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Abstract

Spiking neural networks (SNNis) are positioned to enable spatio-temporal informa-
tion processing and ultra-low power event-driven neuromorphic hardware. How-
ever, SNNGs are yet to reach the same performances of conventional deep artificial
neural networks (ANNs), a long-standing challenge due to complex dynamics
and non-differentiable spike events encountered in training. The existing SNN
error backpropagation (BP) methods are limited in terms of scalability, lack of
proper handling of spiking discontinuities, and/or mismatch between the rate-
coded loss function and computed gradient. We present a hybrid macro/micro level
backpropagation (HM2-BP) algorithm for training multi-layer SNNs. The tempo-
ral effects are precisely captured by the proposed spike-train level post-synaptic
potential (S-PSP) at the microscopic level. The rate-coded errors are defined at
the macroscopic level, computed and back-propagated across both macroscopic
and microscopic levels. Different from existing BP methods, HM2-BP directly
computes the gradient of the rate-coded loss function w.r.t tunable parameters. We
evaluate the proposed HM2-BP algorithm by training deep fully connected and
convolutional SNNs based on the static MNIST [14] and dynamic neuromorphic
N-MNIST [26]. HM2-BP achieves an accuracy level of 99.49% and 98.88% for
MNIST and N-MNIST, respectively, outperforming the best reported performances
obtained from the existing SNN BP algorithms. Furthermore, the HM2-BP pro-
duces the highest accuracies based on SNNs for the EMNIST [3] dataset, and
leads to high recognition accuracy for the 16-speaker spoken English letters of
TI46 Corpus [16], a challenging spatio-temporal speech recognition benchmark for
which no prior success based on SNNs was reported. It also achieves competitive
performances surpassing those of conventional deep learning models when dealing
with asynchronous spiking streams.

1 Introduction

In spite of recent success in deep neural networks (DNNs) [5, 9, 13], it is believed that biological
brains operate rather differently. Compared with DNNs that lack processing of spike timing and
event-driven operations, biologically realistic spiking neural networks (SNNs) [11, 19] provide a
promising paradigm for exploiting spatio-temporal patterns for added computing power, and enable
ultra-low power event-driven neuromorphic hardware [1, 7, 20]. There are theoretical evidences
supporting that SNNs possess greater computational power over traditional artificial neural networks
(ANNSs) [19]. SNNs are yet to achieve a performance level on a par with deep ANNS for practical
applications. The error backpropagation [28] is very successful in training ANNs. Attaining the
same success of backpropagation (BP) for SNNss is challenged by two fundamental issues: complex
temporal dynamics and non-differentiability of discrete spike events.

Problem Formulation: As a common practice in SNNs, the rate coding is often adopted to define a
loss for each training example at the output layer [15, 32]
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where o and y are vectors specifying the actual and desired (label) firing counts of the output neurons.
Firing counts are determined by the underlying firing events, which are adjusted discretely by tunable
weights, resulting in great challenges in computing the gradient of the loss with respect to the weights.

Prior Works: There exist approaches that stay away from the SNN training challenges by first
training an ANN and then approximately converting it to an SNN [6, 7, 10, 24]. [25] takes a similar
approach which treats spiking neurons almost like non-spiking ReLU units. The accuracy of those
methods may be severely compromised because of imprecise representation of timing statistics of
spike trains. Although the latest ANN-to-SNN conversion approach [27] shows promise, the problem
of direct training of SNNs remains unsolved.

The SpikeProp algorithm [2] is the first attempt to train an SNN by operating on discontinuous spike
activities. It specifically targets temporal learning for which derivatives of the loss w.r.t. weights
are explicitly derived. However, SpikeProp is very much limited to single-spike learning, and its
successful applications to realistic benchmarks have not been demonstrated. Similarly, [33] proposed
a temporal training rule for understanding learning in SNNs. More recently, the backpropagation
approaches of [15] and [32] have shown competitive performances. Nevertheless, [15] lacks
explicit consideration of temporal correlations of neural activities. Furthermore, it does not handle
discontinuities occurring at spiking moments by treating them as noise while only computing the
error gradient for the remaining smoothed membrane voltage waveforms instead of the rate-coded
loss. [32] addresses the first limitation of [15] by performing BPTT [31] to capture temporal effects.
However, similar to [15], the error gradient is computed for the continuous membrane voltage
waveforms resulted from smoothing out all spikes, leading to inconsistency w.r.t the rate-coded loss
function. In summary, the existing SNNs BP algorithms have three major limitations: i) suffering from
limited learning scalability [2], ii) either staying away from spiking discontinuities (e.g. by treating
spiking moments as noise [15]) or deriving the error gradient based on the smoothed membrane
waveforms [15, 32], and therefore iii) creating a mismatch between the computed gradient and
targeted rate-coded loss [15, 32].

Paper Contributions: We derive the gradient of the rate-coded error defined in (1) by decomposing
each derivative into two components
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forms error backpropagation across two levels: 1) backpropagation gradient
over firing rates (rmacro-level), 2) backpropagation over spike trains g
(micro-level), and 3) backpropagation based on interactions between
the two levels, as illustrated in Fig. 1.

At the microscopic level, for each pre/post-synaptic spike train pair,
we precisely compute the spike-train level post-synaptic potential,  (add/sub) Multiple spikes (Good scalability)
referred to as S-PSP throughout this paper, to account for the tempo- Figure 1: Hybrid macro-micro
ral contribution of the given pre-synaptic spike train to the firings of  1aye] backpropagation.

the post-synaptic neuron based on exact spike times. At the macro-

scopic level, we back-propagate the errors of the defined rate-based

loss by aggregating the effects of spike trains on each neuron’s firing count via the use of S-PSPs, and
leverage this as a practical way of linking spiking events to firing rates. To assist backpropagation,
we further propose a decoupled model of the S-PSP for disentangling the effects of firing rates and
spike-train timings to allow differentiation of the S-PSP w.r.t. pre and post-synaptic firing rates at
the micro-level. As a result, our HM2-BP approach is able to evaluate the direct impact of weight
changes on the rate-coded loss function. Moreover, the resulting weight updates in each training
iteration can lead to introduction or disappearance of multiple spikes.

We evaluate the proposed BP algorithm by training deep fully connected and convolutional SNN's
based on the static MNIST [14], dynamic neuromorphic N-MNIST [26], and EMNIST [3] datasets.
Our BP algorithm achieves an accuracy level of 99.49%, 98.88% and 85.57% for MNIST, N-MNIST
and EMNIST, respectively, outperforming the best reported performances obtained from the existing



SNN BP algorithms. Furthermore, our algorithm achieves high recognition accuracy of 90.98% for
the 16-speaker spoken English letters of TI46 Corpus [16], a challenging spatio-temporal speech
recognition benchmark for which no prior success based on SNNs was reported.

2 Hybrid Macro-Micro Backpropagation

The complex dynamics generated by spiking neurons and non-differentiable spike impulses are two
fundamental bottlenecks for training SNNs using backpropagation. We address these difficulties at
both macro and micro levels.

2.1 Micro-level Computation of Spiking Temporal Effects

The leaky integrate-and-fire (LIF) model is one of the most prevalent choices for describing dynamics
of spiking neurons, where the neuronal membrane voltage u;(t) at time ¢ for the neuron ¢ is given by
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where I;(t) is the input current, R the effective leaky resistance, C' the effective membrane capac-
itance, and 7, = RC' the membrane time constant. A spike is generated when u;(t) reaches the
threshold v. After that u;(t) is reset to the resting potential u,., which equals to 0 in this paper. Each
post-synaptic neuron ¢ is driven by a post-synaptic current of the following general form
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where w;; is the weight of the synapse from the pre-synaptic neuron j to the neuron 4, t;f ) denotes a

particular firing time of the neuron j. We adopt a first order synaptic model with time constant 7
t
at) = Lexp (—) H{(t), 5)
Ts
where H(t) is the Heaviside step function, and ¢ the total charge injected into the post-synaptic
neuron i through a synapse of a weight of 1. Let ¢; denote the last firing time of the neuron 7 w.r.t

time ¢: £; = £;(t) = max{t,-\tl(-j) < t}. Plugging (4) into (3) and integrating (3) with u(#;) = 0 as its
initial condition, we map the LIF model to the Spike Response Model (SRM) [8]
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with

(s, t) = %/0 exp (—:—) a(t—t) dt. (7

Since ¢ and C can be absorbed into the synaptic weights, we set ¢ = C' = 1. Integrating (7) yields
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€ is interpreted as the normalized (by synaptic weight) post-synaptic
potential, which is evoked by a single firing spike of the pre-synaptic
neuron j.

For any time ¢, the exact "contribution" of the neuron j’s spike train
to the neuron 7’s post-synaptic potential is given by summing (8) over

all pre-synaptic spike times tg»f ), tg-f ) <t We particularly concern

the contribution right before each post-synaptic firing time tz(f ) when

ui(tgf)) = v, which we denote by ei|j(t,5f)). Summing eiu(tz(-f)) over all €

post-synaptic firing times gives the fotal contribution of the neuron j’s
spike-train to the firing activities of the neuron ¢ as shown in Fig. 2
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Figure 2: The computa-
tion of the S-PSP.
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where fi denotes the last post-synaptic firing time before ¢

Importantly, we refer to e;; as the (normalized) spike-train level post-synaptic potential (S-PSP). As
its name suggests, S-PSP characterizes the aggregated influence of the pre-synaptic neuron on the
post-synaptic neuron’s firings at the level of spike trains, providing a basis for relating firing counts
to spike events and enabling scalable SNN training that adjusts spike trains rather than single spikes.
Clearly, each S-PSP e;|; depends on both rate and temporal information of the pre/post spike trains.
To assist the derivation of our BP algorithm, we make the dependency of ¢;|; on the pre/post-synaptic
firing counts o; and o; explicit although o; and o; are already embedded in the spike trains

ey = 05, 00,85,6), (10)

where t\) and tz(-f ) represent the pre and post-synaptic timings, respectively. Summing the weighted
S-PSPs from all pre-synaptic neurons results in the total post-synaptic potential (T-PSP) a;, which is
directly correlated to the neuron ¢’s firing count

a; = wa €ilj- an
J

2.2 Error Backpropagation at Macro and Micro Levels

It is evident that the total post-synaptic potential a; must be no less than the threshold v in order to
make the neuron ¢ fire at least once, and the total firing count is L%J We relate the firing count o; of
the neuron ¢ to a; approximately by

0; = g(a;) = [%J = P:j is e“jJ o 2 iy (12)
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where the rounding error would be insignificant when v is small. Despite that (12) is linear in S-PSPs,
it is the interaction between the S-PSPs through nonlinearities hidden in the micro-level LIF model
that leads to a given firing count o;. Missing from the existing works [15, 32], (12) serves as an
important bridge connecting the aggregated micro-level temporal effects with the macro-level count
of discrete firing events. In a vague sense, a; and o; are analogies to pre-activation and activation
in the traditional ANNSs, respectively, although they are not directly comparable. (12) allows for
rate-coded error backpropagation on top of discrete spikes across the macro and micro levels.

Using (12), the macro-level rate-coded loss of (1) is rewritten as
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where y, o and a are vectors specifying the desired firing counts (label vector), the actual firing
counts, and the weighted sums of S-PSP of the output neurons, respectively. We now derive the
gradient of E/ w.r.t w;; at each layer of an SNN.
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Figure 3: Macro/micro back-
propagation in the output
layer.
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Similar to the conventional backpropagation, we use d;" to denote the
back propagated error. According to (11) and (10), a}"* can be unwrapped as
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where ™1 is the number of neurons in the (m — 1)y, layer. Differentiating (16) and making use of
(12) leads to the micro-level error propagation based on the total post-synaptic potential (T-PSP) a"*
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Although the network is feed-forward, there are non-linear interactions between S-PSPs. The second
term of (17) captures the hidden dependency of the S-PSPs on the post-synaptic firing count o;".

e Hidden layers: For the ¢4, neuron in the hidden layer k, we have
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The macro-level error backpropagation at a hidden layer is much more involved as in Fig. 4
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where the dependency of ek|+1 on the pre-synaptic firing count of

is considered but the one on the firing timings are ignored, which
is supported by the decoupled S-PSP model in (25). Plugging (21)
into (19), we have

k-1 k k+1

rh+1 8 k41 Figure 4: Macro-level back-
Z 5k+1 l|Z (22) Ppropagation at a hidden layer.
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The micro-stage backpropagation at hidden layers is identical to that
at the output layer, i.e. (17). Finally, we obtain the derivative of F/
with respect to w;; as follows
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Unlike [15, 32], here decomposing the rate-coded error backpropagation into the macro and micro
levels enables computation of the gradient of the actual loss function with respect to the tunable
weights, leading to highly competitive performances Our HM2-BP algorithm can introduce/remove
multiple spikes by one update, greatly improving learning efficiency in comparlson with SpikeProp [2].

To complete the derivation of HM2-BP, derivatives in the forms of 80“3 and “ as needed in (17)

and (22) are yet to be estimated, which is non-trivial as shall be presented in Secjtlon 2.3.




2.3 Decoupled Micro-Level Model for S-PSP

The derivatives of the S-PSP ek‘ with respect to the pre and post- synaptic neuron firing counts

are key components in our HM2-BP rule. According to (9), the S-PSP ¢* i is dependent on both
rate and temporal information of the pre and post-synaptic spikes. The firing counts of pre and
post-synaptic neurons (i.e., the rate information) are represented by the two nested summations in (9).
The exact firing timing information determines the (normalized) post-synaptic potential e of each
pre/post-synaptic spike train pair as seen from (8). The rate and temporal information of spike trains

are strongly coupled together, making the exact computation of ”J and "‘7 challengmg

To address this difficulty, we propose a decoupled model for ei’lj to untangle the rate and temporal
effects. The model is motivated by the observation that e;"lj is linear in both o;‘f and of in the limit
of high firing counts. For finite firing rates, we decompose ef‘j into an asymptotic rate-dependent

effect using the product of oé? and of and a correction factor & accounting for temporal correlations
between the pre and post-synaptic spike trains
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& is a function of exact spike timing. Since the SNN is trained incrementally with small weight
updates set by a well-controlled learnlng rate, & does not change substantlally by one training iteration.
Therefore, we approximate é& by using the values of e* il 0 , and 0¥ available before the next training
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With the micro-level temporal effect considered by &, we estimate the two derivatives by
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Our hybrid training method follows the typical backpropagation methodology. First of all, a forward
pass is performed by analytically simulating the LIF model (3) layer by layer. Then the firing counts
of the output layer are compared with the desirable firing levels to compute the macro-level error.
After that, the error in the output layer is propagated backwards at both the macro and micro levels
to determine the gradient. Finally, an optimization method (e.g. Adam [12]) is used to update the
network parameters given the computed gradient.

3 Experiments and Results

Experimental Settings and Datasets The weights of the experimented SNNs are randomly initial-
ized by using the uniform distribution U[—a, a], where a is 1 for fully connected layers and 0.5 for
convolutional layers. We use fixed firing thresholds in the range of 5 to 20 depending on the layer. We
adopt the exponential weight regularization scheme in [15] and introduce the lateral inhibition in the
output layer to speed up training convergence [15], which slightly modifies the gradient computation
for the output layer (see Supplementary Material). We use Adam [12] as the optimizer and its
parameters are set according to the original Adam paper. We impose greater sample weights for
incorrectly recognized data points during the training as a supplement to the Adam optimizer. More
training settings are reported in the released source code.

The MNIST handwritten digit dataset [14] consists of 60k samples for training and 10k for testing,
each of which is a 28 x 28 grayscale image. We convert each pixel value of a MNIST image into a
spike train using Poisson sampling based on which the probability of spike generation is proportional
to the pixel intensity. The N-MNIST dataset [26] is a neuromorphic version of the MNIST dataset
generated by tilting a Dynamic Version Sensor (DVS) [17] in front of static digit images on a computer
monitor. The movement induced pixel intensity changes at each location are encoded as spike trains.
Since the intensity can either increase or decrease, two kinds of ON- and OFF-events spike events
are recorded. Due to the relative shifts of each image, an image size of 34 x 34 is produced. Each
sample of the N-MNIST is a spatio-temporal pattern with 34 x 34 x 2 spike sequences lasting for



300ms. We reduce the time resolution of the N-MNIST samples by 600x to speed up simulation. The
Extended MNIST-Balanced (EMNIST) [3] dataset, which includes both letters and digits, is more
challenging than MNIST. EMNIST has 112,800 training and 18,800 testing samples for 47 classes.
We convert and encode EMNIST in the same way as we do for MNIST. We also use the 16-speaker
spoken English letters of TI46 Speech corpus [16] to benchmark our algorithm for demonstrating its
capability of handling spatio-temporal patterns. There are 4,142 and 6,628 spoken English letters for
training and testing, respectively. The continuous temporal speech waveforms are first preprocessed
by Lyon’s ear model [18] and then encoded into 78 spike trains using the BSA algorithm [29].

We train each network for 200 epochs except for ones used for EMNIST, where we use 50 training
epochs. The best recognition rate of each setting is collected and each experiment is run for at least
five times to report the error bar. For each setting, we also report the best performance over all the
conducted experiments.

Fully Connected SNNs for the Static MNIST Using Poisson sampling, we encode each 28 x 28
image of the MNIST dataset into a 2D 784 x L binary matrix, where L = 400ms is the duration
of each spike sequence, and a 1 in the matrix represents a spike. The simulation time step is set
to be 1ms. No pre-processing or data augmentation is done in our experiments. Table 1 compares
the performance of SNNs trained by the proposed HM2-BP rule with other algorithms. HM2-BP
achieves 98.93% test accuracy, outperforming STBP [32], which is the best previously reported
algorithm for fully-connected SNNs. The proposed rule also achieves the best accuracy earlier than
STBP (100 epochs v.s. 200 epochs). We attribute the overall improvement to the hybrid macro-micro
processing that handles the temporal effects and discontinuities at two levels in a way such that
explicit back-propagation of the rate-coded error becomes possible and practical.

Table 1: Comparison of different SNN models on MNIST

Model Hidden layers  Accuracy Best Epochs
Spiking MLP (converted®) [24] ~ 500-500 94.09% 94.09% 50
Spiking MLP (converted”) [10] ~ 500-200 98.37% 98.37% 160
Spiking MLP (converted”) [6] 1200-1200 98.64% 98.64% 50
Spiking MLP [25] 300-300 97.80% 97.80% 50
Spiking MLP [15] 800 98.71%" 98.71% 200
Spiking MLP (STBP) [32] 800 98.89% 98.89% 200
Spiking MLP (this work) 800 98.84 £ 0.02% 98.93% 100

We only compare SNNs without any pre-processing (i.e., data augmentation) except for [24].
* means the model is converted from an ANN. * [15] achieves 98.88% with hidden layers of 300-300.

Fully Connected SNNs for N-MNIST The simulation time step is 0.6ms for N-MNIST. Table 2
compares the results obtained by different models on N-MNIST. The first two results are obtained by
the conventional CNNs with the frame-based method, which accumulates spike events over short time
intervals as snapshots and recognizes digits based on sequences of snapshot images. The relative poor
performances of the first two models may be attributed to the fact that the frame-based representations
tend to be blurry and do not fully exploit spatio-temporal patterns of the input. The two non-spiking
LSTM models, which are trained directly on spike inputs, do not perform too well, suggesting that
LSTMs may be incapable of dealing with asynchronous and sparse spatio-temporal spikes. The
SNN trained by our proposed approach naturally processes spatio-temporal spike patterns, achieving
the start-of-the-art accuracy of 98.88%, outperforming the previous best ANN (97.38%) and SNN
(98.78%) with significantly less training epochs required.

Spiking Convolution Network for the Static MNIST We construct a spiking CNN consisting of
two 5 X 5 convolutional layers with a stride of 1, each followed by a 2 x 2 pooling layer, and one
fully connected hidden layer. The neurons in the pooling layer are simply LIF neurons, each of which
connects to 2 X 2 neurons in the preceding convolutional layer with a fixed weight of 0.25. Similar
to [15, 32], we use elastic distortion [30] for data augmentation. As shown in Table 3, our proposed
method achieves an accuracy of 99.49%, surpassing the best previously reported performance [32]
with the same model complexity after 190 epochs.

Fully Connected SNNs for EMNIST Table 4 shows that the HM2-BP outperforms the non-spiking
ANN and the spike-based backpropagation (eRBP) rule reported in [21] significantly with less training
epochs.



Table 2: Comparison of different models on N-MNIST

Model Hidden layers = Accuracy Best Epochs
Non-spiking CNN [23] - 95.02+0.30% - -
Non-spiking CNN [22] - 98.30% 98.30% 15-20
Non-spiking LSTM [23] - 96.93 +0.12% - -
Non-spiking Phased-LSTM [23] - 97.28 £0.10% - -
Spiking CNN (converted™) [22] - 95.72% 95.72%  15-20
Spiking MLP [4] 10000 92.87% 92.87% -
Spiking MLP [15] 800 98.74% 98.74% 200
Spiking MLP (STBP) [32] 800 98.78% 98.78% 200
Spiking MLP (this work) 800 98.84 + 0.02% 98.88% 60

Only structures of SNNs are shown for clarity.” means the SNN model is converted from an ANN.

Table 3: Comparison of different spiking CNNs on MNIST

Model Network structure Accuracy Best

Spiking CNN (converted?) [6] 12C5-P2-64C5-P2-10 99.12% 99.12%
Spiking CNN (converted®) [7] - 92.70%° 92.70%
Spiking CNN (converted?®) [27] - 99.44% 99.44%
Spiking CNN [15] 20C5-P2-50C5-P2-200-10  99.31% 99.31%
Spiking CNN (STBP) [32] 15C5-P2-40C5-P2-300-10  99.42% 99.42%
Spiking CNN (this work?) 15C5-P2-40C5-P2-300-10  99.32 £ 0.05%  99.36%
Spiking CNN (this work) 15C5-P2-40C5-P2-300-10 9942 £ 0.11% 99.49%

* converted from a trained ANN. ” converted from a trained probabilistic model with binary weights.
¢ performance of a single spiking CNN. 99.42% obtained for ensemble learning of 64 spiking CNNs.
¢ performance without data augmentation.

Fully Connected SNNs for TI46 Speech The HM2-BP produces excellent results on the 16-
speaker spoken English letters of TI46 Speech corpus [16] as shown in Table 5. This is a challenging
spatio-temporal speech recognition benchmark and no prior success based on SNNs was reported.

In-depth Analysis of the MNIST and N-MNIST Results Fig. 5(a) plots the HM2-BP conver-
gence curves for the best settings of the first three experiments reported in the paper. The convergence
is logged in the code. Data augmentation contributes to the fluctuation of convergence in the case of
Spiking Convolution network. We conduct the experiment to see if our assumption used in approxi-
mating & of (25) is valid. Fig. 5(b) shows that the value of & of a randomly selected synapse does not
change substantially over epochs during the training of a two-layer SNN (10 inputs and 1 output).
At the high firing frequency limit, the S-PSP is proportional to 0;? - of, making the multiplicative
dependency on the two firing rates a good choice in (25).
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Figure 5: (a) HM2-BP convergence for the first three reported experiments; (b) & v.s. epoch.
Training Complexity Comparison and Implementation Unlike [32], our hybrid method does

not unwrap the gradient computation in the time domain, roughly making it O(Nr) times more
efficient than [32], where Nt is the number of time points in each input example. The proposed



Table 4: Comparison of different models on EMNIST

Model Hidden Layers = Accuracy Best Epochs
ANN [21] 200-200 81L.77% 81.77% 30
Spiking MLP (eRBP) [21]  200-200 78.17% 78.17% 30
Spiking MLP (HM2-BP) 200-200 84.31 £ 0.10% 84.43% 10
Spiking MLP (HM2-BP) 800 8541 +0.09% 85.57% 19

Table 5: Performances of HM2-BP on TI46 (16-speaker speech)

Hidden Layers  Accuracy Best Epochs
800 89.36 £ 0.30% 89.92% 138
400-400 89.83+0.71% 90.60% 163
800-800 90.50 £ 0.45% 90.98% 174

method can be easily implemented. We have made our CUDA implementation available online', the
first publicly available high-speed GPU framework for direct training of deep SNNs.

4 Conclusion and Discussions

In this paper, we present a novel hybrid macro/micro level error backpropagation scheme to train deep
SNNs directly based on spiking activities. The spiking timings are exactly captured in the spike-train
level post-synaptic potentials (S-PSP) at the microscopic level. The rate-coded error is defined and
efficiently computed and back-propagated across both the macroscopic and microscopic levels. We
further propose a decoupled S-PSP model to assist gradient computation at the micro-level. In contrast
to the previous methods, our hybrid approach directly computes the gradient of the rate-coded loss
function with respect to tunable parameters. Using our efficient GPU implementation of the proposed
method, we demonstrate the best performances for both fully connected and convolutional SNN's
over the static MNIST, the dynamic N-MNIST and the more challenging EMNIST and 16-speaker
spoken English letters of TI46 datasets, outperforming the best previously reported SNN training
techniques. Furthermore, the proposed approach also achieves competitive performances better than
those of the conventional deep learning models when dealing with asynchronous spiking streams.

The performances achieved by the proposed BP method may be attributed to the fact that it addresses
key challenges of SNN training in terms of scalability, handling of temporal effects, and gradient
computation of loss functions with inherent discontinuities. Coping with these difficulties through
error backpropagation at both the macro and micro levels provides a unique perspective to training
of SNNs. More specifically, orchestrating the information flow based on a combination of temporal
effects and firing rate behaviors across the two levels in an interactive manner allows for the definition
of the rate-coded loss function at the macro level, and backpropagation of errors from the macro level
to the micro level, and back to the macro level. This paradigm provides a practical solution to the
difficulties brought by discontinuities inherent in an SNN while capturing the micro-level timing
information via S-PSP. As such, both rate and temporal information in the SNN is exploited during the
training process, leading to the state-of-the-art performances. By releasing the GPU implementation
code in the future, we expect this work would help move the community forward towards enabling
high-performance spiking neural networks and neuromorphic computing.
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