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Abstract

The popularity of big data and Al has led to many optimiza-
tions at different layers of distributed computation stacks.
Despite — or perhaps, because of — its role as the narrow waist
of such software stacks, the design of the execution engine,
which is in charge of executing every single task of a job,
has mostly remained unchanged. As a result, the execution
engines available today are ones primarily designed for low
latency and high bandwidth datacenter networks. When either
or both of the network assumptions do not hold, CPUs are
significantly underutilized.

In this paper, we take a first-principles approach toward
developing an execution engine that can adapt to diverse net-
work conditions. Sol, our federated execution engine archi-
tecture, flips the status quo in two respects. First, to mitigate
the impact of high latency, Sol proactively assigns tasks, but
does so judiciously to be resilient to uncertainties. Second, to
improve the overall resource utilization, Sol decouples com-
munication from computation internally instead of commit-
ting resources to both aspects of a task simultaneously. Our
evaluations on EC2 show that, compared to Apache Spark in
resource-constrained networks, Sol improves SQL and ma-
chine learning jobs by 16.4x and 4.2x on average.

1 Introduction

Execution engines form the narrow waist of modern data
processing software stacks (Figure 1). Given a user-level
intent and corresponding input for a job — be it running a SQL
query on a commodity cluster [9], scientific simulations on
an HPC environment [52], realtime stream processing [12],
or training an AI/ML algorithm across many GPUs [7] — an
execution engine orchestrates the execution of tasks across
many distributed workers until the job runs to completion
even in the presence of failures and stragglers.

Modern execution engines have primarily targeted dat-
acenters with low latency and high bandwidth networks.
The absence of noticeable network latency has popularized
the late-binding task execution model in the control plane
[10,36,43,48] — pick the worker which will run a task only
when the worker is ready to execute the task — which max-
imizes flexibility. At the same time, the impact of the net-
work on task execution time is decreasing with increasing
network bandwidth; most datacenter-scale applications today
are compute- or memory-bound [7,42]. The availability of
high bandwidth has led to tight coupling of a task’s roles to
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Figure 1: Execution engine forms the narrow waist between di-
verse applications and resources.

hide design complexity in the data plane, whereby the same
task reads remote input and computes on it too. Late-binding
before execution and tight coupling during execution work
well together when the network is well-provisioned.

Many emerging workloads, however, have to run on net-
works with high latency, low bandwidth, or both. Large orga-
nizations often perform interactive SQL and iterative machine
learning between on- and off-premise storage [4, 16,24,27].
For example, Google uses federated model training on glob-
ally distributed data subject to privacy regulations [11, 58];
telecommunications companies perform performance analy-
sis of radio-access networks (RAN) [30,31]; while others trou-
bleshoot their appliances deployed in remote client sites [39].
Although these workloads are similar to those running within
a datacenter, the underlying network can be significantly con-
strained in bandwidth and/or latency (§2). In this paper, we
investigate the impact of low bandwidth and high latency on
latency-sensitive interactive and iterative workloads.

While recent works have proposed solutions for bandwidth-
sensitive workloads, the impact of network constraints on
latency-sensitive workloads has largely been overlooked.
Even for bandwidth-sensitive workloads, despite many re-
source schedulers [28, 56], query planners [45, 50], or
application-level algorithms [24,57], the underlying execu-
tion engines of existing solutions are still primarily the ones
designed for datacenters. For example, Iridium [45], Tetrium
[28], and Pixida [33] rely on the execution engine of Apache
Spark [54], while many others (e.g., Clarinet [50], Geode [51])
are built atop the execution engine of Apache Tez [47].

Unfortunately, under-provisioned networks can lead to
large CPU underutilization in today’s execution engines. First,



in a high-latency network, late-binding suffers significant co-
ordination overhead, because workers will be blocked on
receiving updates from the coordinator; this leads to wasted
CPU cycles and inflated completion times of latency-sensitive
tasks. Indeed, late-binding of tasks to workers over the WAN
can slow down the job by 8.5x—30x than running it within the
local-area network (LAN). Moreover, for bandwidth-intensive
tasks, coupling the provisioning of communication and com-
putation resources at the beginning of a task’s execution leads
to head-of-line (HOL) blocking: bandwidth-sensitive jobs hog
CPUs even though they bottleneck on data transfers, which
leads to noticeable queuing delays for the rest.

By accounting for network conditions, we present a fed-
erated execution engine, Sol, which is API-compatible with
Apache Spark [54]. ! Our design of Sol, which can trans-
parently run existing jobs and WAN-aware optimizations in
other layers of the stack, is based on two high-level insights
to achieve better job performance and resource utilization.

First, we advocate early-binding control plane decisions
over the WAN to save expensive round-trip coordinations,
while continuing to late-bind workers to tasks within the LAN
for the flexibility of decision making. By promoting early-
binding in the control plane, we can pipeline different execu-
tion phases of the task. In task scheduling, we subscribe tasks
for remote workers in advance, which creates a tradeoff: bind-
ing tasks to a remote site too early may lead to sub-optimal
placement due to insufficient knowledge, but deferring new
task assignments until prior tasks complete leaves workers
waiting for work to do, thus underutilizing them. Our solution
deliberately balances efficiency and flexibility in scheduling
latency-bound tasks, while retaining high-quality scheduling
for latency-insensitive tasks even under uncertainties.

Second, decoupling the provisioning of resources for com-
munication and computation within data plane task execu-
tions is crucial to achieving high utilization. By introducing
dedicated communication tasks for data reads, Sol decou-
ples computation from communication and can dynamically
scale down a task’s CPU requirement to match its available
bandwidth for bandwidth-intensive communications; the re-
maining CPUs can be redistributed to other jobs with pending
computation.

Our evaluations show that Sol can automatically adapt to di-
verse network conditions while largely improving application-
level job performance and cluster-level resource utilization.
Using representative industry benchmarks on a 40-machine
EC2 cluster across 10 regions, we show that Sol speeds up
SQL and machine learning jobs by 4.9x and 16.4x on av-
erage in offline and online settings, respectively, compared
to Apache Spark in resource-constrained networks. Even in
datacenter environments, Sol outperforms Spark by 1.3x to
3.9x%. Sol offers these benefits while effectively handling
uncertainties and gracefully recovering from failures.

!Sol is available at https: //github.com/SymbioticLab/Sol.
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Figure 2: While execution engines are widely deployed on cloud
platforms, the underlying network conditions can be diverse in
latency and bandwidth.

2 Background and Motivation

2.1 Execution Engines

The execution engine takes a graph of tasks — often a directed
acyclic graph (DAG) — from the higher-level scheduler as
its primary input. Tasks performing the same computation
function on different data are often organized into stages, with
dependencies between the stages represented by the edges of
the execution DAG. Typically, a central coordinator in the
execution engine — often referred to as the driver program of
a job — interacts with the cluster resource manager to receive
required resources and spawns workers across one or more
machines to execute runnable tasks.” As workers complete
tasks, they notify the coordinator to receive new runnable
tasks to execute.

Design space. The design of an execution engine should be
guided by how the environment and workload characteristics
affect delays in the control plane (i.e., coordinations between
the coordinator and workers as well as amongst the workers)
and in the data plane (i.e., processing of data by workers).
Specifically, a task’s lifespan consists of four key components:

e Coordination time (t.00rq) represents the time for orches-
trating task executions across workers. This is affected
by two factors: network latency, which can vary widely
between different pairs of sites (Figure 2(a)), and the in-
herent computation overhead in making decisions. While
the latter can be reduced by techniques like reusing sched-
ules [37,49], the former is determined by the environment.

o Communication time (t.omn) represents the time spent in
reading input and writing output of a task over the network
and to the local storage.®> For the same amount of data,
time spent in communication can also vary widely based
on Virtual Machine (VM) instance types and LAN-vs-
WAN (Figure 2(b)).

o Computation time (tcomp) Tepresents the time spent in
running every task’s computation.

o Queuing time (fyueue) TEPresents the time spent waiting

2 A task becomes runnable whenever its dependencies have been met.
3Most transfers after the input-reading stages happen over the network.
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Figure 3: TPC query completion times in different network set-
tings using different execution engines (scale factor is set to 100).

for resource availability before execution. Given a fixed
amount of resources, tasks of one job may have to wait
for tasks of other jobs to complete.

We first take into account teomp, tcoord> and feomm in char-
acterizing the design of execution engines for a single task.
By assuming f.omp > tcoordstcomm (i-€., by focusing on the
execution of compute-bound workloads such as HPC [21], Al
training [7] and in many cases within datacenters), existing
execution engines have largely ignored two settings in the
design space.

First, the performance of jobs can be dominated by the
coordination time (i.€., fcoord > fcomm;tcomp), and more time
is spent in the control plane than the data plane. An exam-
ple of such a scenario within a datacenter would be stream
processing using mini-batches, where scheduling overhead
in the coordinator is the bottleneck [49]. As #.p0rq — O(100)

ms over the WAN, coordination starts to play a bigger role

even when scheduler throughput is not an issue. As ——2

Tcoord

1 .. . .
and 2™ decrease, e.g., in interactive analytics [30,31] and

coord
federated learning [11], coordination time starts to dominate
the end-to-end completion time of each task.

Second, in bandwidth-bound workloads, more time is likely
to be spent in communication than computation (i.e., fcomm >
tcoord > tcomp)- Examples of such a scenario include big data
jobs in resource-constrained private clusters [36] or across
globally distributed clouds [24, 45, 50, 51], and data/video
analytics in a smart city [25].

In the presence of multiple jobs, inefficiency in one job’s
execution engine can lead to inflated 74e4e for other jobs’
tasks. For latency-sensitive jobs waiting behind bandwidth-
sensitive ones, fyueue Can quickly become non-negligible.

2.2 Inefficiencies in Constrained Network Conditions

While there is a large body of work reasoning about the per-
formance of existing engines in high-bandwidth, low-latency
datacenters [41,42], the rest of the design space remains un-
explored. We show that existing execution engines suffer
significant resource underutilization and performance loss in
other settings.

=== LAN Setting

—— WAN Setting

CPU Util. (%)

Time (s)
Figure 4: CPU utilization throughout a machine learning job.

Performance degradation due to high latency. To quan-
tify the impact of high latency on job performance, we ana-
lyzed the individual query completion times of 110 queries on
two industrial benchmarks: TPC-DS and TPC-H. We use two
popular execution engines — Apache Spark [54] and Apache
Tez [47] — on a 10-site deployment; each site has 4 machines,
each with 16 CPU cores and 64 GB of memory. We consider
four network settings, each differing from the rest in terms of
either bandwidth or latency as follows: *

e Bandwidth: Each VM has a 10 Gbps NIC in the high-
bandwidth and 1 Gbps in the low-bandwidth setting.

e Latency: Latency across machines is <1 ms in the low-
latency setting, while latencies across sites vary from
0(10)—400 ms in the high-latency setting.

Figure 3 shows the distributions of average query comple-
tion times of Spark and Tez, where we use a dataset of scale
factor 100.> We found that the availability of more bandwidth
has little impact on query completion times; different query
plans and task placement decisions in Spark and Tez did not
improve the situation either. However, job completion times
in the high-latency setting are significantly inflated — up to
20.6x — than those in the low-latency setting. Moreover, we
observe high network latency can lead to inefficient use of
CPUs for a latency-bound machine learning job (Figure 4).

The root cause behind this phenomenon is the late-binding
of tasks to workers in the control plane. In existing execution
engines, decision making in the control plane, such as task
scheduling [50] and straggler mitigation [8], often requires
realtime information from data plane executions, whereas
data processing is initiated by control plane decisions. With
high coordination latency, this leads to wasted CPU cycles as
each blocks on acquiring updates from the other.

CPU underutilization due to low bandwidth. To under-
stand the impact of low bandwidth on resource efficiency, we
analyzed bandwidth-sensitive workloads using a scale factor
of 1000 on the same experimental settings as above.

Figure 5 reports both the CPU and network utilizations
throughout the execution of a representative query (query-

4We use the latency profile of 10 sites on EC2 and set a large TCP
window size to reach the network capacity [34]. For the high-bandwidth
setting and the low-bandwidth one, we refer to the available LAN bandwidth
on m4.10xlarge and m4.2xlarge instances, respectively.

5 A scale factor of X means a X GB dataset.
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Figure 5: Resource utilization over a bandwidth-bound query’s
lifespan (scale factor is set to 1000).

25 from the TPC-DS benchmark), which involves two large
shuffles (in stage 2 and stage 3) over the network. Dur-
ing task executions, large data reads over the network are
communication-intensive, while computations on the fetched
data are CPU-intensive. We observe that, when tasks are
bandwidth-constrained, their overall CPU utilization plum-
mets even though they continue to take up all the available
CPUs. This is due to the coupling of communication with
computation in tasks. In other words, the number of CPUs
involved in communication is independent of the available
bandwidth. The end result is head-of-line (HOL) blocking of
both latency- and bandwidth-sensitive jobs (not shown) by
bandwidth-bound underutilized CPUs of large jobs.

Shortcomings of existing works. Existing works on WAN-
aware query planning and task placement [28, 45, 50, 51]
cannot address the aforementioned issues because they focus
on managing and/or minimizing bandwidth usage during task
execution, not on the impact of latency before execution starts
or CPU usage during task execution.

3 Sol: A Federated Execution Engine

To address the aforementioned limitations, we present Sol, a
federated execution engine which is aware of the underlying
network’s characteristics (Figure 6). It is primarily designed
to facilitate efficient execution of emerging distributed work-
loads across a set of machines which span multiple sites (thus,
have high latency between them) and/or are interconnected by
a low bandwidth network. Sol assumes that machines within
the same site are connected over a low-latency network. As
such, it can perform comparably to existing execution engines
when deployed within a datacenter.

Design goals. In designing Sol, we target a solution with
the following properties:

e High-latency coordinations should be pipelined. Coordi-
nations between control and data planes should not stall
task executions. As such, Sol should avoid synchronous
coordination (e.g., workers blocking to receive tasks) to
reduce overall 7., for latency-bound tasks. This leads
to early-binding of tasks over high-latency networks.

o Underutilized resources should be released. Sol should
release unused resources to the scheduler, which can be
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Figure 6: Sol components and their interactions. Low-latency
sites synchronously coordinate within themselves and asyn-
chronously coordinates across high-latency links.

repurposed to optimize #y,.,. for pending tasks. This calls
for decoupling communication from computation in the
execution of bandwidth-intensive tasks without inflating
their teomm and feomp.

e Sol should adapt to diverse environments automatically.
The network conditions for distributed computation can
vary at different points of the design space. Sol should,
therefore, adapt to different deployment scenarios with
built-in runtime controls to avoid reinventing the design.

System components. At its core, Sol has three primary
components:

e Central Coordinator: Sol consists of a logically central-
ized coordinator that orchestrates the input job’s execution
across many remote compute sites. It can be located at
any of the sites; each application has its own coordina-
tor or driver program. Similar to existing coordinators, it
interacts with a resource manager for resource allocations.

e Site Manager: Site managers in Sol coordinate local
workers within the same site. Each site manager has a
shared queue, where it enqueues tasks assigned by the
central coordinator to the workers in this site. This allows
for late-binding of tasks to workers within the site and en-
sures high resource utilization, wherein decision making
can inherit existing designs for intra-datacenter systems.
The site manager also detects and tackles failures and
stragglers that are contained within the site.

o Task Manager: At a high level, the task manager is the
same as today: it resides at individual workers and man-
ages tasks. However, it manages compute and communi-
cation resources independently.

Figure 7 shows a high-level overview explaining the inter-
action among these components throughout our design in the
control plane (§4) and the data plane (§5).

4 Sol Control Plane

Modern execution engines primarily target datacenters with
low latency networks [7, 12,47,54], wherein late-binding of



> Operations in Central Coordinator

1: for Site s in all sites do
2:  while currentTaskNum(s) < targetQueLen(s) do > §4.3
3:  if Exist available tasks ¢ for scheduling to s then
4: Push 7 to Site Manager in s
5. else
6: Breakdown task dependency judiciously > §4.4
> Operations in Site Manager
7: if Receive task assignment then
Queue up task
9: else if Receive task completion then
10: Notify coordinator and schedule next task ¢
11:  if Task ¢ requires large remote read then
12:  Issue fetch request to the scheduled worker > §5.1
13:  else
14:  Launch task ¢
15: else if Input is ready for computation task 7 then
16: Activate and launch task ¢ >§5.3
> Operations in Task Manager
17: if Receive task assignment ¢ then
18: Execute task ¢
19: else if Detect task completion then
20: Notify Site Manager for new task assignment
21: else if Receive data fetch request then
22: Initiate communication task >§5.2

Figure 7: The interaction between the central coordinator, site
manager and task manager.

tasks to workers maximizes flexibility. For example, the co-
ordinator assigns new tasks to a worker after it is notified of
new resource availability (e.g., due to task completion) from
that worker. Moreover, a variety of on-demand communica-
tion primitives, such as variable broadcasts and data shuffles,
are also initiated lazily by the coordinator and workers. In
the presence of high latency, however, late-binding results in
expensive coordination overhead (§2.2).

In this section, we describe how Sol pushes tasks to sites to
hide the expensive coordination latency (§4.1), the potential
benefits of push-based execution (§4.2) as well as how we
address the challenges in making it practical; i.e., how to
determine the right number of tasks to push to each site (§4.3),
how to handle dependencies between tasks (§4.4), and how
to perform well under failures and uncertainties (§4.5).

4.1 Early-Binding to Avoid High-Latency Coordination

Our core idea to hide coordination latency (#.yor¢) Over high-
latency links is early-binding tasks to sites. Specifically, Sol
optimizes #.,0r4 between the central coordinator and remote
workers (i) by pushing and queuing up tasks in each site; and
(ii) by pipelining task scheduling and execution across tasks.

Figure 8 compares the control flow in traditional designs
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Figure 8: Task execution control flows in traditional designs vs.
Sol. In Sol, tasks (denoted by colored rectangles) are queued at a
site manager co-located with workers.
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Figure 9: Sol adopts the push-based model to pipeline task
scheduling and data fetch.

with that in Sol. In case of late-binding, workers have to wait
for new task assignments from the remote coordinator. In con-
trast, the site manager in Sol directly dispatches a task already
queued up in its local queue and asynchronously notifies the
coordinator of task completions as well as the resource status
of the site. The coordinator makes new task placement deci-
sions and queues up tasks in site managers asynchronously,
while workers in that site are occupied with task executions.

Furthermore, this execution model enables us to pipeline
teoora and teomm for each individual task’s execution. When
the coordinator assigns a task to a site, it notifies the corre-
sponding upstream tasks (i.e., tasks in the previous stage) of
this assignment. As such, when upstream tasks complete, they
can proactively push their latency-bound output partitions di-
rectly to the site where their downstream tasks will execute,
even though the control messages containing task placements
may still be on-the-fly. As shown in Figure 9, pull-based
data fetches experience three sequential phases of communi-
cation; in contrast, the scheduling of downstream tasks and
their remote data reads are pipelined in the push-based model,
improving their completion times.

4.2 Why Does Early-Binding Help?

Assume that the coordinator continuously allocates tasks to
a remote site’s k CPUs. For each task completion, the pull-
based model takes one RTT for the coordinator to receive
the task completion notification and then send the next task
assignment; during this period, the task is queued up in the
coordinator for scheduling. Hence, on average, % RTTs are
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wasted before the i’ task runs. The push-based model can
save up to % RTTs for the i"” task by pipelining inter-task
assignments and executions. Our analysis over 44 datacenters
using the measured inter-site latencies shows that, compared
to late-binding, the push-based model can achieve an average
improvement of 153 ms for the data fetch of every down-
stream task (more details in Appendix A). Such gaps become
magnified at scale with a large number of small tasks, e.g., a
large fan-out, latency-sensitive job.

One may consider pulling multiple tasks for individual
workers at a time, but the push model provides more flexibility.
Pushing from the coordinator can react to online scheduling
better. When tasks arrive in an online manner, multiple tasks
may not be available for pulling at a time. e.g., when a new
task keeps arriving right after serving a pull request, pulling
multiple tasks degenerates into pulling one by one.

Moreover, by late-binding task assignments within the site,
our site-manager approach enables more flexibility than push-
ing tasks to individual workers (i.e., maintaining one queue
per worker). To evaluate this, we ran three workloads across
10 EC2 sites, where all workloads have the same average task
duration from TPC-DS benchmarks but differ in their distribu-
tions of task durations. Figure 10 shows that the site-manager
approach achieves superior job performance owing to better
work balance, particularly when task durations are skewed.

4.3 How to Push the Right Number of Tasks?

Determining the number of queued-up tasks for site managers
is crucial for balancing worker utilization versus job com-
pletion times. On the one hand, queuing up too few tasks
leads to underutilization, inflating 74ye4e due to lower system
throughput. On the other hand, queuing up too many leads to
sub-optimal work assignments because of insufficient knowl-
edge when early-binding, which inflates job completion times
as well (see Appendix B for more details).

Our target: Intuitively, as long as a worker is not waiting to
receive work, queuing more tasks does not provide additional
benefit for improving utilization. To fully utilize the resource,
we expect the total execution time of the queued-up tasks
will occupy the CPU before the next task assignment arrives,
which is the key to strike the balance between utilization and
job performance.

Our solution: When every task’s duration is known, the
number of queued-up tasks can adapt to the instantaneous
load such that the total required execution time of the queued-
up tasks keeps all the workers in a site busy, but not pushing
any more to retain maximum flexibility for scheduling across
sites. However, individual task durations are often highly
skewed in practice [8], while the overall distribution of task
durations is often stable over a short period [20,44].

Even without presuming task-specific characteristics or
distributions, we can still approximate the ideal queue length
at every site dynamically for a given resource utilization target.
We model the total available cycles in each scheduling round
as our target, and the duration of each queued-up task is a
random variable. This can be mapped into a packing problem,
where we have to figure out how many random variables to
sum up to achieve the targeted sum.

‘When the individual task duration is not available, we ex-
tend Hoeffding’s inequality, and inject the utilization target
into our model to determine the desired queue length (Ap-
pendix C for a formal result and performance analysis). Ho-
effding’s inequality is known to characterize how the sum of
random variables deviates from its expected value with the
minimum, the average, and the maximum of variables [23].
We extend it but filter out the outliers in tasks, wherein we
rely on three statistics — 5th percentile, average, and 95th
percentile (which are often stable) — of the task duration by
monitoring the tasks over a period. As the execution proceeds,
the coordinator in Sol inquires the model to generate the target
queue size, whereby it dynamically pushes tasks to each site
to satisfy the specified utilization. Note that when the network
latency becomes negligible, our model outputs zero queue
length as one would expect.

4.4 How to Push Tasks with Dependencies?

In the presence of task dependencies, where tasks may depend
on those in their parent stage(s), pushing tasks is challenging,
since it creates a tradeoff between the efficiency and qual-
ity of pipelining. For latency-sensitive tasks, we may want
to push downstream tasks to save round-trip coordinations
even before the upstream output is available. However, for
bandwidth-intensive tasks, pushing their downstream tasks
will not bring many benefits; this may even miss optimal
task placements due to insufficient knowledge about the out-
puts from all upstream tasks [45, 50]. Sol, therefore, has to
reconcile between latency- and bandwidth-sensitive tasks at
runtime without presuming task properties.

To achieve desired pipelining efficiency for latency-bound
tasks, Sol speculates the best placements for downstream
tasks. Our straw-man heuristic is first pushing the downstream
task to the site with the least work, with an aim to minimize
the queueing time on the site. Moreover, Sol can refine its
speculation by learning from historical trends (e.g., recurring
jobs) or the iterative nature of many jobs. For example, in
stream processing and machine learning, the output partitions
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Figure 12: (b) The recovery process is shown in red. (0) W, detects
large output, and sends CANCEL message to the coordinator C
Jor task rescheduling. (1) Upon receiving the update, C waits un-
til it gathers required information, then reschedules task, and (3)
cancels task in W,.

computed for every batch are largely similar [55], so are their
task placements [49]. As such, Sol can reuse the placement
decisions in the past run.

However, even when a bandwidth-intensive task is pushed
to a suboptimal site, Sol can gracefully retain the scheduling
quality via worker-initiated re-scheduling. Figure 12 shows
the control flow of the recovery process in Sol and the base-
line. In Figure 12(b), we push upstream tasks to workers W;
and W,, and downstream tasks are pushed only to W,. As
the upstream task in W proceeds, the task manager detects
large output is being generated, which indicates we are in the
regime of bandwidth-intensive tasks. (0) Then W; notifies the
coordinator C of task completion and a CANCEL message
to initiate rescheduling for the downstream task. (1) Upon re-
ceiving the CANCEL message, the coordinator will wait until
it collects output metadata from W, and W,. The coordinator
then reschedules the downstream task, and (2) notifies W,
to cancel the pending downstream task scheduled previously.
Note that the computation of a downstream task will not be
activated unless it has gathered the upstream output.

As such, even when tasks are misclassified, Sol performs
no worse than the baseline (Figure 12(a)). First, the recovery
process does not introduce more round-trip coordinations due
to rescheduling, so it does not waste time. Moreover, even in
the worst case, where all upstream tasks have preemptively
pushed data to the downstream task by mistake, the total
amount of data transfers is capped by the input size of the
downstream. However, note that the output is pushed only if it
is latency-sensitive, so the amount of wasted bandwidth is also
negligible as the amount of data transfers is latency-bound.

4.5 How to Handle Failures and Uncertainties?

Fault tolerance and straggler mitigation are enforced by the
local site manager and the global coordinator. Site managers
in Sol try to restart a failed task on other local workers; failures
of long tasks or persistent failures of short tasks are handled
via coordination with the remote coordinator. Similarly, site
managers track the progress of running tasks and selectively
duplicate small tasks when their execution lags behind. Sol
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Figure 13: High-level overview of data plane decoupling.

can gracefully tolerate site manager failures by redirecting
workers’ control messages to the central coordinator, while a
secondary site manager takes over (§7.5).

Moreover, Sol can guarantee a bounded performance loss
due to early-binding even under uncertainties. To ensure a
task at the site manager will not experience arbitrarily large
queueing delay, the site manager can withdraw the task as-
signment when the task queueing delay on this site exceeds A.
As such, the total performance loss due to early-binding is (A
+ RTT), since it takes one RTT to push and reclaim the task.

5 Decoupling in the Data Plane

In existing execution engines, the amount of CPU allocated
to a task when it is reading data is the same as when it later
processes the data. This tight coupling between resources
leads to resource underutilization (§2.2). In this section, we
introduce how to improve ?y,e4e by mitigating HOL blocking.

5.1 How to Decouple the Provisioning of Resource?

To remove the coupling in resource provisioning, Sol intro-
duces dedicated communication tasks,® which fetch task input
from remote worker(s) and deserialize the fetched data, and
computation tasks, which perform the computation on data.
The primary goal of decoupling is to scale down the CPU
requirements when multiple tasks have to fetch data over
low-bandwidth links.

Communication and computation tasks are internally man-
aged by Sol without user intervention. As shown in Figure 13,
(D when a task is scheduled for execution, the site manager
checks its required input for execution and reserves the pro-
visioned resource on the scheduled worker. @ Bandwidth-
insensitive tasks will be dispatched directly to the worker to
execute. @ However, for tasks that need large volumes of
remote data, the site manager will notify the task manager
on the scheduled worker to set up communication tasks for
data preparation. At the same time, the corresponding
computation tasks be marked as inactive and do not start their
execution right away. Once input data is ready for computa-
tion, the site manager will activate corresponding computation
tasks to perform computation on the fetched data.

®Each communication task takes one CPU core by default in our design.



Although decoupling the provisioning of computation and
communication resource will not speed up individual tasks,
it can greatly improve overall resource utilization. When the
input for a task’s computation is being fetched by the com-
munication task, by oversubscribing multiple computation
tasks’ communication to fewer communication tasks, Sol can
release unused CPUs and repurpose them for other tasks. In
practice, even the decoupled job can benefit from its own
decoupling; e.g., when tasks in different stages can run in
parallel, which is often true for jobs with complicated DAGs,
computation tasks can take up the released CPUs from other
stages in decoupling.

5.2 How Many Communication Tasks to Create?

Although decoupling is beneficial, we must avoid hurting the
performance of decoupled jobs while freeing up CPUs. A
key challenge in doing so is to create the right number of
communication tasks to fully utilize the available bandwidth.
Creating too many communication tasks will hog CPUs, while
creating too few will slow down the decoupled job.

We use a simple model to characterize the number of re-
quired communication tasks. There are two major operations
that communication tasks account for: (i) fetch data with CPU
cost Cp/p every time unit; (i) deserialize the fetched data si-
multaneously with CPU cost Cyege, in unit time. When the
decoupling proceeds with I/O bandwidth B, the total require-
ment of communication tasks N can be determined based on
the available bandwidth (N = B x (Cj/0 + Ceser))-

Referring to the network throughput control, we use an
adaptive tuning algorithm. When a new task is scheduled for
decoupling, the task manager first tries to hold the provisioned
CPUs to avoid resource shortage in creating communication
tasks. However, the task manager will opportunistically can-
cel the launched communication task after its current fetch
request completes, and reclaim its CPUs if launching more
communication tasks does not improve bandwidth utilization
any more.” During data transfers, the task manager moni-
tors the available bandwidth using an exponentially weighted
moving average (EWMA).® As such, the task manager can
determine the number of communication tasks required cur-
rently: Neyyren: = [% X Nyig | Therefore, it will launch
more communication tasks when more bandwidth is available
and the opposite when bandwidth decreases. Note that the
number of communication tasks is limited by the total provi-
sioned CPUs for that job to avoid performance interference.

5.3 How to Recover CPUs for Computation?

Sol must also ensure that the end-to-end completion time on
computation experiences negligible inflation. This is because
when the fetched data is ready for computation, the decoupled

TThis introduces little overhead, since the data fetch is in a streaming
manner, wherein the individual block is small.

8 Beurrent = O Bineasured + (1 — Q) Boyg, where o is the smoothing factor
(o0 = 0.2 by default) and B denotes the available bandwidth over a period.
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Figure 14: Three strategies to manage decoupled jobs. We adopt
the Greedy strategy: D when the downstream tasks start, they hold
the reserved CPUs. Q But the task manager will reclaim the un-
used CPUs, and 3 activate the computation task once its input
data is ready. The first trough marks the stage boundary.

job may starve if continuously arriving computation tasks
take up its released computation resources.

We refer to not decoupling as the baseline strategy, while
waiting for the entire communication stage to finish as the
lazy strategy. The former wastes resources, while the latter
can hurt the decoupled job. Figure 14 depicts both.

Instead, Sol uses a greedy strategy, whereby as soon as
some input data becomes ready (from upstream tasks), the site
manager will prioritize the computation task corresponding
to that data over other jobs and schedule it. As such, we can
gradually increase its CPU allocation instead of trying to
acquire all at once or holding onto all of them throughout.

5.4 Who Gets the Freed up CPUs?

Freed up CPUs from the decoupled jobs introduce an addi-
tional degree of freedom in scheduling. Resource schedulers
can assign them in a FIFO or fair manner. As the duration of
communication tasks can be estimated by the remaining data
fetches and the available bandwidth, the scheduler can plan
for the extra resources into the future, e.g., similar to [19].

6 Implementation

While our design criteria are not married to specific execution
engines, we have implemented Sol in a way that keeps it
API compatible with Apache Spark [2] in order to preserve
existing contributions in the big data stack.

Control and Data Plane To implement our federated archi-
tecture, we add site manager modules to Spark, wherein each
site manager keeps a state store for necessary metadata in task
executions, and the metadata is shared across tasks to avoid
redundant requests to the remote coordinator. The central
coordinator coordinates with the site manager by heartbeat
as well as the piggyback information in task updates. During
executions, the coordinator monitors the network latency us-
ing EWMA in a one second period. This ensures that we are
stable despite transient latency spikes. When the coordinator
schedules a task to the site, it assigns a dummy worker for the
pipelining of dependent tasks (e.g., latency-bound output will
be pushed to the dummy worker). Similar to delay scheduling,
we set the queueing delay bound A to 3 seconds [56]. Upon
receiving the completion of upstream tasks, the site manager



can schedule the downstream task more intelligently with late-
binding. Meanwhile, the output information from upstream
tasks is backed up in the state store until their completions.

Support for Extensions Our modifications are to the core
of Apache Spark, so users can enjoy existing Spark-based
frameworks on Sol without migrations of their codebase.
Moreover, for recent efforts on WAN-aware optimizations,
Sol can support those more educated resource schedulers or
location-conscious job schedulers by replacing the default,
but further performance analysis of higher-layer optimizations
is out of the scope of this paper. To the best of our knowl-
edge, Sol is the first execution engine that can optimize the
execution layer across the design space.

7 Evaluation

In this section, we empirically evaluate Sol through a series
of experiments using micro and industrial benchmarks. Our
key results are as follows:

e Sol improves performance of individual SQL and machine
learning jobs by 4.9x—11.5x w.r.t. Spark and Tez execu-
tion engines in WAN settings. It also improves streaming
throughput by 1.35x-3.68 x w.r.t. Drizzle (§7.2).

e In online experiments, Sol improves the average job per-
formance by 16.4 x while achieving 1.8 x higher utiliza-
tion (§7.3).

e Even in high bandwidth-low latency (LAN) setting, Sol
improves the average job performance by 1.3x w.r.t.
Spark; its improvement in low bandwidth-low latency
setting is 3.9x (§7.4).

e Sol can recover from failures faster than its counterparts,
while effectively handling uncertainties (§7.5).

7.1 Methodology

Deployment Setup We first deploy Sol in EC2 to evaluate
individual job performance using instances distributed over
10 regions.” Our cluster allocates 4 m4.4xlarge instances in
each region. Each has 16 vCPUs and 64GB of memory. To in-
vestigate Sol performance on multiple jobs in diverse network
settings, we set up a 40-node cluster following our EC2 set-
ting, and use Linux Traffic Control to perform network traffic
shaping to match our collected profile from 10 EC2 regions.

Workloads We use three types of workloads in evaluations:

1. SQL: we evaluate 110 industry queries in TPC-DS/TPC-
H benchmarks [5, 6]. Performance on them is a good
demonstration of how good Sol would perform in real-
world applications handling jobs with complicated DAGs.

2. Machine learning: we train three popular federated learn-
ing applications: linear regression, logistic regression, and
k-means, from Intel’s industry benchmark [26]. Each train-
ing data consists of 10M samples, and the training time

9California, Sydney, Oregon, Ohio, Tokyo, Mumbai, Seoul, Singapore,
Sao Paulo and Frankfurt.

of each iteration is dominated by computation.

3. Stream processing: we evaluate the maximum throughput
that an execution design can sustain for WordCount and
TopKCount while keeping the end-to-end latency by a
given target. We define the end-to-end latency as the time
from when records are sent to the system to when results
incorporating them appear.

Baselines We compare Sol to the following baselines:

1. Apache Spark [54] and Apache Tez [47]: the mainstream
execution engines for generic workloads in datacenter and
wide-area environments.

2. Drizzle [49]: a recent engine tailored for streaming appli-
cations, optimizing the scheduling overhead.

Metrics Our primary metrics to quantify performance are
the overarching user-centric and operator-centric objectives,
including job completion time (JCT) and resource utilization.

7.2 Performance Across Diverse Workloads in EC2

In this section, we evaluate Sol’s performance on individual
jobs in EC2, with query processing, machine learning, and
streaming benchmarks.

Sol outperforms existing engines Figure 15 shows the dis-
tribution of query completion times of 110 TPC queries in-
dividually on (10, 100, 1000) scale factor datasets. As ex-
pected, Sol and Spark outperform Tez by leveraging their
in-memory executions. Meanwhile, Sol speeds up individual
queries by 4.9x (11.5x) on average and 8.6x (23.3 %) at the
95th percentile over Spark (Tez) for the dataset with scale
factor 10. While these queries become more bandwidth- and
computation- intensive as we scale up the dataset, Sol can
still offer a noticeable improvement of 3.4x and 1.97x on
average compared to Spark on datasets with scale factors 100
and 1000, respectively. More importantly, Sol outperforms
the baselines across all queries.

Sol also benefits machine learning and stream processing.
For such predictable workloads, Sol pipelines the scheduling
and data communication further down their task dependencies.
Figure 16 reports the average duration across 100 iterations
in machine learning benchmarks, where Sol improves the
performance by 2.64x-3.01x w.r.t. Spark.

Moreover, Sol outperforms Drizzle [49] in streaming work-
loads. Figure 17 shows that Sol achieves 1.35x-3.68 x higher
throughput than Drizzle. This is because Sol follows a push-
based model in both control plane coordinations and data
plane communications to pipeline round-trips for inter-site
coordinations, while Drizzle optimizes the coordination over-
head between the coordinator and workers. Allowing a larger
target latency improves the throughout, because the fraction
of computation time throughout the task lifespan increases,
and thus the benefits from Sol become less relevant.

Sol is close to the upper bound performance To explore
how far Sol is from the optimal, we compare Sol’s perfor-
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mance in the high latency setting against Sol in a hypotheti-
cal latency-free setting '° , which is a straightforward upper
bound on its performance. While high latencies lead to an
order-of-magnitude performance degradation on Spark, Sol is
effectively approaching the optimal. As shown in Figure 15
and Figure 16, Sol’s performance is within 3.5 x away from
the upper bound. As expected in Figure 15(c), this perfor-
mance gap narrows down as Sol has enough work to queue-up
for hiding the coordination delay.

7.3 Online Performance Breakdown

So far we have evaluated Sol in the offline setting with indi-
vidual jobs. Here we move on to evaluate Sol with diverse
workloads running concurrently and arriving in an online
fashion with our cluster. Specifically, we evaluate Sol in an
online setting, where we run 160 TPC queries — randomly
drawn from the (10, 100)-scale TPC benchmarks — run as

10We create a 40-node cluster in a single EC2 region.

(b) Sol
Figure 18: Resource utilization over time.

foreground, interactive jobs, and bandwidth-intensive Cloud-

Sort jobs [3] — each has 200 GB or 1 TB GB input — in the

background. The TPC queries are submitted following a Pois-

son process with an average inter-arrival time of 10 seconds,

while the CloudSort jobs are submitted every 300 seconds.
We evaluate Sol and Spark using two job schedulers:

1. FIFO: Jobs are scheduled in the order of their arrivals,
thus easily resulting in Head-of-Line (HOL) blocking;

2. Fair sharing: Jobs get an equal share of resources, but the
execution of early submitted jobs will be prolonged.

These two schedulers are prevalent in real deployments [1,22],
especially when job arrivals and durations are unpredictable.

Improvement of resource utilization Figure 18 shows a
timeline of normalized resource usage for both network band-
width and total CPUs with the FIFO scheduler. A groove in
CPU utilization and a peak in network utilization dictate the
execution of bandwidth-intensive background jobs. Similarly,
a low network utilization but high CPU utilization implicate
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the execution of foreground jobs. We observe Sol improves
the CPU utilization by 1.8 over Spark. The source of this
improvement comes from both control and data planes: (i) Sol
pipelines high-latency coordinations, and thus workers are
busy in running tasks all the time. (ii) Sol flexibly repurposes
the idle CPU resources in the presence of bandwidth-intensive
jobs, thus achieving higher utilizations by orchestrating all
jobs. Note that the CPU resource is not always fully satu-
rated in this evaluation, because the cluster is not extremely
heavy-loaded given the arrival rate. Therefore, we believe
Sol can provide even better performance with heavy work-
loads, wherein the underutilized resource can be repurposed
for more jobs with decoupling. Results were similar for the
fair scheduler too.

Improvement of JCTs Figure 19(a) and Figure 19(b) re-
port the distribution of job completion times with FIFO and
fair schedulers respectively. The key takeaways are the follow-
ing. First, simply applying different job schedulers is far from
optimal. With the FIFO scheduler, when CloudSort jobs are
running, all the frontend jobs are blocked as background jobs
hog all the available resources. While the fair scheduler miti-
gates such job starvation by sharing resource across jobs, it
results in a long tail as background jobs are short of resources.
Instead, Sol achieves better job performance by improving
both the intra-job and inter-job completions in the task exe-
cution level: (i) Early-binding in the control plane improves
small jobs, whereby the cluster can finish more jobs in a given
time. Hence, even the simple pipelining can achieve an aver-
age improvement of 2.6 x with the FIFO scheduler and 2.5 x
with the fair scheduler. (ii) With data plane decoupling, the
latency-sensitive jobs can temporarily enjoy under-utilized
resource without impacting the bandwidth-intensive jobs. We
observe the performance loss of bandwidth-intensive job is
less than 0.5%. As the latency-sensitive jobs complete faster,
bandwidth-intensive jobs can take up more resource. As such,
Sol further improves the average JCTs w.r.t. Spark with both
FIFO (average 16.4x) and fair schedulers (average 8.3 ).

7.4 Sol’s Performance Across the Design Space

We next rerun the prior online experiment to investigate Sol’s
performance in different network conditions with our cluster.
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Figure 21: Sol performance under latency variations.

High bandwidth-low latency network In this evaluation,
each machine has 10 Gbps bandwidth, and the latency across
machines is <1 ms. Figure 20 shows the distribution of JCTs.
The benefits of data plane decoupling depend on the time
spent on data exchanges over the network. Although jobs are
prone to finishing faster in this favorable environments, Sol
can still improve over Spark by 1.3 x on average by mitigating
the HOL blocking with the decoupling in task executions.

Low bandwidth-low latency network In practice, users
may deploy cheap VMs to perform time-insensitive jobs due
to budgetary constraints. We now report the JCT distribution
in such a setting, where each machine has 1 Gbps low band-
width and negligible latency. As shown in Figure 20(b), Sol
largely outperforms Spark by 3.9x. This gain is again due
to the presence of HOL blocking in Spark, where bandwidth-
intensive jobs hog their CPUs when tasks are reading large
output partitions over the low-bandwidth network.

Note that the high latency-high bandwidth setting rarely
exists. As such, Sol can match or achieve noticeable improve-
ment over existing engines across all practical design space.

7.5 Sol’s Performance Under Uncertainties

As a network-aware execution engine, Sol can tolerate differ-
ent uncertainties with its federated design.

Uncertainties in network latency While Sol pushes tasks
to site managers with early-binding under high network la-
tency, its performance is robust to latency jitters. We evaluate
Sol by continuously feeding our cluster with inference jobs;
each scans a 30 GB dataset and the duration of each task is
around 100 ms. We snapshot a single site experiencing tran-
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sient or lasting latency variations. As shown in Figure 21,
Sol proceeds more tasks than Spark with early-binding of
tasks. Moreover, Sol can efficiently react to RTT variations
by adaptively tuning its queue size.

Uncertainties in failure Figure 22 compares Sol’s perfor-
mance with Spark under different failures. In this evaluation,
we train a long running linear regression in our 10-site deploy-
ment, and each iteration performs two stages: training on the
data and the aggregation of updates. When the site manager
fails (a), Sol restarts the site manager on other local machines,
and reschedules the missing queued-up tasks. The recovery
of site managers is pipelined with task executions, experi-
encing little overhead in job performance. Task failures (b)
and machine failures (c) in Spark require a tight coordination
with the remote coordinator, but Sol handles such failures by
coordinating the site manager. Upon detecting task failures,
the site manager restarts the task on other locally available
machines with its metadata, while asynchronously notifying
the coordinator. As such, Sol suffers little overhead by hiding
the failures silently. Although the coordinator needs to take
charge of rescheduling in both Sol and Spark under site-wide
failures (d), tasks in Sol complete faster.

8 Discussion and Future Work

Fine-grained queue management. By capturing the range
of task durations, Sol pushes the right number of tasks to site
managers at runtime. However, Hoeffding’s inequality can
be suboptimal, especially when the variance of task dura-
tions becomes much greater than their average [23]. Further
investigations on the queue management of site managers
are needed. To this end, one possible approach is to build a
context-aware machine learning model (e.g., reinforcement
learning) to decide the optimal queue length [13].

Performance analysis of geo-aware efforts. As the first
federated execution engine for diverse network conditions, Sol
can serve a large body of existing efforts for geo-distributed
data analytics [28,45,50]. Although these works do not tar-
get latency-bound tasks, for which Sol shows encouraging
improvements with control plane optimizations, it would be
interesting to investigate Sol’s improvement for bandwidth-
intensive workloads after applying techniques from existing
geo-distributed frameworks.

9 Related Work

Geo-distributed storage and data analytics Numerous ef-
forts strive to build frameworks operating on geo-distributed
data. Recent examples include geo-distributed data storage
[35,53] and data analytics frameworks [4,24]. Geode [51]
aims at generating query plans that minimize data transfers
over the WAN, while Clarinet [50] and Iridium [45] develop
the WAN-aware query optimizer to optimize query response
time subject to heterogeneous WAN bandwidth. These op-
timizations for data analytics lie on the scheduler layer and
could transparently leverage Sol for further gains (§6).

Data Processing Engines The explosion of data volumes
has fostered the world of MapReduce-based parallel computa-
tions [18]. Naiad [40] and Flink [12] express data processing
as pipelined fault-tolerant data flows, while the batch process-
ing on them performs similar to Spark [54]. The need for ex-
pressive user-defined optimizations motivates Dryad [29] and
Apache Tez [47] to enable runtime optimizations on execution
plans. These paradigms are designed for well-provisioned net-
works. Other complementary efforts focus on reasoning about
system performance [41,42], or decoupling communication
from computation to further optimize data shuffles [14, 15].
Our work bears some resemblance, but our focus is on design-
ing a network-aware execution engine.

Speeding up data-parallel frameworks Although Nim-
bus [37] and Drizzle [49] try to speed up execution en-
gines, they focus on amortizing the computation overhead
of scheduling for iterative jobs. Hydra [17] democratizes the
resource management for jobs across multiple groups. While
Yaqg-c [46] discusses the tradeoff between utilization and job
performance in queue management, its solution is bound to
specific task durations without dependencies. Moreover, we
optimize task performance inside execution engines.

10 Conclusion

As modern data processing expands due to changing work-
loads and deployment scenarios, existing execution engines
fall short in meeting the requirements of diverse design space.
In this paper, we explored the possible designs beyond those
for datacenter networks and presented Sol, a federated exe-
cution engine that emphasizes an early-binding design in the
control plane and decoupling in the data plane. In comparison
to the state-of-the-art, Sol can match or achieve noticeable
improvements in job performance and resource utilization
across all practical points in the design space.
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A Benefits of Pipelining
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Figure 23: Improvement of Push-based Model in (§4.2) .

To investigate the benefit of pipelining the scheduling and
data fetch of a downstream task, we assume zero queuing time
and emulate the inter-site coordinations with our measured
latency across 44 datacenters on AWS, Azure and Google
Cloud. We define the improvement as the difference between
the duration of the pull-based model and that of our proposed
push-based model for every data fetch (Figure 9). Our results
in Figure 23 report we can achieve an average improvement
of 153 ms.

Understandably, such benefit is more promising in consid-
eration of the task queuing time, as pushing the remote data
is even pipelined with the task spin-wait for scheduling.

B Impact of Queue Length

We quantify the impact of queue size with the aforementioned
three workloads (in (§4.2)). In this experiment, we analyze
three distinct sites, where the network latency from Site A, B
and C to the centralized coordinator is 130 ms, 236 ms and
398 ms, respectively. As shown in Figure 24, queuing up too
many or too few tasks can hurt job performance.

C Determining the Queue Length

Lemma 1. For a given utilization level 8 and confidence
interval o (i.e., Pr[Util. > 8] > a), the queue length K for S
working slots satisfies:

C 1
K>M->+ m\/(a)wgv —4MCDne (1)

where Ds;;, and Dosy, denote the Sth and 95th percentile of
task durations respectively, and Dy, denotes the average task

. _ 2
duration. M = BR&I% ,C= %(D%#me‘) loga. The first

term M depicts the expectation, while the rest capture the
skewness of distributions and confidence.

This is true for any distribution of task durations. Unfor-
tunately, we omit the proof for brevity. Dy, D5, and Dos;p,
are often stable in a large cluster, and thus available from the
historical data. o is the configurable confidence level, which
is often set to 99% [32,38], and & is set to > 100% to guaran-
tee full utilization. Note that from Eq. 1, when task durations
follow the uniform distribution, our model ends up with the
expectation M. Similarly, when the RTT becomes negligible,
this outputs zero queue length.
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Figure 24: Impact of Queue Size on Job Completion Time (JCT).

Our evaluations show that this model can provide encourag-
ing performance, wherein we repeated the experiments with
the workloads mentioned in §4.3. We provide the results for
workloads with Pareto and TPC-DS distributions by injecting
different utilizations in theory, since results for the Uniform
distribution are concentrated on a single point (i.e., the ex-
pectation M). As shown in Figure 25, the queue length with
100% utilization target locates in the sweet spot of JCTs.
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Figure 25: JCT performance with different utilization targets.

Note that when more task information is available, one
can refine this range better; e.g., the bound of Eq. (1) can be
improved with Chernoff’s inequality when the distribution of
task durations is provided.
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