand seen in Figures 1 and 7. All hands used are fabricated
through 3D printing and are open-sourced (Ma and Dollar, 2017). Each finger of the hand has
two compliant joints with springs. In addition, an actuator provides flexion to the finger through a
tendon running along the finger length. The fingers also have high friction pads to avoid slipping.
Specifications for the dataset are as follows:

• State: We measure different features including object pose, finger locations and actuator loads,
which can be used to represent the state of the hand-object system.
• Actions: The hand is controlled through changes of actuator angles, where an atomic action u

corresponds to unit changes of the actuators’ angles at each time step. That is, an action moves
actuator i with an angle of λγi, where λ is a predefined unit angle and γi is in the range [-1, 1]. In
the dataset, we distinguish between data with either discrete or continuous actions. In the discrete
case and in each time step, γi is equal to either 1, -1 or 0, yielding eight possible actions – while
excluding the stall action (0, 0).
• Objects: We have used a set of 14 3D-printed objects, all having a constant profile parallel to the

motion plane. All objects are described in Table 1 and seen in Figure 2, while detailed drawings
can be viewed in the project’s web-page.
• Hands: We include data and validation paths for two different hands with the same design. Due

to the fabrication process, large variations in the motion between both hands exist. Thus, users
would be able to evaluate transfer learning algorithms to map a model of one hand to the other.
• Validation: For each object, we recorded 10 long validation paths within the workspace produced

with the same action sequences (also included for independent collection). The paths have a
substantial coverage and employ frequent changes of action.
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Figure 2: Test objects in the dataset.

Table 1: Description of test objects
Profile/Object Description Abbr.

1 Circular �30mm cyl30
2 Circular �35mm cyl35
3 Circular �45mm cyl45
4 Square 30mm× 30mm sqr30
5 Reg. decagon Circum. circle �42mm poly10
6 Reg. hexagon Circum. circle �40mm poly6
7 Reg. triangle Edge length 50mm tri50
8 Rectangle 30mm× 60mm rec60
9 Rectangle 10mm× 60mm rec10
10 Hexagram Circum. circle �40mm str40
11 Egg H. 52mm, Mx. W. 45mm egg50
12 Ellipse 25mm× 40mm elp40
13 Crescent Out �55mm, in �45mm cre55
14 Semi-circular �60mm sem60

We have built an automated collection system seen in Figure 1. The adaptive hand is mounted
on an arm of a Motoman SDA10F dual-arm robot. At each episode of the collection, the robot
grasps the object, performs within-hand manipulation until it drops, and then repeats. To do so,
a thin string runs through a hole in the center of the object and is connected to the floor (through
a spring) and to the second arm. When the object drops, it is stopped by the lift on the string.
Then, the upper arm pulls the string up along with the object into the reach of the fingers toward a
new grasp. During manipulation, we record object pose (geometric center and orientation), finger
positions and actuator loads. Poses of object and fingers are measured through fiducial markers. A
base marker is fixed on the hand for reference. During in-hand manipulation, the pose (position and
orientation) of the object relative to the hand, along with the position of fingers, is recorded. The
loads of the actuators are measured directly from the actuators’ feedback. Data points are logged
along with a time stamp and the corresponding action.

Data collection can be performed naively by randomly choosing actions. However, the collected
data would be concentrated near the initial grasping state and be sparse on farther regions. There-
fore, a shooting approach can be employed where at each episode and with some probability, the
hand will go towards an arbitrary direction with a large number of steps, and then apply random
actions to reduce uncertainty in the region. As seen in Figure 3, sparsity is reduced within the
state-space and exploration is increased using the shooting approach compared to the naive one.

(a) (b) (c) (d)

Figure 3: (a) Object position and (b) actuator loads when collecting 80,000 data points (in the sim-
ulation environment) with the naive (red) and shooting (black) approaches. (c) and (d)
are position density plots for the naive and shooting approaches, respectively. With the
naive, the data is seen to be concentrated near the start state with less exploration while
with the shooting, the data is more dispersed.
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The acquired data comprises of observable state-action trajectories, with no additional labeling
required. Thus, the resulting data is a set of state-action points P = {x̄0, . . . , x̄k}, where x̄i =
(xT

i , u
T
i )T . The distributed data is recorded in 10 Hz. The trajectories in P are preprocessed to

a set of training inputs x̄i and corresponding output labels of the next state xi+1 to define T =
{(x̄i), (xi+1)}Ni=1. For each x̄i, we also label di = {success,fail} indicating whether the
transition from xi with action ui failed. The final outcome is the RUM dataset, which comprises of
approximately 300,000 transition points for each object, both for discrete and continuous actions.

4. Physics Engine Simulation

We also provide a physics engine simulation of the Model T-42 and Model-O hands (Ma and Dollar,
2017) in the ROS-Gazebo environment, as seen in Figure 4. Similar to the real hand, we control the
actuators angles φ ∈ Rd (d = 2 and d = 3 for the 2- and 3-finger hands, respectively) which, when
rotated, increase or release tension ft on the tendons. We assume a linear model, such that ft = Qφ
where Q > 0 is a diagonal matrix. When modeled in Gazebo, the two joints of a finger are actually
fully-actuated and can be controlled individually. To simulate the compliance through the tendons
and similar to prior work (Rocchi et al., 2016), we enforce underactuation by coupling joint torques
τ ∈ R2d according to

τ = Rft −Kq− τd(q̇) (1)

Figure 4: Physics engine
simulation of
the Model T42
adaptive hand in
ROS-Gazebo.

whereR is a 2d×dmatrix determining the distribution of the tendon
forces on the joints. Matrix K is a 2d × 2d diagonal stiffness ma-
trix where its values are defined by the coefficients of the springs
mounted on each joint. Vectors q ∈ R2d and q̇ ∈ R2d are the
joint angles and angular velocities, respectively, measured within
the simulator. τd(q̇) is the damping vector and can also include tor-
sional friction at the joints. In this formulation, the d input values of
the actuators angles φ determine the 2d finger joint torques τ and by
that, simulate underactuation. Information on additional properties
and settings is provided in the dataset web-page.

5. Baseline results

This section provides baseline analysis with the data and simula-
tions to identify some insights and open problems. The analysis is
focused on data collected with discrete actions. The data-collection
process and the baseline experiments can be viewed in the supplementary video2.

5.1. Data-based Modeling

In previous work (Sintov et al., 2019; Sintov et al., 2020), a data-based modeling approach was
presented using Gaussian Process (GP) and Artificial Neural Networks (ANN). The position of the
manipulated object and the actuator loads were shown to be sufficient in describing the state of a real
hand under a quasi-static motion assumption. Nevertheless, the data collection for that work was
performed manually and, therefore, the variance of the initial state was rather low. In the large scale
autonomous data collection here, the variance is quite high and thus, a similar setup yields inaccurate
predictions. The addition of the state (object pose and actuator loads) at the initial grasp of the object

2. Supplementary video: https://youtu.be/7dtjIIzFpb0
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to the action, however, significantly improves the accuracy. That is, the model requires some knowl-
edge of past experience. This is not required, however, for the simulated hand model. We also note
that for non-circular object profiles, the orientation angle must be included in the state to allow the
model to consider the shape. Nonetheless, profile symmetry in some objects allows trimming of the
angle range.

Figure 5: Root-mean-square error with regards to the
length of the predicted horizon: (top) with GP
for different objects and in a logarithmic scale,
and (bottom) with NN and GP, for a cylinder of
19.2mmwithin the physics-engine environment.

For the RUM dataset, a Manifold-
Learning GP proposed by Sintov
et al. (2019) was applied for local re-
gression. Given a query state-action
pair, K1 = 1, 000 nearest neigh-
bors in the training data are found.
Next, a diffusion map for the K1

points is built acquiring a reduced
representation E of the data in the
lower dimensional subspace (dimen-
sion 3). Finally, the K2 = 100 clos-
est points to the query point, evalu-
ated through geodesic distance across
the subspace, are chosen for regres-
sion. For data collected in the sim-
ulated environment while manipulat-
ing a 19.2 mm diameter cylinder, we
have also trained a Rectified Linear
Unit (ReLU) NN with two hidden layers and 200 neurons each. Figure 5 presents the model er-
ror plots with regards to the predicted horizon length for both the RUM dataset and simulated hand.
The figure shows that it is harder to predict the motion of non-circular objects. Figure 6 presents the
RMSE with regards to the data size used for GP regression. The computation times averaged over
1,000 prediction trials with GP and NN are 440 milliseconds and 2.8 milliseconds, respectively.
The computation time was evaluated on a single Intel Xeon E5-4650 processor with 8 GB of RAM.
Evidently, NN is more computationally efficient than GP.

Figure 6: RMSE of GP predictions for different objects and
with regards to the number of transition points in
the data.

We also demonstrate the imple-
mentation of a naive closed-loop con-
troller with a simple “follow-the-
carrot” scheme, where the interme-
diate goal is moved along the path
as the object advances. The path
was generated using a motion plan-
ner to a hand picked goal while us-
ing the NN model for propagation.
We use the GP model trained over
the data of the corresponding object.
At each step and after acquiring feedback of the current state, the GP model predicts the
next state for each of the eight possible actions. The action that is exerted is the one that
predicts motion closest to the current intermediate goal position along the path. For each
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Figure 7: Model-based closed-loop tracking in a peg-in-a-hole problem: (left) poly10 object is
manipulated on a path seen in the (middle) plot. Path tracking for cyl35 is shown on the
(right) plot.

of the 10 test paths, 10 tracking trials were executed. Table 2 summarizes the tracking
RMSE for all trials and for some of the objects, while Figure 7 presents two tracked paths.

5.2. Failure identification

Table 2: RMSE for model-based closed-loop
tracking

Object RMSE (mm) Object RMSE (mm)
cyl30 1.03 poly6 1.48
cyl35 1.29 poly10 1.16
sqr30 1.37 str40 0.91
tri50 1.06 elp40 1.14

We compare eight common classifiers (Singh
et al., 2016) with all test objects: Gaussian
Process, Decision Tree, Linear Support Vector
Machine (SVM), Radial Basis Function (RBF)
SVM, Adaptive Boosting (AdaBoost), Random
Forest, Nearest Neighbors and Neural Network.
As mentioned before, labeled state-action pairs
were extracted from the recorded data while
100 points are used for validation. Table 3
presents results for the overall classification success rates with the RUM dataset and the simula-
tor. We note that for cylinders, the orientation of the object has no effect on the probability of
failure. However, for other non-cylindrical objects such as a polygonal profile, the orientation angle
is critical for successful classification. Thus, the angle is included in the state.

5.3. Model transfer

Training transition models typically requires several hours of data collection. To alleviate this prob-
lem, it is commonly considered to transfer already learned models across different robots or tasks
(Schramm et al., 2020; Makondo et al., 2018). To motivate this model transfer problem in the con-
text of adaptive hands, we show results for prediction error with regards to the modified system. We
have recorded data for one hand (termed blue hand) with several objects and the modeling results
were presented previously. Later, we recorded data and the 10 test paths with a target hand (termed
red hand). Figure 4 shows prediction results for three objects. The dashed curves are prediction er-
rors for test paths recorded with the blue hand and evaluated with the blue hand model. In contrast,
the continuous curves are test paths recorded with the red hand but predictions were also performed
with the blue hand model. Visual motion comparisons between the two hands can be seen in the
supplementary video. These results clearly show the inability to directly use an old model for a
modified system, indicating that the model should be adjusted. To make the approach viable, the
transfer should be done with the minimal amount of new data.
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Table 3: Failure classification results for the test objects and with different classifiers

Object
Gaussian
Process

Decision
Tree

Linear
SVM

RBM
SVM AdaBoost

Random
Forest

Nearest
Neigh.

Neural
Network

Real data
cyl30 96.8% 84.6% 66.6% 95.3% 86.4% 83.9% 93.8% 83.9%
cyl35 96.9% 86.3% 78.1% 93.1% 86.6% 83.2% 93.5% 81.1%
cyl45 96.6% 92.6% 70.0% 94.4% 93.5% 88.2% 92.9% 88.9%
poly6 94.8% 86.6% 72.4% 92.2% 87.9% 81.4% 87.5% 87.9%
poly10 95.7% 91.8% 71.3% 96.5% 90.7% 87.6% 91.1% 91.1%
sqr30 96.3% 88.2% 70.9% 91.9% 86.7% 86.4% 93.0% 85.3%
str40 94.5% 80.0% 62.2% 94.2% 82.9% 77.4% 90.0% 81.9%
rec10 97.7% 82.9% 73.8% 93.2% 82.9% 80.7% 94.7% 83.3%
rec60 95.1% 86.7% 65.3% 93.9% 87.9% 84.2% 93.9% 84.6%
egg50 97.3% 78.3% 66.9% 93.4% 80.0% 73.8% 94.3% 80.0%
elp40 95.9% 83.1% 72.4% 93.7% 87.8% 85.6% 90.4% 84.5%
tri50 96.0% 77.9% 67.3% 92.9% 81.1% 78.7% 92.1% 78.7%
cre55 96.8% 83.7% 77.1% 95.1% 87.5% 85.0% 95.8% 84.7%
sem60 95.9% 88.0% 70.9% 94.8% 88.3% 81.8% 92.2% 83.2%

Simulated data
cyl19 98.7% 91.2% 78.7% 97.5% 91.2% 92.5% 97.5% 92.5%

6. Conclusion

Table 4: Root-mean-square error with regards to the length
of the GP predicted horizon and for three objects.
Dashed curves refer to the blue hand model pre-
dicting paths of the blue hand. Continuous curves
are prediction errors using the blue hand model on
test paths recorded with the red hand.

In this work, we have proposed a set
of tools that can be used for eval-
uating algorithmic performance with
adaptive hands. We focus on the eval-
uation of methods to process data col-
lected from such hands to generate
viable models. We include a large
dataset of transition points recorded
with real hands and different objects
along with a physics engine based
simulation platform. In addition, the
provided source code enables users to
independently collect data with dif-
ferent scenarios, objects, and hands.
We have identified three possible us-
ages of the data: modeling a hand to predict its motion, identifying probable failure modes, and
model transfer. Baseline results demonstrated the feasibility of the data and motivated further re-
search in the modeling and control of adaptive hands.
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