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Abstract— Transfer learning is a popular approach to by-
passing data limitations in one domain by leveraging data from
another domain. This is especially useful in robotics, as it allows
practitioners to reduce data collection with physical robots,
which can be time-consuming and cause wear and tear. The
most common way of doing this with neural networks is to
take an existing neural network, and simply train it more with
new data. However, we show that in some situations this can
lead to significantly worse performance than simply using the
transferred model without adaptation. We find that a major
cause of these problems is that models trained on small amounts
of data can have chaotic or divergent behavior in some regions.
We derive an upper bound on the Lyapunov exponent of a
trained transition model, and demonstrate two approaches that
make use of this insight. Both show significant improvement
over traditional fine-tuning. Experiments performed on real
underactuated soft robotic hands clearly demonstrate the ca-
pability to transfer a dynamic model from one hand to another.

I. INTRODUCTION

Soft robots pose a series of challenges for open-loop con-
trol. Many aspects of these systems, such as the compliance
and friction coefficients of each joint, are difficult to measure.
This makes motion planning that relies on direct modeling
difficult. Learning a dynamical model is a popular alternative
to analytical and handcrafted modeling, but collecting data
for these models is time-consuming and incurs wear and
tear on the robot, often changing the system’s dynamics
before the model can be deployed. Efficient motion planning
requires an accurate model that can be learned from relatively
few data points. Neural networks are often used for this
purpose. They offer the advantage of fast queries, which
allows for long-horizon planning in large state and action
spaces. However, neural nets also require large amounts of
data. One way of solving this problem is to re-use data from
a closely related system to improve data efficiency. This
approach is known as transfer learning. The standard current
practice for transferring neural networks across domains
consists in first training a network on a source domain, where
data is relatively abundant, and then fine-tuning the network
on a final target system, where data is scarce. Fine-tuning is
commonly used in deep learning.

In this paper, we show that in certain situations, fine-
tuning can worsen the predictions of the source network.
This is because in some dynamical systems, such as the
3D-printed soft robotic hands illustrated in Figure 1, the
gradient of the state transition function can be important,
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Fig. 1. Model T42 3D-printed adaptive hands used in the experiments. A
transition model learned from the source hand is transferred to the second
hand with a small amount of data, and used to accurately control it.

due to sudden changes in friction and compliance coefficients
of the joints across the state space. In chaotic systems for
instance, the derivative determines the Lyapunov exponent,
which describes how much trajectories diverge over time as
a function of infinitesimally small differences in their start
states. We take a system to be chaotic if its maximal Lya-
punov exponent is greater than 0. We show that under certain
constraints, gradients of learned transition functions converge
to the true gradients of the underlying ground-truth functions.
However, in sparse data regimes, derivatives may strongly
diverge, leading to models that are significantly more chaotic
than the underlying true transition function. Based on this
observation, we present two simple methods designed to
prevent a transferred neural network from becoming chaotic
if its underlying function is not chaotic. The key idea here
is to design methods that keep the Lyapunov exponent small
as opposed to methods that focus on minimizing one-step
prediction errors. Experiments on the real hands shown in
Figure 1 demonstrate that both methods produce predictions
that are more accurate than the popular fine-tuning approach
and a few other methods.

II. PROBLEM STATEMENT

We consider the problem of transferring a dynamic model
of a source robot S to a target robot T that shares the same
state space X , a subset of Rn, with metric d. We define a
dynamical model as a transition function f that maps a state-
action pair (xt, µt) to a next state xt+1, i.e. f(xt, µt) =
xt+1. We denote by fS and fT the transition function of
the source and target robots, respectively. A policy is a
function π that maps a state xt into an action µt. We
assume that we are given a sufficiently large set DS of data



points (xi, µi, xi+1) generated with a random policy with
the source robot, and a much smaller data set DS obtained
from the target robot, i.e. |DT | � |DS |. In this work, we
study the difference between the responses of the two robots
under the same sequence of actions µ1, µ2, µ3, . . . , µn, in
an open-loop control. The sequence is chosen according to
a desired final goal or for tracking a path. The focus of
this work is not on how to choose the actions, but on how
the two robots respond to the same sequence of actions.
In order to ease notations, we drop the actions from the
notations, and re-define the transition function accordingly
as fn(x) = f(. . . (f(f(f(x, µ1), µ2), µ3), . . . , µn). Let f̂S
denote an approximation of the unknown true function fS ,
learned from the source data set DS . Let f̂T denote an
approximation of the unknown true function fT , learned
from the target data set DT ∪ DS . In the present work,
we use neural networks for learning both f̂S and f̂T .
Predicted trajectories will thus be given by xn = f̂n(x0).
Let the time before divergence be given by t(x, ε) =
maxn∈N[d

(
f̂nT (x), fnT (x)

)
< ε] where ε is some constant.

Our goal is to find some model f̂T that maximizes the
average value of t(x, ε) over all x ∈ X for some chosen
value of ε. This metric is useful because it measures how far
into a future a model can predict with reasonable accuracy,
which is important for path planning, as it relates to the
planning horizon. t(x, ε) is influenced by two main factors.
The first is the learned model’s prediction error at each step.
The second is the Lyapunov exponent of the learned model,
defined for discrete time systems with transition function f as
λf (x0) = limn→∞

1
n

∑n−1
i=0 ln |f ′(xi)| with xi+1 = f(xi).

1

The problem then consists in finding from DT ∪ DS a
function f̂T that approximates fS but that also has a small
Lyapunov exponent λf̂T to avoid chaotic divergences that
typically occur in recurrent neural networks.

III. RELATED WORKS

A. Underactuated Adaptive Hands

Deriving analytical models for underactuated hands is a
challenging task due to the complex response of the passive
joints and uncertainties in internal frictions of joints and
external frictions between fingers and object. To predict the
configuration of the gripper, one needs to know precisely the
forces being applied on the object, which cannot be obtained
when tactile sensing is not available to estimate friction at
every point on the contact surface. Typical models assume
a uniform friction on the contact surface [1]. Moreover,
controlling individual joint positions in an underactuated
system is a challenging problem. Models for underactuated
manipulation typically use simplified frictional models while
examining joint configurations, joint torques, and energy [2]–
[4]. A popular approach applies screw theory to further
simplify the derivation for a model [5]. Other modeling

1One-step error accounts for all ”new” error, introduced by inaccuracy in
the model. The Lyapunov exponent accounts for the growth of error from
earlier steps.

methods can be found in [6]–[8]. These proposed techniques
have been shown to be sensitive to assumptions in external
constraints. They are generally used for simulations only.
To control real underactuated adaptive hands, models of
dynamics need to be learned or tuned from data collected
with the real hands.

B. Learning Dynamical Models

A dynamical model is a mapping from a given state and
action to the next state. Such models play a key role in
model-based RL [9]–[16]. A common approach for modeling
of dynamical systems is the Gaussian Process (GP) [17]–
[19]. Usages of data-driven models include learning the
distribution of an object’s position after a grasp [20] or during
re-grasping [21], and a hybrid modeling approach combining
analytical and data-based models to improve accuracy in
feed-forward control [22]. Neural networks have became
more popular recently thanks to their simplicity, capacity of
learning, and scalability to large amounts of data, in contrast
to nonparametric methods such as GPs.

C. Neural Dynamical Systems

A number of works [23]–[25] have studied the dynamical
properties of recurrent neural networks, with both [23] and
[24] describing situations in which chaotic behavior can
arise. The work by [26] explores a variation of the recurrent
neural network that does not exhibit chaotic behavior. How-
ever, we find that for dynamics models it is more accurate
and more data-efficient to predict the change in state and
feed the new state to the model than it is to predict the state
directly and use memory to learn a representation of the state.
Chaining together predictions as we do would in the present
work causes the network of [26] to become chaotic, so this
method is not applicable for open-loop control.

D. Transfer Learning in Robotics

Training dynamical models typically requires several
hours of data collection [27]. To alleviate this problem,
several works considered transferring learned models across
different robots or tasks [28]–[38]. A typical approach to
transfer learning consists in projecting data from two do-
mains into a low-dimensional manifold [39], where corre-
spondences between data points from the two domains can be
learned without supervision [40]. This approach was adopted
for transferring inverse dynamics models of rigid robotic
manipulators [28], [34], [37], wherein the models are learned
with the LWPR method while the low-dimensional manifold
was given by PCA. Multi-robot transfer learning was also
studied from a dynamical system perspective in [29] wherein
sufficient conditions for a bounded-input, bounded-output
(BIBO) stability are provided for transfer learning maps.
A closely related transfer technique was used in [38] for
trajectory tracking with quadrotors. While the present work
also studies the transfer problem from a dynamical system
perspective, it focuses on the Lyapunov stability.

An increasingly popular approach for reducing the data
needs in robot learning is to transfer trained models from
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Fig. 2. Workspace of the considered hand. Errors of predicted future states
accumulate over time. The proposed cumulative residuals approach solves
this issue by bounding the Lyapunov exponent of the transferred model.

simulation to real world [30]–[33], [35]. Sim-to-real has
been used mostly for transferring policies in model-free RL,
with only a few works related to the transfer of dynamics.
In [41], a dynamics model is adapted online by combining
prior knowledge from previous tasks. Another technique [30]
combines a forward dynamics model, trained in simulation,
with an inverse dynamics model trained on a real robot.

IV. PROPOSED ANALYSIS

To derive a new transfer learning algorithm that meets
the specific challenges of our problem, we first analyse the
Lyapunov exponent of a learned transition function f̂ as a
function of the training data D and the Lyapunov exponent
of the underlying true dynamics f . We find the primary
driver of divergence in the target regime is chaotic behavior,
characterized by a large Lyapunov exponent. As we train a
new model, we find that training not only reduces the average
error of the model, but also its Lyapunov exponent. Even
when a model does not show outright chaotic behavior, it
tends to compound on its own errors in a way that damages
its performance. This will be discussed further in the exper-
iments section. Intuitively, we show that as we accumulate
more data, the models we train become less chaotic. To do
this, we derive an upper bound on the Lyapunov exponent
of the learned transition function.
Definitions. Let r be the maximum distance from any
point x ∈ X to the nearest point in D. Let ε be the
maximum error of f̂ ’s predictions on data D. In other terms,
ε = maxx∈D ‖f̂(x)− f(x)‖d, according to metric d.
Assumptions. Suppose maxx∈X |f ′′(x)| ≤ c and
maxx∈X |f̂ ′′(x)| ≤ c for some constant c.

Theorem 1.

λf̂ (x0) ≤ lim
n→∞

1

n

n∑
i=0

ln | f ′(xi) + 2
√
ε(1 + c) + 6rc |

for all x0 in X .

We provide the proof for the one-dimensional case. A
similar result is possible for higher dimensional cases (up

to a factor of (1 + r/ε)). The proof for higher dimensions is
longer and less intuitive to present here, it will be included
in a longer version of the paper.

Proof:
Let x1 be a data point in D. Since no point is X is farther

than r from the nearest point in D, let us choose some
point in X a distance ∆x from x1, and let x2 be its nearest
neighbor in D, with ∆x > r. Then ∆x − r ≤ d(x1, x2) ≤
∆x + r. From the mean value theorem (MVT), we can see
that for some x3 with x1 < x3 < x2, f̂ ′(x3) = f̂(x2)−f̂(x1)

x2−x1
.

Thus, f̂ ′(x3) ≤ f(x2)−f(x1)
x2−x1

+ 2ε
x2−x1

≤ f(x2)−f(x1)
x2−x1

+ 2ε
∆x−r .

Applying the MVT again to f , we find that for some x4 with
x1 < x4 < x2, we get f̂ ′(x3) ≤ f ′(x4) + 2ε

∆x−r . We know
that | x1−x3 |≤ ∆x+ r and | x1−x4 |≤ ∆x+ r. From the
constraint on f ′′, we can see that f̂ ′(x1) ≤ f̂ ′(x3) + (∆x+
r)c ≤ f ′(x4) + 2ε

∆x−r + (∆x+ r)c ≤ f ′(x1) + (∆x+ r)c+
2ε

∆x−r + (∆x+ r)c ≤ f ′(x1) + 2ε
∆x−r + 2(∆x+ r)c for any

x1 ∈ D. Similarly, going from any x ∈ X to the nearest data
point in x1 ∈ D, we get the bound f̂ ′(x) ≤ f̂ ′(x1) + rc ≤
f ′(x1)+ 2ε

∆x−r +(2∆x+3r)c ≤ f ′(x)+ 2ε
∆x−r +(2∆x+4r)c

Let us choose ∆x =
√
ε + r. Then for any x ∈

X , f̂ ′(x) ≤ f ′(x) + 2
√
ε + (2

√
ε + 6r)c. The Lya-

punov exponent of a function f is defined as λf (x0) =
limn→∞

1
n

∑n−1
i=0 ln |f ′(xi)|. Hence, the Lyapunov expo-

nent of f̂ has an upper bound given by λf̂ (x0) ≤
limn→∞

1
n

∑n
i=0 ln | f ′(xi) + 2

√
ε(1 + c) + 6rc | �.

Corollary 1.
λf̂ (x0) / λf + ln (1 + e−λf | 2

√
ε(1 + c) + 6rc |)

Proof: Since we know the limit behavior of f ′, we
approximate the bound from Theorem 1 as λf̂ (x0) /
limn→∞

1
n

∑n
i=0 ln (eλf + | 2

√
ε(1 + c) + 6rc |).

From this, a bound clearly follows λf̂ (x0) / λf +

limn→∞
1
n

∑n
i=0 ln (1 + e−λf | 2

√
ε(1 + c) + 6rc |).

Thus, λf̂ (x0) / λf + ln (1 + e−λf | 2
√
ε(1 + c) + 6rc |).

From this, we can derive the following bound: λf̂ (x0) /
λf + limn→∞

1
n

∑n
i=0 ln (1 + e−λf (2

√
ε(1 + c) + 6rc)) =

λf̂ (x0) / λf + ln (1 + e−λf (2
√
ε(1 + c) + 6rc)) �.

Corollary 2. limε,r→0 λf̂ (x0) = λf (x0) for all x0 ∈ X .
The N -dimension case is more complex, but we mention

an abridged version of the proof. First, we obtain a bound on
the Jacobians of f by using the Mean Value Theorem on each
output dimension. This comes out to Jf̂ (x)i ≤ Jf (x)i + b,
where b = (2

√
ε(1 + c) + 6rc)(1 + r

ε ). Assuming all the
Jacobians are invertible, we factor the product of the bounded
Jacobians as

∏n
i Ji(I+bMJ−1

i ), where M is a matrix s.t the
norm of each row is ≤ 1. Using the fact that the eigenvalues
of any matrix AB are equal to those of BA, rearrange the
terms and use the definition of a Lyapunov exponent to get
the bound λf̂ ≤ λf +limn→∞

1
n lnλmax(

∏n
i (I+bMJ−1

i )),
where λ denotes the eigenvalues of a matrix. Observe the
following:

1) λ(J−1) = λ(J)−1,
2) λ(I +A) = λ(A) + 1,
3) λmax(M) ≤ ‖M‖ for the induced norm,
4) and the induced norm of M is less than or equal to

N , because the norm of each row is no greater than 1.



Using these observations and approximating λ(J−1
i )) as

e−λfmin , we find that λf̂ / λf + ln(1 + bNe−λfmin ) �.
The bound on the gradient f̂ ′ tells us that the chaotic

behavior of our model is limited by both the distance between
data points in the training set and the error on the training
set. For transfer learning using small datasets in the target
domain, where the gaps between data points can be large
and small errors are likely to be accompanied by overfitting,
the upper bound on the gradient f̂ ′ can be large. The loose
bound on the gradient leads to a loose bound on its Lyapunov
exponent, which can lead to divergence. The key insight
here is that, to avoid divergence, the focus of the training
in small data sets should be on reducing the upper bound on
f̂ ′ and not only on reducing the empirical loss on the data.
Current transfer learning methods, such as fine-tuning of
neural networks, are designed according to the empirical risk
minimization (ERM) principle. They typically aggressively
reduce the empirical loss without considering the fact that
that would lead to higher derivatives of learned function
f̂ , which would lead to higher Lyapunov exponents and
divergent behaviors in open-loop control.

An important note here is the trade-off between chaotic
behavior and overfitting.

√
ε goes to zero slower than r,

and so dominates the bound when r is small. Although it is
possible to aggressively fit the model to reduce ε to close to
zero, this risks severe overfitting, which causes divergence
even with non-chaotic networks. Thus, we want a transfer
method that avoids chaotic behavior even when ε is fairly
large, to avoid this tradeoff as much as possible.

V. ALGORITHM

In target domain, the upper bound on the Lyapunov
exponent of a transferred model f̂T is likely to be loose,
due to large gaps between data points in DT and high
empirical errors. However, the original model f̂S from the
source domain is likely to have a tight upper bound on λf̂S
since it is trained with a dense data set DS . This leads us
to an interesting question: When transferring a model, is it
possible to keep the Lyapunov upper bound from the source
domain, while still adapting the model to the target domain?

We begin investigation of this question with a few observa-
tions. Firstly, we note that fine-tuning our transferred model
on the new data would do nothing to penalize the network
for high derivatives in the large spaces between data points.
This can mean that we lose the bound given by the source
dataset and instead get the much weaker bound from the
target dataset. Although it may be possible to construct a loss
function that directly penalizes the steep gradients that lead
to divergence, this would involve taking a second derivative
and calculating the Hessian, which is time-intensive. Instead,
we propose an efficient transfer method that is guaranteed to
preserve in the target dynamics the Lyapunov bound given
in the source domain. We present two algorithms for transfer
designed with this constraint in mind.

Firstly, we present trajectory fine-tuning (Algorithm 1).
Instead of fine-tuning to predict the next state in the sequence
at each step, we apply the loss over an entire sequence.

This penalizes models that would have a high step-wise
accuracy, but also high Lyapunov exponents that lead to large
errors when used to predict a trajectory. Since the network
predicts the change in the state rather than the state itself,
each prediction is of the form xi+1 = f̂(xi) = xi + h(xi)
where h is a neural network. This gives the network a
ResNet structure that allows us to train over full trajectories
while avoiding the issue of vanishing gradients, even though
the network has no explicit memory. Since dropout causes
some variation in the output space, this method of trajectory
training also has the effect of exploring a broader input space
than would be given by the data alone.

This method is not novel for systems with memory, it has
been used previously for partially observable environments
for example. The interesting result here is that even for
Markovian systems, it performs better than step-wise fine-
tuning methods.

Function Trajectory Prediction(f ,x0):
f : transition model
x0: start state
for i in range(n) do

xi+1 = f(xi)
return [x0, x1, . . . , xn]

Algorithm 1: Trajectory Fine-tuning

1 f̂S : transition model trained in the source domain;
2 x0: start state;
3 x∗ = [x0, x

∗
1, . . . , x

∗
n]: ground-truth trajectory from

the target domain;
4 f̂T ← f̂S ;
5 while Training do
6 [x0, x1, . . . , xn] = Trajectory Prediction

(f̂T , x0);
7 loss =

∑n
i=0

1
iMSE(xi, x

∗
i );

8 update weights(f̂T , loss);
9 Return f̂T : transition model for the target domain;

Since our model predicts changes in state space, the final
state is of the form xn = x0 +

∑n
i=0 h(xi). This means that

the gradient backpropagated from a given xi to h scales with
the length of the trajectory, leading to a stronger gradient
signal from the later states. To account for this assymmetry,
we weight the loss from each state with a factor of 1

i .
The second approach, explained in Algorithm 2, instead

avoids the divergence problem entirely by preventing the new
network f̂T from having any feedback to itself. Instead, the
transferred model f̂S predicts the entire trajectory, and the
new network predicts the residual at each step. The final
trajectory is given by the predicted states plus a cumulative
sum of the predicted residuals, weighted by a discount factor.
By explicitly controlling the dependence on previous states
with the discount factor, we are able to manually set the
Lyapunov exponent of the new network f̂T . Unlike trajectory
training, the residual network g is trained using point-wise
predictions in a standard supervised fashion.



Algorithm 2: Cumulative Residual Trajectory Pre-
diction

1 f̂S : transition model trained in the source domain;
2 g: residual model;
3 α: weighting factor on [0, 1];
4 γ: discount factor;
5 x0: start state;
6 y0 = 0;
7 for i in range(n) do
8 xi+1 = f̂S(xi);
9 yi+1 = g(xi) + γyi;

10 return [x0 + y0, x1 + y1, . . . , xn + yn];

Next, we show that the model f̂T obtained from the
cumulative residual method has a Lyapunov exponent no
greater than that of the source model f̂S .

Theorem 2. Let λf̂S be the maximal Lyapunov exponent of
f̂S . Then the maximal Lyapunov exponent of f̂T returned by
Algorithm 2 is equal to max(λf̂S , γ).

Proof: We treat xi and yi in Algorithm 2 as sepa-
rate variables in the dynamical system. Let (xi+1, yi+1) =
f̂T (xi, yi), where f̂T (xi, yi) = (f̂S(xi), g(xi) + γyi),
f̂S(x), g(x), and γ are defined as before. Since this is a
multi-dimensional system, we first find the characteristic
Lyapunov exponents using the following limit:

lim
n→∞

1

n
lnλ([J(xn, yn)J(xn−1yn−1)...J(x1, y1)]) (1)

where J(x, y) is the Jacobian of f̂T (x, y), and λ denotes the
eigenvalues of a matrix. The Jacobian is thus given by ∂f̂S(x)

∂x
∂f̂S(x)
∂y

∂g(x)+γy
∂x

∂g(x)+γy
∂y

 =

[
f̂ ′S(x) 0

g′(x) γ

]
. (2)

Taking the limit and using the definition, we see that the
Lyapunov exponents are λf̂S and ln γ. If we set γ to be less
than or equal to eλf̂S , then we are guaranteed that our system
will not be chaotic unless the source model itself is chaotic.

For the higher dimensional case, we instead set γ as e
raised to the minimum Lyapunov exponent of f̂S , or 1,
whichever is smaller.

The cumulative residual method performs well when the
Lyapunov exponent is less than or equal to 0, but cannot
accurately model chaotic systems. Trajectory optimization is
more general, but makes credit assignment harder, leading
to higher noise and variance.

VI. EVALUATION

We tested the ability of various transfer methods to predict
open-loop trajectories of the Model-T42 adaptive hand [42].
We built two 3D-printed versions of the hand [42], illustrated
in Figure 1. As discussed in [14], a sufficient representation
of the state of an underactuated hand is an observable 4-
dimensional state composed of the object’s position and the

actuator loads. The hand is controlled through the change of
actuator angles, where an atomic action is, in practice, unit
changes to the angles of the actuators at each time-step. That
is, an action moves actuator i with an angle of λγi, where
λ is a predefined unit angle and γi is in the range [-1, 1]. In
the below experiments, the hand models were trained while
manipulating a cylinder with 35 mm diameter. The cylinder
is placed in the center and grasped by the two fingers. A long
sequence of random actions is then applied on the actuators.
We collected from both hands two large data sets of 300
trajectories of 103 time-steps each. While the entire data set
of the source hand was used to train a transition model,
only small percentages of the target’s dataset were used for
transferring the transition model, as shown in Figure 3.

We used a simple feedforward network for our model,
with two hidden layers of 128 neurons each. We used a
SELU activation for the first layer and a tanh activation for
the second. We found it was important to use an activation
function that saturates on the last layer, to prevent the
network from predicting arbitrary large movements. The
SELU layer was followed by a 10% AlphaDropout rate, and
the tanh layer was followed by a 10% dropout.

We compare the following methods: New Model – A
new model trained from scratch, using only the data from
the target hand. Direct – The model of the source hand
applied directly to the target, without modification. Naive
Fine-tuning – The source model, fine-tuned only on single-
step predictions on the target hand. This is the standard
practice and a popular way of transferring a neural network
to a new domain. Trajectory Fine-tuning (Algorithm 1) –
The source model, fine-tuned by optimizing over trajectories
to minimize deviation from the true trajectory on the target
hand. Unlike naive fine-tuning, this method penalizes error
from feedback loops. Cumulative Residual (Algorithm 2) –
The cumulative structure prevents feedback from dominating
the loss. We used α = 0.3 and γ = 0.9997. Recurrent
Residual – Identical to cumulative residual, except it uses the
adjusted state (xi +αyi) as an additional input to the model
to predict the next step. We introduce this model in order
to demonstrate the importance of feedback on the model’s
performance. We used α = 0.3.

We report in Figure 3 how long predicted trajectories of
the grasped object’s positions were able to stay within a given
radius of the true observed positions, using a separate test
data set taken from the target hand. Duration here refers
to the number of time-steps in the future before the model’s
predicted position differs from the true measured position by
more than a given threshold. We can notice that the predic-
tions of Algorithm 2 (cumulative residual) remain accurate
for the longest time, compared to other methods, even when
less than 2% of the target hand’s data is used. Figure 4 shows
the mean square error in the predicted positions of the object.
The results confirm again our theoretical analysis.

The second set of experiments corresponds to the peg-
in-the-hole task illustrated in Figure 1 (a) and the attached
video. A hole is placed in the work-space of the target
hand, and the cylinder is placed at the center. The learned



Fig. 3. Average number of time-steps in the future before the predicted
path of the object deviates from the true observed path by more than 4mm,
as a function of the data used from the target hand.

Fig. 4. Average mean square error (MSE) of the predicted position of the
manipulated object, in mm, as a function of the percentage of data from the
target hand used to transfer the transition model from the source hand. We
report here the results of only the three most accurate methods, as the MSE
of all the other methods was above 15 mm.

transition model is requested with predicting a sequence of
actions that would displace the object into above the hole
and drop it there without any intermediate feedback during
the execution, that is in an open-loop control. The sequences
of actions are generated with Monte Carlo sampling during
planning. The sequence that is predicted to drop the object
closer to the goal at the terminal state is selected for
execution. In Figure 5, we compare the models’ accuracy
at predicting the final position of the manipulated object’s
center to within a tolerance of 1 cm, which is the radius
of the hole minus that of the object. The distance from the
start state to the final state is given in terms of steps, each
lasting one tenth of a second. The results confirm that the
cumulative residuals algorithm is accurate at predicting the
final state of a trajectory. Naturally, the prediction degrades
as the goal is moved further away from the start state.

Some of the results of these experiments are surprising.
For example, the popular naive retraining approach performs
much worse than we might normally expect. The key obser-

Fig. 5. Peg-in-the-hole experiment: Average success rate in predicting a
sequence of actions that moves the object from the center to the hole, as a
function of the distance from the initial position to the hole’s position.

Fig. 6. Examples of predicted trajectories of an object manipulated by the
hand in Figure 1 (b) in the x-y plane. The trajectories are predicted with
different transfer methods.

vations here are that methods that train single-step prediction
directly (naive retrain and recurrent trajectory transfer) suffer
from Lyapunov-caused divergence, performing much worse
than the source model without any transfer training. Models
that leverage their variation to explore more of the input
space (retrain), or keep the source’s Lyapunov exponent
intact, (trajectory transfer) perform much better.

VII. CONCLUSION

Open-loop control of under-actuated robotic hands is a
challenging problem due to the difficulty of learning long-
horizon predictive models. Transfer learning offers a promis-
ing direction to obtain accurate models without intensive
data collection. In this work, we analyzed the Lyapunov
exponents of predictive transition models, and provided a
simple and efficient algorithm for transferring such models
across robotic hands. Transfer learning with the proposed
algorithm was successfully demonstrated on real robotic
hands. Future research directions include integrating the
transferred models with more efficient motion planners for
in-hand manipulation, and extending the proposed algorithm
to transferring policies in addition to transition models.
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