
Near-Optimal Latency Versus Cost Tradeoffs in Geo-Distributed Storage

Muhammed Uluyol, Anthony Huang, Ayush Goel, Mosharaf Chowdhury, and Harsha V. Madhyastha

University of Michigan

Abstract— By replicating data across sites in multiple geo-
graphic regions, web services can maximize availability and
minimize latency for their users. However, when sacrificing
data consistency is not an option, we show that service providers
have to today incur significantly higher cost to meet desired la-
tency goals than the lowest cost theoretically feasible. We show
that the key to addressing this sub-optimality is to 1) allow for
erasure coding, not just replication, of data across data cen-
ters, and 2) mitigate the resultant increase in read and write la-
tencies by rethinking how to enable consensus across the wide-
area network. Our extensive evaluation mimicking web service
deployments on the Azure cloud service shows that we enable
near-optimal latency versus cost tradeoffs.

1 Introduction
Replicating data across data centers is important for a web
service to tolerate the unavailability of some data centers [1]
and to serve users with low latency [5]. A front-end web
server close to a user can serve the user’s requests by ac-
cessing nearby copies of relevant data (see Figure 1). Even
in collaborative services such as Google Docs and ShareLa-
TeX, accessing a majority of replicas suffices for a front-end
to read or update shared data while preserving consistency.

However, it is challenging to keep data spread across the
globe strongly consistent as no single design can simultane-
ously minimize read latency, write latency, and cost.
• To preserve consistency, any subset of sites which are ac-

cessed to serve a read must overlap with all subsets used
for writes. Therefore, allowing a front-end to read from
nearby data sites forces other front-ends to write to distant
data sites, thus increasing write latency.

• Similarly, providing low read latency requires having at
least one data site near each front-end, thereby increas-
ing the total number of data sites. This inflates expenses
incurred both for storage and for data transfers to synchro-
nize data sites.
Given these tradeoffs, service providers must determine

how to meet their desired latency goals at minimum cost. Or,
correspondingly, how to minimize read and write latencies
given a cost budget? In this paper, we make the following
contributions towards addressing these questions.
1. We show that existing solutions for enabling strongly
consistent distributed storage are far from optimal in
trading off latency versus cost. The cost necessary to sat-
isfy bounds on read and write latencies is often significantly
higher than the lowest cost theoretically feasible. For exam-
ple, across a range of access patterns and latency bounds,
the state-of-the-art geo-replication protocol EPaxos [51] im-

UserData SiteFront-end Other Data Center

Figure 1: Users issue requests to their nearest front-end servers
which in turn access geo-distributed storage.
poses on average 30% higher storage cost than is optimal
(§5.1.2). This sub-optimality also inflates the minimum la-
tency bounds satisfiable within a cost budget.
2. We demonstrate the feasibility of achieving near-
optimal latency versus cost tradeoffs in strongly consis-
tent geo-distributed storage. In other words, we do not
merely improve upon the status quo, but show that there re-
mains little room for improvement over the tradeoffs enabled
by PANDO, our new approach for consensus across the wide-
area network. PANDO exploits the property that, from any
data center’s perspective, some data centers are more prox-
imate than others in a geo-distributed deployment. There-
fore, beyond reducing the number of round-trips of wide-
area communication when executing reads and writes (as
has typically been the goal in prior work [49, 42, 51]), it is
equally important to reduce the magnitude of delay incurred
on every round-trip. We apply this principle in two ways.
2a. We show how to erasure-code objects across data sites
without reads incurring higher wide-area latencies com-
pared to replicated data. By splitting each object’s data
and storing one split (instead of one replica) per data site, a
service can use its cost budget to spread each object’s data
across more data centers than is feasible with replication. To
leverage this increased geographic spread for minimizing la-
tencies, PANDO separates out two typically intertwined as-
pects of consensus: discovering whether the last write com-
pleted, and determining how to resolve any associated un-
certainty. Since writes seldom fail in typical web service de-
ployments, we enable a client to read an object by first com-
municating with a small subset of nearby data sites; only in
the rare case when it is uncertain whether the last write com-
pleted does the client incur a latency penalty to discover how
to resolve the uncertainty.
2b. In the wide-area setting, we show how to reach con-
sensus in two rounds, yet approximate a one-round pro-
tocol’s latency. Executing writes in two rounds simplifies
compatibility with erasure-coded data, and we ensure that

this approach has little impact on latency. First, PANDO re-
quires clients to contact a smaller, more proximate subset of
data sites in the first round than in the second round. Second,
after a client initiates the first round, it delegates initiation
of the second round to a more central data center, which re-
ceives all responses from the first round. By combining these
two measures, messaging delays incurred in the first phase of
a write help reduce the latency incurred in the second phase,
instead of adding to it.
3. We compare PANDO to state-of-the-art consensus pro-
tocols via extensive measurement-driven analyses and in
deployments on Azure. In the latency–cost tradeoff space,
we find that PANDO reduces by 88% the median gap between
achievable tradeoffs and the best theoretically feasible trade-
offs. Moreover, PANDO can cut dollar costs to meet the same
latency goals by 46% and lower 95th percentile read latency
by up to 62% at the same storage overhead.

2 Setting and Motivation
We begin by describing our target setting, the approach we
use for enabling globally consistent reads and writes, and the
shortcomings of existing solutions that use this approach.

2.1 System model, goals, and assumptions

We seek to meet the storage needs of globally deployed ap-
plications, such as Google Docs [4] and ShareLaTeX [8], in
which low latency and high availability are critical, yet weak
data consistency (such as eventual or causal) is not an op-
tion. In particular, we focus on enabling a geo-distributed
object/key-value store which a service’s front-end servers
read from and write to when serving requests from users.
We aim to support GETs and conditional-PUTs on any in-
dividual key; we defer support for multi-key transactions to
future work. In contrast to PUTs (which blindly overwrite
the value for a key), conditional-PUTs attempt to write to a
specific version of a key and can succeed only if that version
does not already have a committed value. This is essential
in services such as Google Docs and ShareLaTeX to ensure
that a client cannot overwrite an update that it has not seen.

In enabling such a geo-distributed key-value store, we are
guided by the following objectives:
• Strong consistency: Ensure all reads and writes on any

key are linearizable; i.e., all writes are totally ordered and
every read returns the last successful write.

• Low latency: Satisfy service provider’s SLOs1 (service-
level objectives) for bounds on read and write latencies,
so as to ensure a minimum quality-of-service for all users.
We focus on the wide-area latency incurred when serving
reads or writes, assuming appropriate capacity planning
and load balancing to bound queuing delays.

• Low cost: Minimize cost (sum of dollar costs for stor-
age, data transfers, storage operations, and compute) nec-

1Unlike SLAs, violations of SLOs are acceptable, but need to be minimized.

essary to satisfy latency goals. Since cost for storage op-
erations and data transfers grows with more copies stored,
in parts of the paper, we use storage overhead (i.e., num-
ber of copies stored of every data item) as a proxy for cost.
This frees us from making any assumptions about pricing
policy or the workload (e.g., read-to-write ratio).

• Fault-tolerance: Serve requests on any key as long as
fewer than f data centers are unavailable.
We focus on satisfying input latency bounds in the ab-

sence of conflicts and failures—both of which occur rarely in
practice [11, 2, 48, 29]—but seek to minimize performance
degradation when they do occur (§3.5 and §5.1.2). In addi-
tion, we build upon state-of-the-art cloud services which of-
fer low latency variance between their data centers [34] and
within their intra-data center storage services (e.g., Azure’s
CosmosDB provides a 10 ms tail read latency SLA [12]).

Note that, in order to satisfy desired latency SLOs at min-
imum cost (or to minimize latencies given a cost budget), a
service cannot select the data sites for an object at random.
Instead, as we describe later in Section 4, any service must
utilize its knowledge of an object’s workload (e.g., locations
of the users among whom the object is shared) in doing so.

2.2 Approach

One can ensure linearizability in distributed storage by se-
rializing all writes through a leader and rely on it for
reads, e.g., primary-backup [18], chain replication [68], and
Raft [57]. A single leader, however, cannot be close to all
front-ends across the globe. Front-ends which are distant
from the leader will have to suffer high latencies.

To reduce the need to contact a distant leader, one could
use read leases [21, 52] and migrate the leader based on the
current workload, e.g., choose as the leader the replica clos-
est to the front-end currently issuing reads and writes. How-
ever, unless the workload exhibits very high locality, tail la-
tency will be dominated by the latency overheads incurred
during leader migration and lease acquisition.

To keep read and write latencies within specified bounds
irrespective of the level of locality, we pursue a leaderless
approach. Among the leaderless protocols which allow every
front-end to read and write data from a subset of nearby data
sites (a read or write quorum), we consider those based on
Paxos because it enables consensus. Other quorum-based
approaches [20] which only enable atomic register semantics
(i.e., PUT and GET) are incapable of supporting conditional
updates [35]. While there exist many variants of Paxos, in
all cases, we can optimize latencies in two ways.

First, instead of executing Paxos, a front-end can read
an object by simply fetching the object’s data from a read
quorum. To enable this, a successful writer asynchronously
marks the version it wrote as committed at all data sites. In
the common case, when there are no failures or conflicts, a
read is complete in one round trip if the highest version seen
across a read quorum is marked as committed [44].

0

50

100

150

200

0 1 2 3 4 5 6 7 8 9

Storage Overhead

R
e

a
d

 L
a

te
n

c
y
 (

m
s
)

Lower Bound
Pando
EPaxos
RS−Paxos

0

50

100

150

200

0 100 200 300 400

Write Latency (ms)

R
e

a
d

 L
a

te
n

c
y
 (

m
s
)

Lower Bound
Pando
EPaxos
RS−Paxos

(a) Write latency ≤ 300 ms (b) Storage overhead ≤ 6×
Figure 2: Slices of the three-dimensional tradeoff space where we compare latency estimates for replication-based EPaxos [51],
erasure coding-based RS-Paxos [53], and our solution PANDO against a lower bound. Front-ends are in Azure’s Australia East,
Central India, East Asia, East US, and Korea South data centers, whereas data sites are chosen from all Azure data centers.

Second, instead of every front-end itself executing reads
and writes, we allow for it to relay its operations through a
delegate in another data center. The flexibility of utilizing a
delegate can be leveraged to reduce latency when, compared
to the front-end, that delegate is more centrally placed rela-
tive to the data sites of the object being accessed.

2.3 Sub-optimality of existing solutions

The state-of-the-art Paxos variant for geo-replicated data is
EPaxos [51], as we show in Section 5. For typical replica-
tion factors (i.e., 3 or 5), EPaxos enables any front-end to
read/write with one round of wide-area communication with
the nearest majority of replicas. If lower read latencies than
feasible with 2f + 1 replicas are desired, then one can use a
higher replication factor N , set the size R of read quorums
to be ≥ f + 1 (to ensure overlap with write quorums even in
the face of f failures) and set the size W of write quorums
to N − R + 1 (to preserve consistency).

Figure 2 shows the tradeoffs enabled by EPaxos for an ex-
ample access pattern. For each read latency bound, these
graphs respectively plot the minimum storage overhead and
write latency bounds that are satisfiable. As we discuss later
in the paper, we compute these bounds by solving protocol-
specific mixed integer programs (§4) which take as input
the expected access pattern and latency measurements be-
tween all pairs of data centers (§5.1). We show two two-
dimensional slices of the three-dimensional read latency–
write latency–storage overhead tradeoff space.

To gauge the optimality of the tradeoffs achievable with
EPaxos, we compare it against a lower bound. Given a bound
on read latency, the minimum storage overhead necessary
and the minimum write latency bound that can be satisfied
cannot be lower than those determined by our lower bound.
Though the lower bound may be unachievable by any exist-
ing consensus protocol, we compute it by solving a mixed
integer program which assumes that reads and writes can be
executed in a single round and enforces the following prop-
erties that any quorum-based approach must respect:
• Tolerate unavailability of ≤ f data centers: All data sites

in at least one read and one write quorum must be available
in the event that ≤ f data centers fail.

• Prevent data loss: At least one copy of data must remain
in any write quorum when any f data sites are unavailable.
• Serve reads: The data sites in any read quorum must col-

lectively contain at least one copy of the object.
• Preserve strong consistency: All read–write and write–

write quorum pairs must have a non-empty intersection.

Equally important are constraints that we do not impose: all
read quorums (same for write quorums) need not be of the
same size, and an arbitrary fraction of an object’s data can
be stored at any data site.

Figure 2 shows that EPaxos is sub-optimal in two ways.
First, to meet any particular bound on read latency, EPaxos
imposes a significant cost overhead; in Figure 2(a), EPaxos
requires at least 9 replicas to satisfy the lowest feasible read
latency bound (40 ms), whereas the lower bound storage
overhead is 4x. Recall that, greater the number of copies
of data stored, higher the data transfer costs when reading
and writing. Second, given a cost budget, the read laten-
cies achievable with EPaxos are significantly higher than
the lower bound; in Figure 2(b), where storage overhead is
capped at 6x, we see that the minimum read latency achiev-
able with EPaxos (80 ms) is twice the lower bound (40 ms).

Of course, a lower bound is just that; some of the tradeoffs
that it deems feasible may potentially be unachievable. How-
ever, for the example in Figure 2 and across a wide range
of configurations in Section 5, we show that PANDO comes
close to matching the lower bound. We describe how next.

3 Design
The fundamental source of EPaxos’s sub-optimality in trad-
ing off cost and latency is its reliance on replication.
Replication-based approaches inflate the cost necessary to
meet read latency goals because spreading an object’s data
across more sites entails storing an additional full copy at
each of these sites. To enable latency versus cost tradeoffs
that are closer to optimal, the key is to store a portion of an
object’s data at each data site, like in the lower bound.

Therefore, we leverage erasure coding, a data-agnostic
approach which enables such flexible data placement while
matching replication’s fault-tolerance at lower cost [69]. For

example, to tolerate f = 1 failures, instead of requiring at
least 2f +1 = 3 replicas, one could use Reed-Solomon cod-
ing [60] to partition an object into k = 2 splits, generate
r = 2 parity splits, and store one split each at k + r = 4
sites; any k splits suffice to reconstruct the object’s data.
Compared to replication, this reduces storage overhead to
2×, thus also reducing the number of copies of data trans-
ferred over the wide-area when reading or writing.

State-of-the-art implementations of erasure coding [9] re-
quire only hundreds of nanoseconds to encode or decode
kilobyte-sized objects. This latency is negligible compared
to wide-area latencies, which range from tens to hundreds
of milliseconds. Moreover, the computational costs for en-
coding and decoding pale in comparison to costs for data
transfers and storage operations (§ 5.1.3).

3.1 Impact of erasure coding on wide-area latency

While there exist a number of protocols which preserve lin-
earizability on erasure-coded data [15, 24], they largely fo-
cus on supporting PUT/GET semantics. To support con-
ditional updates, we consider how to enable consensus on
erasure-coded data with a leaderless approach such as Paxos.
We have one of two options.

One approach would be to extend one of several one-round
variants of Paxos to work on erasure-coded data. However,
most of these protocols require large quorums (e.g., a write
would have to be applied to a super-majority [42] or even
all [49] data sites), rendering them significantly worse than
the lower bound. Whereas, extending EPaxos [51], which
requires small quorums despite needing a single round, to be
compatible with erasure-coded data is far from trivial given
the complex mechanisms that it employs for failure recovery.

Therefore, we build upon the classic two-phase version
of Paxos [40] and address associated latency overheads. In
either phase, a writer (a front-end or its delegate) commu-
nicates with all the data sites of an object and waits for re-
sponses from a write quorum. In Phase 1, the writer dis-
covers whether there already is a value for the version it is
attempting to write and attempts to elect itself leader for this
version. In Phase 2, it sends its write to all data sites. A write
to a version succeeds only if, prior to its completion of both
phases, no other writer has been elected the leader. If the
leader fails during Phase 2 but the write succeeds at a quo-
rum of data sites, subsequent leaders will adopt the existing
value and use it as part of their Phase 2, ensuring that the
value for any specific version never changes once chosen.

This natural application of Paxos on erasure-coded data,
called RS-Paxos [53], is inefficient in three ways.
• Two rounds of wide-area communication. Any reduc-

tion in read latency achieved by enabling every front-end
to read from a more proximate read quorum has twice
the adverse effect on write latency. In Figure 2(b), we
see that when the read latency bound is stringent (e.g., ≤
100 ms), the minimum write latency bound satisfiable with

C

D

E

Data Site

Front-end

Write Quorum

Read Quorum

k = 2
A

B

1: 2:

Figure 3: Example execution of RS-Paxos on an erasure-coded
object, whose data is partitioned into k = 2 splits. For all
readers and writers to be able to reconstruct the last success-
ful write, any write quorum must have an overlap of k or more
data sites with every read and every write quorum.

RS-Paxos is twice that achievable with EPaxos. When the
read latency bound is loose (e.g.,≥ 150 ms), write latency
inflation with RS-Paxos is lower because the data sites are
close to each other and front-ends benefit from delegation.

• Increased impact of conflicts. Executing writes in two
rounds makes them more prone to performance degrada-
tion when conflicts arise. When multiple writes to the
same key execute concurrently, none of the writes may
succeed within two rounds. Either round of each write
may fail at more than a quorum of data sites if other writes
complete one of their rounds at those sites.

• Larger intersections between quorums. As we see in
Figure 2(a), at storage overheads of 4x or more, the mini-
mum read latency bound satisfiable with RS-Paxos is sig-
nificantly higher than that achievable with EPaxos. This
arises because, when an object’s data is partitioned into
k splits, every read quorum must have an overlap of at
least k sites with every write quorum (see Figure 3). Thus,
erasure coding’s utility in helping spread an object’s data
across more sites (than feasible with replication for the
same storage overhead) is nullified.

3.2 Overview of PANDO

What if these inefficiencies did not exist when executing
Paxos on erasure-coded data? To identify the latency ver-
sus cost tradeoffs that would be achievable in this case, we
consider a hypothetical ideal execution of Paxos on erasure-
coded data: one which requires a single round of commu-
nication and can make do with an overlap of only one site
between read–write and write–write quorum pairs. For the
example used in Figure 2, this hypothetical ideal (not shown
in the figure) comes close to matching the lower bound.

Encouraged by this promising result, we design PANDO to
approximate this ideal execution of Paxos on erasure-coded
data. First, we describe how to execute Paxos in two rounds
on geo-distributed data, yet come close to matching the mes-
saging delays incurred with one-round protocols. Second,
leveraging the rarity of conflicts and failures in typical web
service workloads, we describe how to make do with a sin-
gle data site overlap between quorums in the common case.
Finally, we discuss how to minimize performance degrada-
tion when conflicts do arise. In our description, we assume
an object’s data is partitioned into k splits.

Request ResponseData SiteFront-end Delegate Data Site

15 ms

10 ms

10 ms
10 ms

30 ms
GET PUT

Read
P1

Baseline

P2

P1
P2

Read Quorum for P1
GET PUT

10 ms

10 ms

15 ms
30 ms

-δ

+δ

Read
-δ

-δ
+δ

+δ

(a) Small Phase 1 Quorums (b) Inter-DC Latencies (c) Phase 1 by Front-end (d) Phase 2 by Delegate

Figure 4: (a) Reusing read quorums in Phase 1 of writes enables reduction in read latency without impacting (Phase 1 + Phase 2)
latency for writes. (b) Example deployment with one-way delays between relevant pairs of data centers shown. Phase 1 quorum size
is 2 and Phase 2 quorum size is 3. If same (Phase 2) quorum were used in both phases of a write, like in RS-Paxos, write latency
would be 120 ms. (c) and (d) By directing Phase 1 responses to a delegate and having it initiate Phase 2, PANDO reduces write latency
to 65 ms (20 ms in Phase 1 + 45 ms in Phase 2), close to the 60 ms latency feasible with one-round writes.

3.3 Mitigating write latency

We reduce the latency overhead of executing Paxos in two
rounds by revisiting the idea of delegation (§ 2.2): a front-
end sends its write request to a stateless delegate, which ex-
ecutes Paxos and returns the response. When data sites are
spread out (to enable low read latencies), two round-trips to
a write quorum incurs comparable delay from the front-end
versus from the delegate. The round-trip from the front-end
to the delegate proves to be an overhead.

To mitigate this overhead, what if 1) transmission of the
message from the front-end to the delegate overlaps with
Phase 1 of Paxos, and 2) transmission of the response back
overlaps with Phase 2? The latency for a front-end to exe-
cute the two-phase version of Paxos would then be roughly
equivalent to one round-trip between the front-end and the
delegate, thus matching the latency feasible with a one-round
protocol. We show how to make this feasible in two steps.

3.3.1 Shrinking Phase 1 quorums

First, we revisit the property of classic Paxos that a writer
needs responses from the same number of data sites in both
phases of Paxos: the size of a write quorum. To ensure that
a writer discovers any previously committed value, Paxos
only requires that any Phase 1 quorum intersect with every
Phase 2 quorum; Phase 1 quorums need not overlap [37]. In
PANDO, we take advantage of this freedom to use a smaller
quorum in the first phase of Paxos than in the second phase.

We observe that the intersection requirements imposed on
Phase 1 and Phase 2 quorums are precisely the properties
required of read and write quorums: any read quorum must
intersect with every write quorum, whereas no overlap be-
tween read quorums is required. Therefore, when executing
Phase 1 of Paxos to write to an object, it suffices to get re-
sponses from a read quorum, thus allowing improvements in
read latency to also benefit leader election. A writer (a front-

end or its delegate) needs responses from a write quorum
only when executing Phase 2.

Figure 4(a) illustrates the corresponding improvements in
write latency. When a quorum of the same size is used in
both phases of a write, a reduction of δ in the read latency
bound results in a 2δ increase in the minimum satisfiable
write latency bound (because of the need for read and write
quorums to overlap). In contrast, our reuse of read quorums
in the Phase 1 of writes ensures that spreading out data sites
to enable lower read latencies has (roughly speaking) no im-
pact on write latency; when read quorums are shrunk to re-
duce the read latency bound by δ, the increase of δ in Phase
2 latency (to preserve overlap between quorums) is offset by
the decrease of δ in Phase 1 latency.

3.3.2 Partially delegating write logic

While our reuse of read quorums in Phase 1 of a write helps
reduce write latency, Phase 2 latency remains comparable
to a one-round write protocol. Therefore, the total write
latency remains significantly higher than that feasible with
one-round protocols.

PANDO addresses this problem via partial use of delega-
tion. Rather than having a front-end executing a write either
do all the work of executing Paxos itself or offload all of this
work to a delegate, we offload some of it to a delegate.

Figures 4(c–d) show how this works in PANDO. A front-
end initiates Phase 1 of Paxos by sending requests to data
sites of the object it is writing to, asking them to send their re-
sponses to a chosen delegate. In parallel, the front-end sends
the value it wants to write directly to the delegate. Once
the delegate receives enough responses (i.e., the size of a
read quorum), it will either inform the front-end that Phase 1
failed (the rare case) or initiate Phase 2 (the common case),
sending the value to be written to all data sites for the object.
Those data sites in turn send their responses directly back
to the front-end, which considers the write complete once it
receives responses from a write quorum.

Note that partial delegation preserves Paxos’s fault tol-
erance guarantees. To see why, consider the case where a
end-user’s client sends the same request to two front-ends—
perhaps due to suspecting that the first front-end has failed—
and both front-ends execute the request. Paxos guarantees
that at most one of these writes will succeed. Similarly, with
partial delegation, in the rare case when the front-end sus-
pects that the delegate is unavailable, it can simply re-execute
both phases on its own. Paxos will resolve any conflicts and
at most one of the two writes (one executed via the delegate
and the other executed by the front-end) will succeed.

Thanks to the heterogeneity of latencies across different
pairs of data centers, the use of small Phase 1 quorums com-
bined with the delegation of Phase 2 eliminates most of the
latency overhead of two-phase writes. In Figure 4(b-d), the
two techniques reduce write latency down from 120 ms with
classic Paxos to 65 ms with PANDO, only 5 ms higher than
what can be achieved with a one-round protocol. The re-
maining overhead results from the fact that there still has to
be some point of convergence between the two phases.

3.4 Enabling smaller quorums

The techniques we have described thus far lower the mini-
mum write latency SLO that is satisfiable given an SLO for
read latency. However, as we have seen in Figure 2(a), era-
sure coding inflates the minimum read latency SLO achiev-
able given a cost budget (e.g., a bound on storage overhead).
As discussed earlier in Section 3.1, this is due to the need for
larger intersections between quorums when data is erasure-
coded, as compared to when replicated.

Recall that the need for an intersection of k data sites be-
tween any pair of read and write quorums exists so that any
read on an object will be able to reconstruct the last value
written; at least k splits written during the last successful
write will be part of any read quorum. Thus, linearizability
is preserved even in the worst case when a write completes
at the minimum number of data sites necessary to be suc-
cessful: a write quorum. However, since concurrent writes
are uncommon [48, 29] and data sites are rarely unavailable
in typical cloud deployments [11, 2], most writes will be ap-
plied to all data sites. Therefore, in the common case, all
data sites in any read quorum will reflect the latest write.

In PANDO, we leverage this distinction between the com-
mon case and the worst case to optimize read latency (and
equivalently any write’s Phase 1 latency, given that PANDO
uses the same quorum size in both cases) as follows.
Read from smaller quorum in the common case. After
issuing read requests to all data sites, a reader initially waits
for responses from a subset which is 1) at least of size k and
2) has an intersection of at least one site with every write
quorum; we refer to this as a Phase 1a quorum. In the com-
mon case, all k splits have the same version and at least one
of them is marked committed; the read is complete in this
case. An overlap of only one site with every write quorum

k = 2
A

B

C

D

1: 2:
Phase 1b Quorum

Data Site

Front-end

Write Quorum

Phase 1a Quorum

Figure 5: For an object partitioned into k = 2 splits, PANDO

requires an overlap of only one site between any Phase 1a and
Phase 2 quorum. Responses from the larger Phase 1b quorum
are needed only in the case of failure or conflict.

suffices for the reader to discover the latest version of the
object; at least one of the splits received so far by the reader
will be one written by the last successful write to this object.
Read from larger quorum if failure or conflict. At this
juncture, if the last successful write has not yet been applied
to all data sites, the reader may only know the latest version
of the object but not the value of that version. To reconstruct
that value, the reader must wait for responses from more data
sites until the subset it has heard from has an overlap of k
sites or more with every write quorum; this is a Phase 1b
quorum. As a result, a reader must incur the latency penalty
of waiting for responses from farther data sites only if the last
successful write was executed when either some data sites
were unavailable or a conflicting write was in progress.

In the example in Figure 5, Front-end 1 can complete read-
ing based on responses from sites A and B in the common
case since two splits suffice to reconstruct the object. If the
last write was from Front-end 2 and this write completed
only at a subset of sites, there are two cases to consider:
• If Front-end 2’s write has been applied to a write quorum

(say A, C , and D), then the response from site A will help
Front-end 1 discover the existence of this write. Front-end
1 needs an additional response from C in this case to be
able to reconstruct the value written by Front-end 2.

• If Front-end 2’s write has been applied to less than a write
quorum (say, A and D), then Front-end 1 may be unable
to find k splits for this version even from a Phase 1b quo-
rum (A, B , and C). In this case, that value could not have
been committed to any Phase 2 quorum. Therefore, the
reader falls back to the previous version. PANDO garbage
collects the value for a version only once a value has been
committed for the next version (§4). The overhead of stor-
ing multiple versions of a key will be short-lived in our
target setting where failures and write conflicts are rare.
Phase 1a and 1b quorums can also be used as described

above during the first round of a write. The only difference
in the case of writes is that responses from data sites can be
potentially directed to a delegate at a different data center
than the one which initiates Phase 1.

To preserve correctness of both reads and writes, the min-
imum size of Phase 1a quorums must be max(k , f + 1), and
Phase 1b and Phase 2 quorums must contain at least f + k
data sites. These quorum sizes are inter-dependent because

any Phase 1a quorum must have a non-empty overlap with
every Phase 2 quorum and any Phase 1b or Phase 2 quorum
must have an overlap of at least k sites with every Phase 2
quorum. For each of the three quorum types, all quorums of
that type are of the same size and any subset of data sites of
that size represent a valid quorum of that type.

Note that, if further reductions in common-case read la-
tency are desired, one could use timed read leases as fol-
lows [21, 52]. Instead of using the normal read path, a front-
end that holds a lease for a key could cache the value or fetch
it from k nearby data sites to avoid the latency of commu-
nicating with a complete Phase 1a quorum. However, this
approach would not benefit tail latency for reads and may
increase latency for writes.

3.5 Reducing impact of conflicting writes

Lastly, we discuss how PANDO mitigates performance degra-
dation when conflicts arise. As mentioned before (§2), since
conflicts rarely occur in practice [48, 29], we allow for vio-
lations of input latency bounds when multiple writes to a key
execute concurrently. However, we ensure that the latency of
concurrent writes is not arbitrarily degraded.

Our high-level idea is to select one of every key’s data
sites as the leader and to make use of this leader only when
conflicts arise. PANDO’s leaderless approach helps satisfy
lower latency bounds by eliminating the need for any front-
end to contact a potentially distant leader. However, when a
front-end’s attempted write fails and it is uncertain whether a
value has already been committed for this version, the front-
end forwards its write to the leader. In contrast to the front-
end retrying the write on its own, relying on the leader can
ensure that the write completes within at most two rounds.

To make this work, we ensure that any write executed
by a key’s leader always supersedes writes to that key be-
ing attempted in parallel by front-ends. For this, we exploit
the fact that front-ends always retry writes via the leader,
i.e., any front-end will attempt to directly execute a write
at most once. Therefore, when executing Paxos, we permit
any front-end to use proposal numbers of the form (0, front-
end’s ID) but only allow the leader to set the first component
to values greater than or equal to 1, so that its writes take
precedence at every data site.

Note that, since we consider it okay to violate the write
latency bound in the rare cases when conflicts occur, we do
not require the leader to be close to any specific front-end.
Therefore, leader election can happen in the background (us-
ing any of a number of approaches [23, 14]) whenever the
current one fails. If conflicting writes are attempted precisely
when the leader is unavailable, these writes will block until a
new leader is elected. Like prior work [51, 40], PANDO can-
not bound worst-case write latency when conflicts and data
center failures occur simultaneously.

A proof of PANDO’s correctness and a TLA+ specification
are in Appendices A and B.

Config
Manager

1. Inter-DC latencies

1. Access Set
2. Failure Tolerance
3. Latency &
Storage SLOs

1. EC config (k, r)
2. Data sites
3. Quorums
4. Delegates

Latency Model

Application Inputs

Deployment Plan

Figure 6: Selecting a deployment plan with ConfigManager.

4 Implementation
To empirically compare the manner in which different con-
sensus approaches trade off read latency against write la-
tency and cost, we implemented a key-value store which
optimizes the selection of data sites for an object based on
knowledge of how the object will be accessed.
ConfigManager. Central to this key-value store is the Con-
figManager, which sits off the data path (thus not blocking
reads and writes) and identifies deployment plans, one per
access pattern. As shown in Figure 6, a deployment plan
determines the number of splits k that the key’s value is par-
titioned into, the number of redundant splits r , and the k + r
data sites at which these splits are stored; k = 1 corresponds
to replication, and Reed-Solomon coding [60] is used when
k > 1. The deployment plan also specifies the sizes of dif-
ferent quorum types and the choice of delegates (if any).

To make this determination, in addition to the applica-
tion’s latency, cost, and fault-tolerance goals, ConfigMan-
ager relies on the application to specify every key’s access
set: data centers from which front-ends are expected to is-
sue requests for the key. An application can determine an
object’s access set based on its knowledge of the set of users
who will access that object, e.g., in Google Docs, the access
set for a document is the set of data centers from which the
service will serve users sharing the document. When uncer-
tain (e.g., for a public document), the access set can be speci-
fied as comprising all data centers hosting its front-ends; this
uncertainty will translate to higher latencies and cost.

The ConfigManager selects deployment plans by solving
a mixed integer program, which accounts for the particu-
lar consensus approach being used. For example, PANDO’s
ConfigManager selects a delegate and preferred quorums per
front-end, using RTT measurements to predict latencies in-
curred. Given bounds on any two dimensions of the trade-
off space, the ConfigManager can optimize the third (e.g.
minimize max read latency across front-ends given write la-
tency and storage cost SLOs). Given the stability of laten-
cies observed between data centers in the cloud both in prior
work [34] and in our measurements,2 and since our current
implementation assumes an object’s access set is unchanged
after it is created, we defer reconfiguration of an object’s data
sites [19] to future work.

2In six months of latency measurements between all pairs of Azure data
centers, we observe less than 6% change in median latency from month to
month for any data center pair and less than 10% difference between 90th

percentile and median latency within each month for most pairs.

Executing reads and writes. Unlike typical applications
of Paxos, our use of erasure coding prevents servers from
processing the contents of Paxos logs. Instead of separating
application and Paxos state, we maintain one Paxos log for
every key and aggressively prune old log entries. In order
to execute a write request, a Proxy VM initiates Phase 1 of
Paxos and waits for the delegate to run Phase 2. If the op-
eration times out, the Proxy VM assumes the delegate has
failed and executes both phases itself. Once Phase 2 suc-
cessfully completes, the Proxy VM notifies the client and
asynchronously informs learners so that they may commit
their local state and garbage collect old log entries. The read
path is simpler: a Proxy VM fetches the associated Paxos
state and reconstructs the latest value before returning to the
client. If the latest state happens to be uncommitted, then the
Proxy VM issues a write-back to guarantee consistency.

5 Evaluation
We evaluate PANDO in two parts. First, in a measurement-
based analysis, we estimate PANDO’s benefits over prior so-
lutions for enabling strongly consistent distributed storage.
We quantify these benefits not only with respect to latency
and cost separately, but also the extent to which PANDO helps
bridge the gap to the lower bound in the latency–cost trade-
off space (§2). Second, we deploy our prototype key-value
store and compare latency and throughput characteristics un-
der microbenchmarks and an application workload. The pri-
mary takeaways from our evaluation are:

• Compared to the union of the best available replication-
and erasure coding-based approaches, PANDO reduces
the median gap to the lower bound by 88% in the read
latency–write latency–storage overhead tradeoff space.

• Compared to EPaxos, given bounds on any two of storage
overhead, read latency, and write latency, PANDO can im-
prove read latency by 12–31% and reduce dollar costs (for
storage, compute, and data transfers) by 6–46%, while de-
grading write latency by at most 3%.

• In a geo-distributed deployment on Azure, PANDO offers
18–62% lower read latencies than EPaxos and can reduce
95th percentile latency for two GitLab operations by 19–
60% over EPaxos and RS-Paxos.

5.1 Measurement-based analysis

Setup. Our analysis uses network latencies between all
pairs of 25 Microsoft Azure data centers. We categorize ac-
cess sets (the subset of data centers from which an object is
accessed) into four types: North America (NA), North Amer-
ica & Europe (NA-EU), North America & Asia (NA-AS),
and Global (GL). For NA and NA-EU, we use 200 access
sets chosen randomly. For NA-AS and GL, we first filter
front-end data centers so that they are at least 20 ms apart,
and then sample 200 random access sets. In all cases, we
consider all 25 Azure data centers as potential data sites.

Figure 7: For NA-AS access sets, comparison of GapVolume
with PANDO to EPaxos and RS-Paxos individually and their
union (EP ∪ RSP). In addition, we evaluate EP ∪ PANDO (the
union of EPaxos and PANDO) and Ideal EC (a hypothetical
Paxos variant that supports erasure coding, one-round writes,
and 1-split intersection across quorums).

We compare PANDO to four replication-based approaches
(EPaxos [51], Fast Paxos [42], Mencius [49], and Multi-
Paxos [40]) and the only prior approach which can enable
conditional updates on erasure-coded data (RS-Paxos [53]).
We refer to the union of EPaxos and RS-Paxos (i.e., use ei-
ther approach to satisfy the desired SLOs) as EP ∪ RSP.
Metrics. Our analysis looks at three types of metrics: 1)
read and write latency (in either case, we estimate the max
latency seen by any front-end in the access set) and stor-
age overhead (size of the data stored divided by size of user
data); 2) GapVolume, a metric which captures the gap in the
three-dimensional read latency–write latency–storage over-
head tradeoff space between the lower bound (described in
§2) and the approach in question; and 3) total dollar cost
as the sum of compute, storage, data transfer, and operation
costs necessary to support reads and writes.

5.1.1 Impact on Achievable Tradeoffs

We use GapVolume to evaluate how close each approach is
to the lower bound (§2.3). For any access set, we compute
GapVolume with a specific consensus approach as the gap in
the (read, write, storage) tradeoff space between the surfaces
represented by the lower bound and by tradeoffs achievable
with this consensus approach. We normalize this gap rela-
tive to the volume of the entire theoretically feasible tradeoff
space, i.e., the portion of the tradeoff space above the lower
bound surface. For every access set, we cap read and write
latencies at values that are achievable with all approaches,
and we limit storage overhead to a maximum of 7 as higher
values are unlikely to be tenable in practice.
Proximity to lower bound. Figure 7 shows that PANDO
significantly reduces GapVolume compared to EPaxos and
RS-Paxos for access sets of type NA-AS. We do not show
results for other replication-based approaches because they
are subsumed by EPaxos, i.e., every combination of SLOs
that is achievable with Mencius, Fast Paxos, and Multi-
Paxos is also achievable with EPaxos. PANDO lowers me-
dian GapVolume to 4%, compared to 53% with RS-Paxos
and 44% with EPaxos. Even with EP ∪ RSP (i.e., use two

0

50

100

150

NA NA−EU NA−AS GL

R
e

a
d

 L
a

te
n

c
y
 (

m
s
)

Lower Bound
Pando
EPaxos
RS−Paxos
Fast−Paxos
Mencius
Multi−Paxos

0

100

200

300

400

NA NA−EU NA−AS GL

W
ri

te
 L

a
te

n
c
y
 (

m
s
)

0

1

2

3

4

5

NA NA−EU NA−AS GL

S
to

ra
g

e
 O

ve
rh

e
a

d

(a) Read Latency (b) Write Latency (c) Storage Overhead
Figure 9: Average performance across different metrics. Lower is better in all plots. For each metric, we pick SLO combinations for
the other two metrics that are achievable with all approaches. For each such SLO pair, we estimate the minimum value of the metric
achievable with each approach. We then take the geometric mean across all access sets and SLO pairs.

GapVolume NA NA-EU NA-AS GL
PANDO 0.06 0.07 0.04 0.07
EP ∪ RSP 0.37 0.40 0.34 0.34
EPaxos 0.44 0.48 0.44 0.49
RS-Paxos 0.52 0.59 0.53 0.48

Table 1: GapVolume for median access set of various types.
Lower values are better; imply closer to the lower bound.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5

GapVolume (lower is better)

C
D

F
 a

c
ro

s
s
 a

c
c
e
s
s
 s

e
ts +1s +PD +SP1 RS−Paxos

Figure 8: For access sets of type NA-AS, contributions of each
of PANDO’s techniques in reducing GapVolume. SP1 = small
Phase 1, PD = partial delegation, 1s = 1-split overlap.

significantly different designs to realize different tradeoffs),
median GapVolume remains at 34%. Table 1 shows similar
benefits for NA, NA-EU, and GL access sets.

Moreover, EP ∪ PANDO (i.e., SLO combinations achiev-
able with any of EPaxos or PANDO) is only marginally closer
to the lower bound (i.e., has lower GapVolume) than PANDO,
and that too only for some access sets. The few SLO combi-
nations that EPaxos can achieve but not PANDO all have low
write latency SLOs, in which case no choice of delegate can
help PANDO overcome the overheads of two-round writes.

Utility of individual techniques. Figure 8 shows that
each of the techniques used in PANDO contribute to the
GapVolume reductions. For the median access set, using
small Phase 1 quorums reduces GapVolume over RS-Paxos
by 36%, adding partial delegation reduces GapVolume by a
further 16%, and finally incorporating 1-split intersection re-
duces GapVolume by an additional 39%. When examining
the improvements for each access set, we observe that both
small Phase 1 quorums and 1-split intersection help across all
access sets by reducing quorum size requirements. Similarly,
we find that partial delegation typically improves GapVol-
ume, indicating that some data sites are often closer to Phase
1 and Phase 2 quorums than the front-end.

Obstacles to matching the lower bound. From the gap
between PANDO and Ideal EC in Figure 7, we surmise that
most of the remaining gap between PANDO and the lower
bound could be closed if one-round writes on erasure-coded
data were feasible. Addressing any potential sub-optimality
thereafter likely requires realizing the lower bound’s flexi-
bility with regards to varying the fraction of an object’s data
across sites (e.g., by using a different erasure coding strat-
egy than Reed-Solomon coding) and varying quorum sizes
across front-ends.

5.1.2 Latency and Storage Improvements

Figure 9 examines improvements in each of read latency,
write latency, and storage overhead independently. To do
this for read latency, we first identify all (write, storage)
SLO pairs that are achievable by all candidate approaches.
For each such pair, we then estimate the lowest read latency
bound that is satisfiable with each approach. We take the ge-
ometric mean [31] across all feasible (write, storage) SLO
pairs for all access sets to compare PANDO’s performance
relative to other approaches. We perform similar computa-
tions for write latency and storage overhead.

We find that PANDO achieves 12–31% lower read latency,
0–3% higher write latency, and 22–32% lower storage over-
head than EPaxos across all types of access sets. Although
PANDO executes writes in two phases, the use of small Phase
1 quorums plus partial delegation provides similar write la-
tency as EPaxos. In all cases, EPaxos outperforms Fast
Paxos, Mencius, and Multi-Paxos. Compared to RS-Paxos,
PANDO reduces read latency by 15–40%, write latency by
11–17%, and storage overhead by 13–22%.
Latency under failures. Figure 10 compares the read la-
tency bounds satisfiable with PANDO and EPaxos when any
one data center is unavailable. During failures, a front-end
may need to contact more distant data sites in order to read or
write data. In this case, for the median access set, we observe
that PANDO supports a read latency bound which is 110 ms
lower than EPaxos. Since erasure coding spreads data more
widely than replication for the same storage overhead, there
are more nearby sites to fall back on when a failure occurs.

However, erasure coding is not universally helpful in fail-
ure scenarios. Upon detecting the loss of its write delegate,
a PANDO front-end will locally identify a new one that min-

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

Max read latency across front−ends (ms)

C
D

F
 a

c
ro

s
s
 a

c
c
e
s
s
 s

e
ts

Pando EPaxos
Pando w/ Failure EPaxos w/ Failure

Figure 10: For access sets of type NA-AS, impact of data center
failures on read latency for PANDO and EPaxos (300 ms write
SLO, 5× overhead storage SLO).

imizes latency at the front-end. Still, across NA-AS access
sets, median write latency with PANDO is 10% higher than
EPaxos when any one data site is unavailable, despite the two
approaches having similar latency in the failure-free case. In
addition, under permanently data loss, bringing up a replace-
ment data site requires decoding the data of k separate sites
instead of fetching the same volume of data from one replica.

5.1.3 Cost

Beyond storage, public cloud providers also charge users
for wide-area data transfers, PUT/GET requests to storage,
and for virtual machines used to execute RPCs and en-
code/decode data. These overheads have driven production
systems to adopt two key optimizations. First, replication-
based systems execute reads by fetching version numbers
from remote sites, not data. Second, Paxos-based systems
issue writes only to a quorum (or for PANDO, a superset of a
write quorum that intersects with all Phase 1a quorums likely
to be used). Taking these optimizations into consideration,
we now account for these other sources of cost and evaluate
PANDO’s utility in reducing total cost.

We considered 200 access sets of type NA-AS and set la-
tency SLOs that both RS-Paxos and EPaxos are capable of
meeting: 100 ms for read latency and 375 ms for write la-
tency. We derived the CPU cost of Proxy VMs by measur-
ing the throughput achieved in deployments of our prototype
system. Using pricing data from Azure CosmosDB [3], we
estimated the cost necessary to store 10 TB of data and issue
600M requests, averaged across all access sets; these param-
eters are based on a popular web service’s workload [7] and
a poll of typical MySQL deployment sizes [10].

Across several values for mean object size and read-to-
write ratio, Figure 11 shows that PANDO reduces overall
costs by 6–46% over EPaxos and 35–40% over RS-Paxos.
When objects are large, PANDO’s cost savings primarily
stem from the reduction in the data transferred over the wide-
area network. Note that even though EPaxos uses replica-
tion, it still requires reading remote data when a copy is not
stored at the front-end data center. Whereas, when objects
are small, storage fees dominate and PANDO reduces cost
primarily due to the lower storage overhead that it imposes.
Though erasure coding increases the number of requests

R:W=1

1KB

R:W=1

10KB

R:W=1

100KB

R:W=10

1KB

R:W=10

10KB

R:W=10

100KB

P
a

n
E

P
R

S
P

P
a

n
E

P
R

S
P

P
a

n
E

P
R

S
P

P
a

n
E

P
R

S
P

P
a

n
E

P
R

S
P

P
a

n
E

P
R

S
P

0.0

0.5

1.0

1.5

2.0

N
o

rm
a

liz
e

d
 C

o
s
t Network Request Storage

Figure 11: Comparison of cost for a month in NA-AS to store
10 TB of data and execute 600M requests/month. In all cases,
the costs of Proxy VMs (not shown) were negligible, and read
and write latency SLOs were set to 100 ms and 375 ms.

to storage compared to replication, ConfigManager opts to
erasure-code data only when the corresponding decrease in
storage and data transfer costs help reduce overall cost. Un-
like write requests, which have to first write metadata to stor-
age before transferring and writing the data itself, read re-
quests only issue storage operations to fetch data. This leads
to greater cost reductions for read-dominated workloads.

5.2 Prototype deployment

Next, via deployments on Azure, we experimentally com-
pare PANDO versus EPaxos and RS-Paxos. We use our im-
plementations of PANDO and RS-Paxos and the open-source
implementation of EPaxos [50]. This experimental compari-
son helps account for factors missing from our analysis, such
as latency variance and contention between requests. We
consider one access set of each of our 4 types:
• NA: Central US, East US, North Central US, West US
• NA-EU: Canada East, Central US, North Europe, West

Europe
• NA-AS: Central US, Japan West, Korea South
• GL: Australia East, North Europe, SE Asia, West US
Informed by prior studies of production web service work-
loads [29, 22], we read and write objects between 1–100
KB in size. Unless stated otherwise, we use A1v2 (1 CPU,
2 GB memory) virtual machines and issue requests using
YCSB [28]—a key-value store benchmark.

5.2.1 Microbenchmarks

Tail latency across front-ends. Figure 12 shows 95th
percentile read and write latencies for each of the four ac-
cess sets when running a low contention (zipfian coefficient
= 0.1) workload with 1 KB values and a read:write ratio of 1.
In all cases, when using PANDO, we observe that the slowest
front-end performs similarly to the read latency SLO deemed
feasible by ConfigManager. This confirms the low latency
variance in the CosmosDB instance at each data center and
on the network paths between them. While all approaches
achieve sub-55 ms read latency in NA, only PANDO can pro-
vide sub-100 ms latency in all regions. In GL, NA-AS, and

GL NA−AS NA−EU NA

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

0

50

100

150

200

9
5
%

ile
 R

e
a
d
 L

a
te

n
c
y
 (

m
s
)

p
e
r

F
ro

n
t−

e
n
d

GL NA−AS NA−EU NA

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

P
a

n

E
P

R
S

P

0

50

100

150

200

250

9
5
%

ile
 W

ri
te

 L
a
te

n
c
y
 (

m
s
)

p
e
r

F
ro

n
t−

e
n
d

(a) Read Latency when Write SLO = 300, 300, 150, and 100 ms
for GL, NA-AS, NA-EU, and NA, respectively

(b) Write Latency when Read SLO = 200, 150, 125, and 75 ms
for GL, NA-AS, NA-EU, and NA, respectively

Figure 12: Latency comparison with a low contention workload under a storage SLO of 3× overhead. Red lines represent the lowest
latency SLO that ConfigManager identifies as feasible with PANDO. With every approach, in each access set, we measure 95th %ile
latency at every front-end and plot the min and max of this value across front-ends. Pan = Pando, EP = EPaxos, and RSP = RS-Paxos.

●● ●●

●

●

●

●

●

●

300ms

1s

3s

10s

30s

1 2 4 8 16

Number of front−ends issuing requests

L
a
te

n
c
y
 f
o
r

s
u
c
c
e
s
s
fu

l
w

ri
te

s

● ●Pando Pando w/o leader fallback

Figure 13: Write latency comparison under contention using a
fully leaderless approach and the leader-based fallback (§3.5).
5th percentile, median, and 95th percentile across 1000 writes
are shown. Note logscale on y-axis.

NA-EU, PANDO improves read latency for the slowest front-
end by 39–62% compared to EPaxos. PANDO falls short of
the write latency offered by EPaxos but comes close.
Latency under high conflict rates. Although our focus is
on workloads with few write conflicts, we seek to bound per-
formance degradation when conflicts occur. To evaluate this,
we setup front-ends in 16 Azure data centers spread across
five continents. We mimic conflicts by synchronizing a sub-
set of front-ends (assuming low clock skew) to issue writes
on the same key and version simultaneously. We show la-
tency for successful conditional writes since other writes will
learn the committed value and terminate shortly afterward.

Figure 13 shows that PANDO is effective at bounding la-
tency for writes in the presence of conflicts. Without a
leader-based fallback, writes in PANDO may need to be tried
many times before succeeding, resulting in unbounded la-
tency growth, e.g., with four concurrent writers, we observe
more than 15 proposals for particular (key, version) pairs. In
contrast, falling back to a leader ensures that a write succeeds
within two write attempts.
Read and write throughput. While erasure coding can de-
crease bandwidth usage compared to replication, it requires
additional computation in the form of coding/decoding and
messaging overhead. We quantify the inflection point at
which CPU overheads dominate by deploying PANDO in a
single data center and measuring the achievable throughput

Read Write

1KB 10KB 100KB 1KB 10KB 100KB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

T
h
ro

u
g
h
p
u
t
/
T

h
ro

u
g
h
p
u
t

u
s
in

g
 3

 r
e
p
lic

a
s

k=2,r=3 k=2,r=4

Figure 14: Per-machine throughput of different erasure coding
configurations compared to using 3 replicas.
with all data in memory. Each server, which stored 1 split or
1 replica, had two Xeon Silver 4114 processors and 192 GB
of memory. All servers were connected over a 10 Gbps net-
work with full bisection bandwidth. Across multiple value
sizes, we measured the per-server throughput of filling the
system with over 20 GB of data and reading it back.

Figure 14 compares the per-machine throughput achieved
with 3 replicas to two erasure coding configurations, one
with the same storage overhead and another with lower stor-
age overhead. When objects are 10 KB or larger, we find that
bandwidth is the primary bottleneck. Because it has identi-
cal bandwidth demands as replication, the (k = 2, r = 4)
configuration achieves similar read throughput and 0.9–1×
the write throughput of replication for objects larger than 10
KB. Whereas, due to its lower bandwidth consumption, the
(k = 2, r = 3) configuration offers 1.1-1.2× the throughput
of replication for 10 KB–100 KB sized objects. All configu-
rations are CPU-bound with value sizes of 1 KB or smaller.
Since replication requires exchanging fewer messages per re-
quest than erasure coding, it has lower CPU overhead and
can thus achieve higher throughput.

5.2.2 Application Workload

Lastly, we evaluate the utility of PANDO on a geo-distributed
deployment of GitLab [6], a software development applica-
tion that provides source code management, issue tracking,
and continuous integration.
Operations and setup. We evaluate the performance
of two GitLab operations: listing issues targeting a devel-

GetIssues ProtectBranch

0 50 100 150 200 250 300 0 50 100 150 200 250 300
0.0

0.2

0.4

0.6

0.8

1.0

Request Latency (ms)

C
D

F
 a

c
ro

s
s
 r

e
q

u
e

s
ts

Pando
EPaxos
RS−Paxos

Figure 15: Latencies for GitLab requests in Central US.

opment milestone (GetIssues) and (un-)protecting a branch
from changes (ProtectBranch). GetIssues fetches a list of is-
sues for the requested milestone and then fetches 20 issues in
parallel to display on a page. ProtectBranch reads the current
branch metadata then updates its protection status.

We deployed front-ends and storage backends in the NA-
AS access set on A2v2 (2 CPU, 4 GB memory) virtual ma-
chines, and preloaded the system with 100 projects, each
with 20 branches, 10 milestones, and 100 issues. We used a
3× bound on storage overhead and set the write latency SLO
to 175 ms. Every front-end executed 1000 GetIssues and
ProtectBranch requests in an open loop and selected items
using a uniform key distribution.
Performance. Figure 15 shows the latency distribution ob-
served for both operations by the front-end in Central US.
PANDO reduces 95th percentile GetIssues latency by over
59% compared to both EPaxos and RS-Paxos. Because Pro-
tectBranch consists of a write in addition to a read operation,
it incurs higher latency compared to GetIssues, which con-
sists solely of read operations. Despite this, PANDO is able
to lower 95th percentile ProtectBranch latency by 19% over
EPaxos and 28% over RS-Paxos.

6 Related work
Geo-distributed storage. While some prior geo-distributed
storage systems [46, 45, 47, 66] weaken consistency seman-
tics to minimize latencies and unavailability, PANDO follows
others [29, 64, 71, 21] in serving the needs of applications
that cannot make do with weak consistency. Compared to
efforts focused solely on minimizing latency with any spe-
cific replication factor [51, 49, 42], PANDO aims to also min-
imize the cost necessary to meet latency goals. Unlike sys-
tems [13, 70] which focus only on judiciously placing data to
minimize cost, we also leverage erasure coding and rethink
how to enable consensus on erasure-coded data.

Partial delegation in PANDO is akin to the chaining of
RPCs [63] to eliminate wide-area delays. We show that
combining this technique with the use of smaller quorums
in Phase 1 of Paxos helps a two-round execution approxi-
mate the latencies achievable with one-round protocols in a
geo-distributed setting.
Erasure-coded storage. Erasure coding has been widely

used for protecting data from failures [69], most notably
in RAID [58]. While PANDO leverages Reed Solomon
codes [60] for storage across data centers, other codes have
been used to correct errors in DRAM [33], transmit data over
networks [62], and efficiently reconstruct data in cloud stor-
age [67, 38, 61]. In contrast to the typical use of erasure
coding for immutable and/or cold data [54, 32, 59, 55, 27],
PANDO supports the storage of hot, mutable objects.

Previous protocols [15, 24] that support strong consistency
with erasure-coded data provide only atomic register seman-
tics or require two rounds of communication [53]. We show
how to enable consensus on geo-distributed erasure-coded
data without sacrificing latency. Some systems [26, 27] sup-
port strong consistency by erasure coding data but replicat-
ing metadata. We chose to not pursue this route to avoid the
complexity of keeping the two in sync, as well as to mini-
mize latency and metadata overhead.
Paxos variants. Many variants of Paxos [40] have been
proposed over the years [53, 37, 43, 41], including sev-
eral [51, 42, 49] which enable low latency geo-distributed
storage. Compared to Paxos variants that reduce the number
of wide-area round trips [51, 49, 42], PANDO lowers latency
by reducing the magnitude of delay in each round trip.

Flexible Paxos [37] was the first to observe that Paxos
only requires overlap between every Phase 1–Phase 2 quo-
rum pair, and others [16, 56] have leveraged this observa-
tion since. All of these approaches make Phase 2 quorums
smaller, so as to improve throughput and common case la-
tency in settings with high spatial locality. In PANDO, we
instead reduce the size of Phase 1 quorums and reuse these
quorums for reads, thereby enabling previously unachiev-
able tradeoffs between read and write latency bounds in a
workload-agnostic manner.
Compression. Data compression is often used to lower the
cost of storing data [36, 65, 25] or transferring it over a net-
work [30]. In contrast to erasure coding, the effectiveness
of compression depends on both the choice of compression
algorithm used as well as the input data [17]. Compression
and erasure coding are complementary as data can be com-
pressed and then erasure-coded or vice-versa.

7 Conclusion
Today, geo-distributed storage systems take for granted that
data must be replicated across data centers. In this paper, we
showed that it is possible to leverage erasure coding to signif-
icantly reduce costs while successfully mitigating the associ-
ated overheads in wide-area latency incurred for preserving
consistency. The key is to rethink how consensus is achieved
across the wide-area. Importantly, we showed that the la-
tency versus cost tradeoffs achievable with our approach for
enabling consensus, PANDO, are close to optimal.
Acknowledgments. This work was supported in part by
the NSF under grants CNS-1563095, CNS-1563849, CNS-
1617773, and CNS-1900665.

References
[1] 100% uptime anybody? http://www.

riskythinking.com/articles/article8.
php.

[2] And the cloud provider with the best uptime in
2015 is ... http://www.networkworld.com/
article/3020235/cloud-computing/and-
the-cloud-provider-with-the-best-
uptime-in-2015-is.html.

[3] Azure Cosmos DB - globally distributed database
service — Microsoft Azure. https://azure.
microsoft.com/en-us/services/cosmos-
db/.

[4] Google Docs. https://docs.google.com.
[5] Latency is everywhere and it costs you sales - how

to crush it. http://highscalability.com/
latency-everywhere-and-it-costs-you-
sales-how-crush-it.

[6] The only single product for the complete devops life-
cycle - GitLab. https://about.gitlab.com/.

[7] Quizlet.com audience insights - Quantcast.
https://www.quantcast.com/quizlet.
com#trafficCard.

[8] ShareLaTeX. https://sharelatex.com.
[9] Storage - Intel ISA-L — Intel software.

https://software.intel.com/en-
us/storage/ISA-L.

[10] What is the largest amount of data do you store
in MySQL? - Percona database performance blog.
https://www.percona.com/blog/2012/
11/09/what-is-the-largest-amount-of-
data-do-you-store-in-mysql/.

[11] Which cloud providers had the best uptime last year?
http://www.networkworld.com/article/
2866950/cloud-computing/which-cloud-
providers-had-the-best-uptime-last-
year.html.

[12] SLA for Azure Cosmos DB. https:
//azure.microsoft.com/en-us/support/
legal/sla/cosmos-db/v1_3/, 2019.

[13] S. Agarwal, J. Dunagan, N. Jain, S. Saroiu, and A. Wol-
man. Volley: Automated data placement for geo-
distributed cloud services. In NSDI, 2010.

[14] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and
S. Toueg. Stable leader election. In International
Symposium on Distributed Computing, pages 108–122.
Springer, 2001.

[15] M. K. Aguilera, R. Janakiraman, and L. Xu. Using era-
sure codes efficiently for storage in a distributed sys-
tem. In DSN, 2005.

[16] A. Ailijiang, A. Charapko, M. Demirbas, and T. Kosar.
Multileader WAN paxos: Ruling the archipelago with
fast consensus. CoRR, 2017.

[17] J. Alakuijala, E. Kliuchnikov, Z. Szabadka, and L. Van-

devenne. Comparison of brotli, deflate, zopfli, lzma,
lzham and bzip2 compression algorithms. Google Inc.,
2015.

[18] P. A. Alsberg and J. D. Day. A principle for resilient
sharing of distributed resources. In ICSE, 1976.

[19] M. S. Ardekani and D. B. Terry. A self-configurable
geo-replicated cloud storage system. In OSDI, 2014.

[20] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory
robustly in message-passing systems. Journal of the
ACM (JACM), 42(1):124–142, 1995.

[21] J. Baker, C. Bond, J. C. Corbett, J. Furman, A. Khorlin,
J. Larson, J.-M. Leon, Y. Li, A. Lloyd, and V. Yush-
prakh. Megastore: Providing scalable, highly available
storage for interactive services. In CIDR, 2011.

[22] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Di-
mov, H. Ding, J. Ferris, A. Giardullo, S. Kulkarni,
H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,
and V. Venkataramani. TAO: Facebook’s distributed
data store for the social graph. In USENIX ATC, 2013.

[23] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In OSDI, 2006.

[24] V. R. Cadambe, N. Lynch, M. Médard, and P. Mu-
sial. A coded shared atomic memory algorithm for
message passing architectures. Distributed Computing,
30(1):49–73, 2017.

[25] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer Sys-
tems (TOCS), 26(2):4, 2008.

[26] H. Chen, H. Zhang, M. Dong, Z. Wang, Y. Xia,
H. Guan, and B. Zang. Efficient and available in-
memory kv-store with hybrid erasure coding and repli-
cation. ACM Transactions on Storage (TOS), 13(3):25,
2017.

[27] Y. L. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, and
D. Phillips. Giza: Erasure coding objects across global
data centers. In USENIX ATC, 2017.

[28] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrish-
nan, and R. Sears. Benchmarking cloud serving sys-
tems with YCSB. In SoCC, 2010.

[29] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quin-
lan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Tay-
lor, R. Wang, and D. Woodford. Spanner: Google’s
globally-distributed database. In OSDI, 2012.

[30] R. Fielding and J. Reschke. RFC 7230: Hypertext
transfer protocol (HTTP/1.1): Message syntax and
routing. Internet Engineering Task Force (IETF), 2014.

[31] P. J. Fleming and J. J. Wallace. How not to lie with
statistics: The correct way to summarize benchmark re-
sults. CACM, 1986.

[32] A. Haeberlen, A. Mislove, and P. Druschel. Glacier:
Highly durable, decentralized storage despite massive
correlated failures. In NSDI, 2005.

[33] R. W. Hamming. Error detecting and error correcting
codes. Bell System technical journal, 29(2):147–160,
1950.

[34] O. Haq, M. Raja, and F. R. Dogar. Measuring and
improving the reliability of wide-area cloud paths. In
WWW, 2017.

[35] M. Herlihy. Wait-free synchronization. ACM Transac-
tions on Programming Languages and Systems, 13(1),
1991.

[36] D. R. Horn, K. Elkabany, C. Lesniewski-Lass, and
K. Winstein. The design, implementation, and deploy-
ment of a system to transparently compress hundreds
of petabytes of image files for a file-storage service. In
NSDI, 2017.

[37] H. Howard, D. Malkhi, and A. Spiegelman. Flexible
Paxos: Quorum intersection revisited. In OPODIS,
2016.

[38] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder,
P. Gopalan, J. Li, and S. Yekhanin. Erasure coding in
Windows Azure storage. In USENIX ATC, 2012.

[39] L. Lamport. The temporal logic of actions. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 16(3):872–923, 1994.

[40] L. Lamport. The part-time parliament. ACM Trans-
actions on Computer Systems (TOCS), 16(2):133–169,
1998.

[41] L. Lamport. Generalized consensus and paxos. 2005.
[42] L. Lamport. Fast paxos. Distributed Computing,

19(2):79–103, 2006.
[43] L. Lamport and M. Massa. Cheap paxos. In DSN, 2004.
[44] B. Lampson. The abcd’s of paxos. In PODC, 2001.
[45] C. Li, D. Porto, A. Clement, J. Gehrke, N. M. Preguiça,

and R. Rodrigues. Making geo-replicated systems fast
as possible, consistent when necessary. In OSDI, 2012.

[46] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In
SOSP, 2011.

[47] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Stronger semantics for low-latency geo-
replicated storage. In NSDI, 2013.

[48] H. Lu, K. Veeraraghavan, P. Ajoux, J. Hunt, Y. J. Song,
W. Tobagus, S. Kumar, and W. Lloyd. Existential con-
sistency: Measuring and understanding consistency at
Facebook. In SOSP, 2015.

[49] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
Building efficient replicated state machines for WANs.
In OSDI, 2008.

[50] I. Moraru. Epaxos. https://github.com/
efficient/epaxos, 2014. commit 791b115.

[51] I. Moraru, D. G. Andersen, and M. Kaminsky. There

is more consensus in egalitarian parliaments. In SOSP,
2013.

[52] I. Moraru, D. G. Andersen, and M. Kaminsky. Paxos
quorum leases: Fast reads without sacrificing writes. In
SoCC, 2014.

[53] S. Mu, K. Chen, Y. Wu, and W. Zheng. When Paxos
meets erasure code: Reduce network and storage cost
in state machine replication. In HPDC, 2014.

[54] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang, and
S. Kumar. f4: Facebook’s warm BLOB storage system.
In OSDI, 2014.

[55] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang, and
S. Kumar. OceanStore: An architecture for global-scale
persistent storage. In OSDI, 2014.

[56] F. Nawab, D. Agrawal, and A. El Abbadi. DPaxos:
Managing data closer to users for low-latency and mo-
bile applications. In SIGMOD, 2018.

[57] D. Ongaro and J. K. Ousterhout. In search of an under-
standable consensus algorithm. In USENIX ATC, 2014.

[58] D. A. Patterson, G. Gibson, and R. H. Katz. A case
for redundant arrays of inexpensive disks (RAID). In
SIGMOD, 1988.

[59] K. V. Rashmi, M. Chowdhury, J. Kosaian, I. Stoica,
and K. Ramchandran. EC-Cache: Load-balanced, low-
latency cluster caching with online erasure coding. In
OSDI, 2016.

[60] I. S. Reed and G. Solomon. Polynomial codes over
certain finite fields. Journal of the society for industrial
and applied mathematics, 8(2):300–304, 1960.

[61] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G.
Dimakis, R. Vadali, S. Chen, and D. Borthakur. XOR-
ing elephants: Novel erasure codes for big data. 2013.

[62] A. Shokrollahi. Raptor codes. IEEE/ACM Transactions
on Networking (TON), 14(SI):2551–2567, 2006.

[63] Y. J. Song, M. K. Aguilera, R. Kotla, and D. Malkhi.
RPC chains: Efficient client-server communication in
geodistributed systems. In NSDI, 2009.

[64] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Trans-
actional storage for geo-replicated systems. In SOSP,
2011.

[65] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. O’Neil, P. O’Neil, A. Rasin, N. Tran, and S. Zdonik.
C-store: A column-oriented DBMS. In VLDB, 2005.

[66] D. B. Terry, V. Prabhakaran, R. Kotla, M. Balakrish-
nan, M. K. Aguilera, and H. Abu-Libdeh. Consistency-
based service level agreements for cloud storage. In
SOSP, 2013.

[67] M. Vajha, V. Ramkumar, B. Puranik, G. Kini,
E. Lobo, B. Sasidharan, P. V. Kumar, A. Barg, M. Ye,
S. Narayanamurthy, S. Hussain, and S. Nandi. Clay
codes: Moulding MDS codes to yield an MSR code. In

FAST, 2018.
[68] R. Van Renesse and F. B. Schneider. Chain replica-

tion for supporting high throughput and availability. In
OSDI, 2004.

[69] H. Weatherspoon and J. Kubiatowicz. Erasure coding
vs. replication: A quantitative comparison. In IPTPS,
2002.

[70] Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and
H. V. Madhyastha. SPANStore: Cost-effective geo-
replicated storage spanning multiple cloud services. In
SOSP, 2013.

[71] Y. Zhang, R. Power, S. Zhou, Y. Sovran, M. K. Aguil-
era, and J. Li. Transaction chains: Achieving serializ-
ability with low latency in geo-distributed storage sys-
tems. In SOSP, 2013.

A The PANDO write protocol: specification
and proof of correctness

In this section, we focus on how PANDO achieves consensus
on a single value and prove that it matches the guarantees
provided by Paxos. Other functionality used in our paper is
layered on top of this base as follows:

• Mutating values. As with Multi-Paxos, we build a dis-
tributed log of values and run PANDO on each entry of
the log. We only ever attempt a write for version i if we
know that i − 1 has already been chosen. This invari-
ant ensures that the log is contiguous, and that all but
possibly the latest version have been decided.

• Partial delegation of writes. One of the key optimiza-
tions used in PANDO is to execute Phase 1 and Phase
2 on different nodes (§3.3.2). We achieve this without
sacrificing fault tolerance as follows. Each proposer is
assigned an id (used for Lamport clocks), but we ad-
ditionally assign a proposer id to each (proposer, dele-
gate) pair. When executing a write using partial delega-
tion, we simply direct responses accordingly, and have
the proposer inform the delegate about which value to
propose (unless one was recovered, in which case the
delegate has to inform the proposer about the change).
In case the delegate fails, a proposer can always choose
to execute a write operation normally, and because it
uses a different proposer id in this case, it will look as
though the write from the proposer and the write from
the (proposer, delegate) pair are writes from two sepa-
rate nodes. We already prove (§A.1) that PANDO main-
tains consistency in this case.

• One round reads. As with other consensus protocols,
we support (common-case) one-round reads by adding
a third, asynchronous phase to writes that broadcasts
which value was chosen and caches this information at
each acceptor. Upon executing a read at a Phase 1a quo-
rum, we check to see if any acceptor knows whether a
value has already been chosen. If we find such a value,
we try to reconstruct it and fall back on the larger Phase
1b quorum in case there are not enough splits present in
the Phase 1a quorum. Otherwise, we follow the write
path, but propose a value only if we were able to re-
cover one (else none have been chosen). We maintain
linearizability with this approach because the task of re-
solving uncertainty is done via the write path.

• Fallback to leader. In PANDO, front-ends directly exe-
cute writes unless a conflict is observed, in which case
they defer the request to a leader (§3.5). From the per-
spective of the consensus protocol, the leader is just an-
other proposer, so no consistency issues may arise even
if multiple leaders exist. However, PANDO prevents
non-leader front-ends from attempting writes more than

A.ppn Promised proposal no. stored at acceptor A
A.apn Accepted proposal no. stored at acceptor A
A.vid Accepted value id stored at acceptor A
A.vlen Accepted value length stored at acceptor A

A.vsplit Accepted value split stored at acceptor A
vidv Unique id for v , typically a hash or random

number
vlenv Length of v (to remove padding)

Split(v ,A) (Computed on proposers) The erasure-
coded split associated with acceptor A

Figure 16: Summary of notation.

once which can lead to unavailability if the leader fails.
It is up to the leader election mechanism to quickly elect
a new leader when the the current one fails.

PANDO’s consistency and liveness properties rely on cer-
tain quorum constraints being met. We describe the con-
straints below under the assumption that data is partitioned
into k splits (Constraint 3 needed only if Phase 1a quorums
are used for reads):

1. The intersection of any Phase 1a and Phase 2 quorums
contains at least 1 split.

2. The intersection of any Phase 1b and Phase 2 quorums
contains at least k splits.

3. A Phase 1a quorum must contain at least k splits.

4. After f nodes fail, at least one Phase 1b and Phase 2
quorum must consist of nodes that are available.

Below is pseudocode for the PANDO write protocol.

Phase 1 (Prepare-Promise)

Proposer P initiates a write for value v :
1. Select a unique proposal number p (typically done us-

ing Lamport clocks).
2. Broadcast Prepare(p) messages to all acceptors.

Acceptor A, upon receiving Prepare(p) message from
Proposer P :

3. If p > A.ppn then set A.ppn ← p and reply
Promise(A.apn,A.vid ,A.vlen,A.vsplit).

4. Else reply NACK.

Proposer P , upon receiving Promise messages from a
Phase 1a quorum:

5. If the values in all Promise responses are NULL, then
skip to Phase 2 with v ′ ← v .

Proposer P , upon receiving Promise messages from a
Phase 1b quorum:

6. Iterate over all Promise responses sorted in decreasing
order of their apn .

(a) If there are at least k splits for value w associ-
ated with apn , recover the value w (using the as-
sociated vlen and vsplits) and continue to Phase 2
with v ′ ← w .

7. If no value was recovered, continue to Phase 2 with
v ′ ← v .

Phase 2 (Propose-Accept)

Proposer P , initiating Phase 2 to write value v ′ with pro-
posal number p:

8. If no value was recovered in Phase 1, set vidv ′ =
hash(v) (or some other unique number, see Figure 16).
If a value was recovered, use the existing vidv ′ .

9. Broadcast Propose(p, vidv ′ , vlenv ′ , Split(v ′,A)) mes-
sages to all acceptors.

Acceptor A, upon receiving Propose(p, vid , vlen, vsplit)
from a Proposer P :
10. If p < A.ppn reply NACK
11. A.ppn ← p
12. A.apn ← p
13. A.vid ← vid
14. A.vlen ← vlen
15. A.vsplit ← vsplit
16. Reply Accept(p)

Proposer P , upon receiving Accept(p) messages from a
Phase 2 quorum:
17. P now knows that v ′ was chosen, and can check

whether the chosen value v ′ differs from the initial
value v or not.

A.1 Proof of correctness

Definitions. We let A refer to the set of all acceptors and
use Qa , Qb , and Q2 refer to the sets of Phase 1a, Phase 1b,
and Phase 2 quorums, respectively. Using this notation, we
restate our quorum assumptions:

Q ⊆ A ∀Q ∈ Qa ∪Qb ∪Q2 (1)

|Qa ∩Q2| ≥ 1 ∀Qa ∈ Qa ,Q2 ∈ Q2 (2)

|Qb ∩Q2| ≥ k ∀Qb ∈ Qb ,Q2 ∈ Q2 (3)

Definition 1. A value is chosen if there exists a Phase 2
quorum of acceptors that all agree on the identity of the value
and store splits corresponding to that value.

We now show that the PANDO write protocol provides the
same guarantees as Paxos:

• Nontriviality. Any chosen value must have been pro-
posed by a proposer.

• Liveness. A value will eventually be chosen provided
that RPCs complete before timing out and all acceptors
in at least one Phase 1b and Phase 2 quorum are avail-
able.

• Consistency. At most one value can be chosen.

• Stability. Once a value is chosen, no other value may
be chosen.

Theorem 1. (Nontriviality) PANDO will only choose values
that have been proposed.

Proof. By definition, a value can only be chosen if it is
present at a Phase 2 quorum of acceptors. Values are only
stored at acceptors in response to Propose messages initiated
by proposers.

Theorem 2. (Liveness) PANDO will choose a a value pro-
vided that RPCs complete before timing out and all accep-
tors in at least one Phase 1b and Phase 2 quorum are avail-
able.

Proof. Let t refer to the (maximum) network and execution
latency for an RPC. Since PANDO has two rounds of execu-
tion, a write can complete within 2t as long as a requested
is uncontended. If all proposers retry RPCs using random-
ized exponential backoff, a time window of length ≥ 2t will
eventually open where only a Proposer P is executing. Since
no other proposer is sending any RPCs during this time, both
Phase 1 and Phase 2 will succeed for Proposer P .

Following the precedence of [37], we will show that
PANDO provides both consistency and stability by proving
that it provides a stronger guarantee.

Lemma 1. If a value v is chosen with proposal number p,
then for any proposal with proposal number p′ > p and
value v ′, v ′ = v .

Proof. Recall that PANDO proposers use globally unique
proposal numbers (Line 1); this makes it impossible for two
different proposals to share a proposal number p. Therefore,
if two proposals are both chosen, they must have different
proposal numbers. If v ′ = v then we trivially have the de-
sired property. Therefore, assume v ′ 6= v .

Without loss of generality, we will consider the smallest
p′ such that p′ > p and v ′ 6= v (minimality assumption).
We will show that this case always results in a contradiction:
either the Prepare messages for p′ will fail (and thus no Pro-
pose messages will ever be sent) or the proposer will adopt
and re-propose value v .

Let Q2,p be the Phase 2 quorum used for proposal number
p, and Qa,p′ be the Phase 1a quorum used for p′. By Quo-
rum Property 2, we know that |Q2,p ∩ Qa,p′ | is non-empty.
We will now look at the possible ordering of events at each
acceptor A in the intersection of these two quorums (Q2,p

and Qa,p′):

• Case 1: A receives Prepare(p′) before
Propose(p, . . .).

The highest proposal number at A would be p′ > p
by the time Propose(p, . . .) was processed, and so A
would reject Propose(p, . . .). However, we know that
this is not the case since A ∈ Q2,p , so this is a contra-
diction.

• Case 2: A receives Propose(p, . . .) before
Prepare(p′).

The last promised proposal number at A is q such that
p ≤ q < p′ (q > p′ would be a contradiction since
Prepare(p′) would fail even though A ∈ Qa,p′). By
our minimality assumption, we know that all proposals
z such that p ≤ z < p′ fail or re-propose v . Therefore,
the acceptor A responds with Promise(q , vidv , . . .).

At this point, the proposer has received at least one
Promise message with a non-empty value. Therefore, it does
not take the Phase 1 fast path and waits until it has heard
from a Phase 1b quorum (denoted Qb,p′). Using the same
logic as above, the proposer for p′ will receive a minimum
of k Promise messages each referencing value v since there
are k acceptors in Qb,p′ ∩Q2,p (Quorum Property 3). Since
the proposer has a minimum of k responses for v , it can re-
construct value v . Let q denote the highest proposal number
among all k responses.

Besides those in Qb,p′ ∩ Q2,p , other acceptors in Qb,p′

may return values that differ from v . We consider the pro-
posal number q ′ for each of these accepted values:

• Case 1: q ′ < q . The proposer for p′ will ignore the
value for q ′ since it uses the highest proposal number
for which it has k splits.

• Case 2: p′ < q ′. Not possible since Prepare(p′) would
have failed.

• Case 3: p < q ′ < p′. This implies that a
Propose(q ′, v ′′) was issued where v ′′ 6= v . This vi-
olates our minimality assumption.

Therefore, the proposer will adopt value v since it can re-
construct it (the proposer has k splits from the acceptors
in Qb,p′ ∩ Q2,p alone) and the highest returned proposal
number references it. This contradicts our assumption that
v ′ 6= v .

Theorem 3. (Consistency) PANDO will choose at most one
value.

Proof. Assume that two different proposals with proposal
numbers p and q are chosen. Since proposers use globally
unique proposal numbers, p 6= q . This implies that one of
the proposal numbers is greater than the other, assume that
q > p. By Lemma 1, the two proposals write the same
value.

Theorem 4. (Stability) Once a value is chosen by PANDO,
no other value may be chosen.

Proof. The proposal numbers used for any two chosen pro-
posals will not be equal. Thus, with the additional assump-
tion that acceptors store their state in durable storage, this
follows immediately from Lemma 1.

B TLA+ specification for PANDO reads and writes
In addition to our proof of correctness for PANDO’s write path, we have model checked PANDO’s correctness using TLA+ [39].
The purpose of this exercise was to mechanically verify PANDO’s safety guarantees under a number of scenarios.

We checked the following invariants: consistency and stability for writes, that any value marked chosen at an acceptor was
indeed chosen, and that successful reads only ever returned chosen values. The configurations modeled used 2–3 proposers
(and readers) that could write (read) 2–3 values to (from) 4–6 acceptors when splitting the data into 2–4 splits. We set up 2–3
quorums of each type (Phase 1a, Phase 1b, and Phase 2).

The TLA+ model checker considers all possible histories including those with message reordering and arbitrary (or infinite)
delay in delivering messages. When run on the specification for PANDO (below) and the configurations listed earlier, no
invariant violations were found.

MODULE Pando
EXTENDS Integers , TLC , FiniteSets

CONSTANTS Acceptors , Ballots , Values ,
Quorum1a, Quorum1b, Quorum2, K

ASSUME QuorumAssumption
∆
=

∧Quorum1a ⊆ SUBSET Acceptors
∧Quorum1b ⊆ SUBSET Acceptors
∧Quorum2 ⊆ SUBSET Acceptors
Overlap of 1

∧ ∀QA ∈ Quorum1a :
∀Q2 ∈ Quorum2 :
Cardinality(QA ∩Q2) ≥ 1

Overlap of K

∧ ∀QB ∈ Quorum1b :
∀Q2 ∈ Quorum2 :
Cardinality(QB ∩Q2) ≥ K

VARIABLES msgs , The set of messages that have been sent

maxPBal , maxPBal [a] is the highest promised ballot (proposal number) at acceptor a

maxABal , maxABal [a] is the highest accepted ballot (proposal number) at acceptor a

maxVal , maxVal [a] is the value for maxABal [a] at acceptor a

chosen, chosen[a] is the value that acceptor a heard was chosen (or else is None)

readLog readLog [b] is the value that was read during ballot b

vars
∆
= 〈msgs , maxPBal , maxABal , maxVal , chosen, readLog〉

None
∆
= CHOOSE v : v /∈ Values

Type invariants.

Messages
∆
=

[type : {“prepare”}, bal : Ballots]
∪ [type : {“promise”}, bal : Ballots , maxABal : Ballots ∪ { − 1},

maxVal : Values ∪ {None}, acc : Acceptors ,
chosen : Values ∪ {None}]

∪ [type : {“propose”}, bal : Ballots , val : Values ∪ {None},
op : {“R”, “W”}]

∪ [type : {“accept”}, bal : Ballots , val : Values , acc : Acceptors ,
op : {“R”, “W”}]

∪ [type : {“learn”}, bal : Ballots , val : Values]

TypeOK
∆
= ∧msgs ∈ SUBSET Messages
∧maxABal ∈ [Acceptors → Ballots ∪ { − 1}]
∧maxPBal ∈ [Acceptors → Ballots ∪ { − 1}]
∧maxVal ∈ [Acceptors → Values ∪ {None}]

∧ chosen ∈ [Acceptors → Values ∪ {None}]
∧ readLog ∈ [Ballots → Values ∪ {None}]
∧ ∀ a ∈ Acceptors : maxPBal [a] ≥ maxABal [a]

Initial state.

Init
∆
= ∧msgs = {}
∧maxPBal = [a ∈ Acceptors 7→ − 1]
∧maxABal = [a ∈ Acceptors 7→ − 1]
∧maxVal = [a ∈ Acceptors 7→ None]
∧ chosen = [a ∈ Acceptors 7→ None]
∧ readLog = [b ∈ Ballots 7→ None]

Send message m .

Send(m)
∆
= msgs ′ = msgs ∪ {m}

Prepare: The proposer chooses a ballot id and broadcasts prepare requests to all acceptors.
All writes start here.
Prepare(b)

∆
= ∧ ¬∃m ∈ msgs : (m.type = “prepare”) ∧ (m.bal = b)
∧ Send([type 7→ “prepare”, bal 7→ b])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Promise: If an acceptor receives a prepare request with ballot id greater than that of any prepare request which it has already responded to, then it responds to
the request with a promise. The promise reply contains the proposal (if any) with the highest ballot id that it has accepted.
Promise(a)

∆
=

∃m ∈ msgs :
∧m.type = “prepare”
∧m.bal > maxPBal [a]
∧ Send([type 7→ “promise”, acc 7→ a, bal 7→ m.bal ,

maxABal 7→ maxABal [a], maxVal 7→ maxVal [a],
chosen 7→ chosen[a]])

∧maxPBal ′ = [maxPBal EXCEPT ! [a] = m.bal]
∧ UNCHANGED 〈maxABal , maxVal , chosen, readLog〉

Propose (fast path): The proposer waits until it collects promises from a Phase 1a quorum of acceptors. If no previous value is found, then the proposer can
skip to Phase 2 with its own value.
ProposeA(b)

∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)
∧ ∃ v ∈ Values :
∧ ∃Q ∈ Quorum1a :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

IN

Check for promises from all acceptors in Q

∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a
Make sure no previous vals have been returned in promises

∧ ∀m ∈ Q1Msgs : m.maxABal = − 1
∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v , op 7→ “W”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Propose (slow path): The proposer waits for promises from a Phase 1b quorum of acceptors. If no value is found accepted, then the proposer can pick its own
value for the next phase. If any accepted coded split is found in one of the promises, the proposer detects whether there are at least K splits (for the particular
value) in these promises. Next, the proposer picks up the recoverable value with the highest ballot, and uses it for next phase.
ProposeB(b)

∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)
∧ ∃Q ∈ Quorum1b :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

Q1Vals
∆
= [v ∈ Values ∪ {None} 7→

{m ∈ Q1Msgs : m.maxVal = v}]
IN

Check that all acceptors from Q responded

∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a
∧ ∃ v ∈ Values :
∧ No recoverable value, use anything

∨ ∀ vv ∈ Values : Cardinality(Q1Vals [vv]) < K
Check if v is recoverable and of highest ballot

∨ Use previous value if K splits exist

∧ Cardinality(Q1Vals [v]) ≥ K
∧ ∃m ∈ Q1Vals [v] :

Ensure no other recoverable value has a higher ballot

∧ ∀mm ∈ Q1Msgs :
∨m.bal ≥ mm.bal
∨ Cardinality(Q1Vals [mm.maxVal]) < K

∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v , op 7→ “W”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

Phase 2: If an acceptor receives an accept request with ballot i, it accepts the proposal unless it has already responded to a prepare request having a ballot
greater than it does.
Accept(a)

∆
=

∧ ∃m ∈ msgs :
∧m.type = “propose”
∧m.bal ≥ maxPBal [a]
∧maxABal ′ = [maxABal EXCEPT ! [a] = m.bal]
∧maxPBal ′ = [maxPBal EXCEPT ! [a] = m.bal]
∧maxVal ′ = [maxVal EXCEPT ! [a] = m.val]
∧ Send([type 7→ “accept”, bal 7→ m.bal , acc 7→ a, val 7→ m.val ,

op 7→ m.op])
∧ UNCHANGED 〈chosen, readLog〉

ProposerEnd: If the proposer receives acknowledgements from a Phase 2 quorum, then it knows that the value was chosen and broadcasts this.

ProposerEnd(b)
∆
=

∧ ∃ v ∈ Values :
∧ ∃Q ∈ Quorum2 :

LET Q2msgs
∆
= {m ∈ msgs : ∧m.type = “accept”

∧m.bal = b
∧m.val = v
∧m.acc ∈ Q}

IN

Check for accept messages from all members of Q

∧ ∀ a ∈ Q : ∃m ∈ Q2msgs : m.acc = a
If this was in response to a read, log the result

∧ Read: log the result

∨ ∧ ∃m ∈ Q2msgs : m.op = “R”
∧ readLog ′ = [readLog EXCEPT ! [b] = v]

Write: don’t log the result

∨ (∀m ∈ Q2msgs : m.op = “W” ∧ UNCHANGED 〈readLog〉)
∧ Send([type 7→ “learn”, bal 7→ b, val 7→ v])
∧ UNCHANGED 〈maxABal , maxPBal , maxVal , chosen〉

Learn: A proposer has announced that value v is chosen.

Learn(a)
∆
=

∧ ∃m ∈ msgs :
∧m.type = “learn”
Process accept before learn, needed for ReadInv, not the protocol
∧maxABal [a] ≥ m.bal
∧ chosen ′ = [chosen EXCEPT ! [a] = m.val]
∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , readLog〉

Count how many splits of v we have received.

CountSplitsOf (resps , v)
∆
= Cardinality({m ∈ resps : m.maxVal = v})

FastRead: Check if any value returned from a Phase 1a quorum was chosen. If we have enough splits to reconstruct that value, then return immediately. If not,
wait for Phase 1b quorum. If we have a value that was marked chosen, return. Otherwise, perform a write-back.
FastRead(b)

∆
=

∧ ¬∃m ∈ msgs : (m.type = “propose”) ∧ (m.bal = b)
∧

Fastest path: Phase 1a quorum has k splits and the value is chosen
∨ ∧ ∃Q ∈ Quorum1a :

LET RMsgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

IN Check that all acceptors from Q responded
∧ ∀ a ∈ Q : ∃m ∈ RMsgs : m.acc = a
Check that we have k splits of a chosen value
∧ ∃m ∈ RMsgs :
∧m.chosen 6= None
∧ CountSplitsOf (RMsgs , m.chosen) ≥ K
∧ readLog ′ = [readLog EXCEPT ! [b] = m.chosen]

∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , chosen〉
Fast path: Phase 1b quorum has k splits and the value is chosen
∨ ∧ ∃Q ∈ Quorum1b :

LET RMsgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

IN Check that all acceptors from Q responded
∧ ∀ a ∈ Q : ∃m ∈ RMsgs : m.acc = a
Check that we have k splits of a chosen value
∧ ∃m ∈ RMsgs :
∧m.chosen 6= None
∧ CountSplitsOf (RMsgs , m.chosen) ≥ K
∧ readLog ′ = [readLog EXCEPT ! [b] = m.chosen]

∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , chosen〉
Slow path: Phase 1b recovery and write back
∨ ∧ ∃Q ∈ Quorum1b :

LET Q1Msgs
∆
= {m ∈ msgs : ∧m.type = “promise”

∧m.bal = b
∧m.acc ∈ Q}

Q1Vals
∆
= [v ∈ Values ∪ {None} 7→

{m ∈ Q1Msgs : m.maxVal = v}]
IN

Check that all acceptors from Q responded
∧ ∀ a ∈ Q : ∃m ∈ Q1Msgs : m.acc = a
∧ ∃ v ∈ Values :

Check if v is recoverable and of highest ballot
Use previous value if K splits exist

∧ Cardinality(Q1Vals [v]) ≥ K
∧ ∃m ∈ Q1Vals [v] :

Ensure no other recoverable value has a higher ballot
∧ ∀mm ∈ Q1Msgs :
∨m.bal ≥ mm.bal
∨ Cardinality(Q1Vals [mm.maxVal]) < K

readLog will be updated in ProposerEnd
∧ Send([type 7→ “propose”, bal 7→ b, val 7→ v ,

op 7→ “R”])
∧ UNCHANGED 〈maxPBal , maxABal , maxVal , chosen, readLog〉

No value recovered: Return None

∨ ∧ readLog ′ = [readLog EXCEPT ! [b] = None]
∧ UNCHANGED 〈msgs , maxPBal , maxABal , maxVal , chosen〉

Next state.

Next
∆
= ∨ ∃ b ∈ Ballots : ∨ Prepare(b)

∨ ProposeA(b)
∨ ProposeB(b)
∨ ProposerEnd(b)
∨ FastRead(b)

∨ ∃ a ∈ Acceptors : Promise(a) ∨Accept(a) ∨ Learn(a)

Spec
∆
= Init ∧2[Next]vars

Invariant helpers.

AllChosenWereAcceptedByPhase2
∆
=

∀ a ∈ Acceptors :
∨ chosen[a] = None
∨ ∃Q ∈ Quorum2 :
∀ a2 ∈ Q :
∃m ∈ msgs : ∧m.type = “accept”

∧m.acc = a2
∧m.val = chosen[a]

OnlyOneChosen
∆
=

∀ a, aa ∈ Acceptors :
(chosen[a] 6= None ∧ chosen[aa] 6= None) =⇒ (chosen[a] = chosen[aa])

VotedForIn(a, v , b)
∆
= ∃m ∈ msgs : ∧m.type = “accept”

∧m.val = v
∧m.bal = b
∧m.acc = a

ProposedValue(v , b)
∆
= ∃m ∈ msgs : ∧m.type = “propose”

∧m.val = v
∧m.bal = b
∧m.op = “W”

NoOtherFutureProposal(v , b)
∆
=

∀ vv ∈ Values :
∀ bb ∈ Ballots :
(bb > b ∧ ProposedValue(vv , bb)) =⇒ v = vv

ChosenIn(v , b)
∆
= ∃Q ∈ Quorum2 : ∀ a ∈ Q : VotedForIn(a, v , b)

ChosenBy(v , b)
∆
= ∃ b2 ∈ Ballots : (b2 ≤ b ∧ ChosenIn(v , b2))

Chosen(v)
∆
= ∃ b ∈ Ballots : ChosenIn(v , b)

Invariants.

LearnInv
∆
= AllChosenWereAcceptedByPhase2 ∧OnlyOneChosen

ReadInv
∆
= ∀ b ∈ Ballots : readLog [b] = None ∨ ChosenBy(readLog [b], b)

ConsistencyInv
∆
= ∀ v1, v2 ∈ Values : Chosen(v1) ∧ Chosen(v2) =⇒ (v1 = v2)

StabilityInv
∆
=

∀ v ∈ Values : ∀ b ∈ Ballots : ChosenIn(v , b) =⇒ NoOtherFutureProposal(v , b)

AcceptorInv
∆
=

∀ a ∈ Acceptors :
∧ (maxVal [a] = None) ≡ (maxABal [a] = − 1)
∧maxABal [a] ≤ maxPBal [a]
∧ (maxABal [a] ≥ 0) =⇒ VotedForIn(a, maxVal [a], maxABal [a])
∧ ∀ c ∈ Ballots :
c > maxABal [a] =⇒ ¬∃ v ∈ Values : VotedForIn(a, v , c)

