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Abstract
Color centers in solids, such as the nitrogen-vacancy center in diamond, offer well-protected and
well-controlled localized electron spins that can be employed in various quantum technologies.
Moreover, the long coherence time of the surrounding spinful nuclei can enable a robust quantum
register controlled through the color center. We design pulse sequence protocols that drive the
electron spin to generate robust entangling gates with these nuclear memory qubits. We find that
compared to using Carr-Purcell-Meiboom-Gill (CPMG) alone, Uhrig decoupling sequence and
hybrid protocols composed of CPMG and Uhrig sequences improve these entangling gates in
terms of fidelity, spin control range, and spin selectivity. We provide analytical expressions for the
sequence protocols and also show numerically the efficacy of our method on nitrogen-vacancy
centers in diamond. Our results are broadly applicable to color centers weakly coupled to a small
number of nuclear spin qubits.

1. Introduction

Color centers in solids provide well-isolated local electron spins with long coherence times [1–5], high
fidelity manipulation [6–9], and typically a small set of surrounding nuclear spins which can act as a
quantum register. As a result, color centers are promising platforms to realize quantum technologies
[10–17], including quantum sensing [18–23], quantum communication [24–26], and quantum computing
[27–29]. Among the most actively studied color center platforms are nitrogen-vacancy (NV) centers
[30–33] and silicon-vacancy (SiV) [34–37] in diamond, and divacancy [7, 38–42] and monovacancy
centers in silicon carbide (SiC) [43–48].

Even though the long coherence time of the nuclear spins makes them promising candidates for
quantum memory [22, 49], entanglement purification [50, 51], and quantum nodes [52] in quantum
computing and communication, one of the main challenges is that the interactions between the electronic
spin and the nuclear spin memory qubits are always on. As a result, controlling the system is not
straightforward and the electron spin coherence is hampered by the spinful isotopic nuclei in the host
crystal. In this regard, the Delft group has introduced and successfully demonstrated a clever way to address
both of these issues: they have shown that appropriately chosen Carr–Purcell–Meiboom–Gill-like
(CPMG-like) dynamical decoupling sequences [53, 54] applied on the electron spin not only protect it from
the nuclear spin bath but also allow it to selectively control target nuclear spins via the hyperfine interaction
[27, 32, 55]. This novel use of CPMG-like sequences to implement two-qubit gates along with the vast
repertoire of alternative dynamical decoupling sequences [56–59], opens the question of whether there are
even better nuclear spin control protocols that can be achieved through the combination of always-on
interactions and drive of the electron spin.

In this paper, we introduce new, advantageous ways of selective, fast, and high-fidelity electron–nuclear
spin entangling gates through pulse sequences acting on the electronic spin. We specifically focus on Uhrig
dynamical decoupling (UDD) sequences [58] and on hybrid protocols based on a combination of
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CPMG-like [53, 54] and UDD sequences. Our approach yields precise nuclear spin manipulation and good
electron spin coherence protection. We find that, for a wide range of magnetic fields, the hybrid sequences
provide fast electron–nuclear two-qubit gates with higher fidelity than what would be obtained by only
using CPMG or UDD alone. Moreover, in contrast to other sequences, UDD provides high spin selectivity
without significantly increasing the overall gate time. This facilitates the precise control of nuclear spins
with similar hyperfine interaction strengths. Interestingly, and contrary to what one may conclude based on
prior literature, we find that UDD provides better electron spin coherence protection compared to CPMG
in the parameter regime that accomplishes high spin selectivity. We test our sequences numerically on an
NV center in diamond, using system parameters from experiment [55]. Our protocol is general, and can
thus be applied to similar platforms—e.g., in divacancy centers in SiC, where the CPMG protocol was
recently used to control nuclear spins [42]—after straightforward modifications.

The remainder of this paper is organized as follows. In section 2, we present the system’s Hamiltonian.
In section 3, we review the use of CPMG-like sequences to control weakly coupled nuclear spins in NV
centers. In section 4, we introduce Uhrig dynamical decoupling sequence and investigate its performance in
terms of fidelity, selectivity, and electron spin coherence protection. In section 5, we present our new hybrid
sequences for electron–nuclear spin entangling gates in NV centers, showing their versatility and overall
performance. We conclude in section 6.

2. Modeling the system Hamiltonian

The geometric structure of the NV center, a nitrogen substitute and a neighboring carbon vacancy, is
illustrated in figure 1. The system under consideration is formed by the central electron spin and several
weakly coupled nuclear spins (carbon isotope 13C, with natural abundance of 1.1%) that we aim to control.
In the presence of an external magnetic field (B field) applied along the z-axis, the total Hamiltonian of the
system is:

Htotal = HE + Hbath + Hint, (1)

where HE is the Hamiltonian for the S = 1 electron spin, Hint is the hyperfine interaction between the
central electron spin and all the nuclear spins in the system, each with spin I = 1/2, and Hbath is the nuclear
spin bath Hamiltonian. Note that we assume that the nuclear spins do not mutually interact, and thus Hbath

is reduced to the sum of Zeeman terms of the nuclear spins (see appendix B for more details on the total
Hamiltonian). Since the NV center zero-field splitting (∼ 2.87 GHz) is much larger than the typical
hyperfine interaction strength (<MHz), it is highly unlikely that an electron spin-flip process occurs.
Therefore, the transverse components of the electron spin can be safely neglected and only the Sz term is
kept [55, 60].

It is convenient to start the analysis with the simplest case where the electron spin is only interacting
with a single nuclear spin. Accordingly, their Hamiltonian in the interaction picture given by HE is simply:

H̃ = ωLIz +
∑

ms

∑
i∈{x,y,z}

ms|ms〉〈ms| ⊗ Az,i · Ii

= ωLIz + Sz ⊗ (A⊥Ix + A‖Iz), (2)

where ωL is the nuclear spin Larmor frequency, Ii is the Cartesian component (i = x, y, z) of the nuclear
spin operator, and ms is the magnetic spin quantum number of the electron, which can be equal to −1, 0,
or 1. For a sufficiently strong magnetic field, the ms = ±1 states are well separated in frequency, allowing us
to treat the spin system as an effective two-level system with the ms = 0 state and one of the ms = ±1 states
forming the two qubit levels. We follow the notation of reference [55] and define |ms = −1〉 = |1〉 and
|ms = 0〉 = |0〉 to encode the qubit and introduce the z-component of the pseudo-spin operator
Sz = 0|0〉〈0| − |1〉〈1|, where, for the sake of simplicity, we set � = 1. Note that due to the diagonal form of
the electron spin operator, the elements of the hyperfine interaction tensor, Aj,i, are nonzero only for j = z
and i = x, y, z (see appendix B). Moreover, the hyperfine interaction elements can be reduced to parallel and
perpendicular components with respect to the z-axis, i.e. A‖ and A⊥, respectively, by rotating the x–y plane.
Therefore, equation (2) can be expressed as:

H̃ = |0〉〈0|ωLIz + |1〉〈1|[(ωL − A‖)Iz − A⊥Ix]

= |0〉〈0|h0 + |1〉〈1|h1, (3)

where h0 = ωLIz and h1 = (ωL − A‖)Iz − A⊥Ix. Similarly, for multiple nuclear spins the total Hamiltonian
can be written as:
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Figure 1. Sketch of an NV center in diamond (top view of an extended (100) plane). The defect consists of a nitrogen substitute
(yellow) and a vacancy (dotted white) at the neighboring site, and features a localized S = 1 electronic spin. Individual nuclear
spins (black arrows) are coupled via dipolar hyperfine interaction to the NV electronic spin.

H̃total = |0〉〈0| ⊗
n∑

i=1

h(i)
0 + |1〉〈1| ⊗

n∑
i=1

h(i)
1 (4)

where n is the number of nuclear spins and h(i)
0 (h(i)

1 ) is a multi-nuclear operator consisting of the tensor
product of h0(h1), which acts on the ith nuclear spin, and the identity operator acting on the remaining
nuclear spins.

3. Review of CPMG-like quantum gates

To manipulate nuclear spins surrounding the central electron spin, Taminiau et al used CPMG-like
dynamical decoupling sequences, namely the XY8 sequence [53–55] to manipulate several nuclear spins
weakly coupled to the central electron spin of an NV center in diamond. This sequence is applied on the
central electron spin to decouple it from the surrounding nuclear/electron spin bath, thus extending its
coherence time. At the same time, reference [55] has shown that it is possible to induce conditional
rotations on a target nuclear spin by tuning the sequence’s inter-pulse delay time to satisfy a resonance
condition determined by the hyperfine interaction between the electron spin and the target nuclear spin.
The use of periodic pulses in other systems involving coupled electron and nuclear spins, such as quantum
dots [61–65], produces similar resonance conditions.

The CPMG-like dynamical decoupling sequence used in reference [55], hereinafter referred to as simply
CPMG sequence, consists of a train of pulses with the basic decoupling unit being (τ –π–2τ –π–τ)N, where
π-pulses (π rotations about the x-axis and y-axis in an alternating fashion) are applied to the electron spin,
separated by a 2τ delay time, and N is the total number of basic decoupling units in the sequence. In the
following analysis we use the total time t ≡ 4τ of the basic decoupling unit instead of the inter-pulse
distance 2τ to derive the resonance condition, as it is more convenient for comparing it to other types of
dynamical decoupling sequences.

Now, if we apply a single basic CPMG unit (N = 1) to the system formed by the central electron spin
and n nuclear spins, equation (4), the evolution operator would be:

U = |0〉〈0| ⊗
n∏
k

V (k)
0 + |1〉〈1| ⊗

n∏
k

V (k)
1 , (5)

where the electron-spin-state-dependent evolution operators acting on the kth nuclear spin are

V (k)
0 = I(1) ⊗ · · · ⊗ e−ih(k)

0 τ e−ih(k)
1 2τ e−ih(k)

0 τ ⊗ · · · ⊗ I(n) and V (k)
1 = I(1) ⊗ · · · ⊗ e−ih(k)

1 τ e−ih(k)
0 2τ

e−ih(k)
1 τ ⊗ · · · ⊗ I(n). The full CPMG sequence contains N copies of the basic unit, and thus the total

evolution operator is UN. Taminiau et al [55] demonstrated that in a strong magnetic field and for a weakly
coupled nuclear spin (ωL 
 A⊥, A‖), whenever the total basic unit time t (or similarly the inter-pulse
distance 2τ) satisfies a resonance condition the electron and target nuclear spins become coupled and the
latter undergoes a rotation that is conditional on the electron spin state. Alternatively, when the basic unit
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Figure 2. CPMG control of a single nuclear spin. (a) The axes of nuclear spin rotation conditional on the electronic spin, their
dot product, and the angle of rotation as functions of the sequence time t. The red curve represents the dot product of the
rotation axes, �n0 ·�n1, of the electron spin state-dependent evolution operators V0 and V1, where the periodic dips (�n0 ·�n1 = −1)
indicate the conditional rotations with opposite rotational axes and the flat portions of the curve (�n0 ·�n1 = 1) indicate
unconditional rotations. The green curve shows the rotation angle. At the resonant points the rotation angles plotted here are
close to 2π, which indicates small effective rotation angles. The blue (orange dashed) curve represents the x-direction projection
of the rotation axis �n0 (�n1). The peaks/dips in the blue/orange curve indicate x rotations, of which the ones that are synchronous
with the red curve dips correspond to conditional x rotations (CRX) and the rest denote unconditional x rotations (RX). At any
other values of t, the nuclear spin rotates along the z-axis unconditionally. In these simulations we used A‖/2π = 30.6 kHz,
A⊥/2π = 25.7 kHz and ωL/2π = 314 kHz. (b) Qualitative illustration of conditional x and unconditional z rotations.

time t is not on resonance with any target nuclear spin, the nuclear spins are decoupled from the electron
spin and they just unconditionally rotate about an axis and rotation angle determined by how far from
resonance t is for each nuclear spin.

To characterize the two-qubit gates emerging from the CPMG sequences acting on the electron spin, let
us consider the simple case of a single nuclear spin interacting with the central electron spin. Following
reference [55], we can express the conditional evolution operators V0 and V1, equation (5), as
V0 = exp[−iφ(�I · �n0)] and V1 = exp[−iφ(�I · �n1)], respectively. Here φ is the rotation angle, �n|ms| is the

rotation axis that depends on the electron’s initial state ms = 0 or ms = −1, and�I is the nuclear spin
operator. As shown in figure 2, the inner product of the rotation axes �n0 · �n1 indicates whether the nuclear
spin rotation induced by the CPMG sequence is conditional (�n0 · �n1 = −1) or unconditional (�n0 · �n1 = 1).
The conditional rotations are controlled-R±X(φ) (CRX(φ)), i.e. x-rotations by an angle φ with a direction
that depends on the electron spin state, and the unconditional ones are simply nuclear spin rotations about
the x-axis, z-axis, or an axis in between the previous two, that does not depend on the electron spin state.

In order to generate a CRX(φ) gate, the CPMG unit time t must satisfy a resonance condition
determined by the Larmor frequency of the nuclear spin and by the hyperfine interaction between the target
nuclear spin and the electron spin. For a sufficiently strong magnetic field (ωL 
 A‖, A⊥), the resonance
condition can be found analytically [27, 32, 55]. Accordingly, at resonance, the CPMG unit time tCPMG and
the nuclear spin rotation angle φCPMG are [55]:

tCPMG
k ≈ 4(2k − 1)π

2ωL − A‖
, φCPMG ≈ 2π − 2A⊥

ωL − A‖
, (6)

where k is a positive integer. On the other hand, when t is in the middle of two neighboring resonance
values, 1

2 (tCPMG
k + tCPMG

k+1 ), the uncoupled nuclear spin rotates unconditionally about the x-axis through an

angle φ̃CPMG, RX(φ̃). The CPMG unit time and rotation angle for the unconditional RX(φ̃) gate are:

t̃CPMG
k ≈ 8kπ

2ωL − A‖
, φ̃CPMG

k ≈ kπA⊥A‖
(ωL − A‖)2

. (7)

Note that the rotation angle φ̃CPMG does depend on k, in contrast to the resonance rotation angle φCPMG in
equation (6). These analytical expressions for the rotation angles as well as the analytical expressions for
both tCPMG

k and t̃CPMG
k are approximations [55] and their accuracy is inversely proportional to k. Moreover,
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the integer term k in equations (6) and (7) is chosen to be as small as possible to avoid unnecessarily long
sequences that may negatively affect the coherence protection of the electron spin. Note also that the
relatively sharper peaks and dips corresponding to the x projection of the unconditional rotation axis plot
in figure 2 imply that the experimental timing precision required to implement an unconditional rotation is
higher than the one required to implement a conditional rotation. That also suggests that the analytical
approximation for t̃k

CPMG must be numerically optimized to increase its accuracy, and thus improve the
resulting single-qubit gate fidelity (the numerical optimization is implemented through minimization of
�n0 · �n1 by varying the time t). Besides, when the strong magnetic field condition is no longer valid, the
analytical expressions of equations (6) and (7) are less accurate and numerical optimization is required.
Finally, the rest of the off-resonance values for t gives unconditional rotations gates about axes on the x–z
plane that are close to the z-axis (RZ(θ)) with varying rotation angles.

It is evident that the CPMG sequences allow selective and precise control of nuclear spins as long as the
perpendicular component of the hyperfine interaction between the electron and target nuclear spin is
nonzero. By setting the CPMG unit time t to be equal to the resonance condition of the target nuclear spin,
equation (6), and recursively applying the CPMG unit N times, one can implement a two-qubit gate
CRX(φ) that conditionally rotates the target nuclear spin about the x-axis by a desired angle Nφ. Note that
the two-qubit gate CRX( π

2 ) is equivalent to a cnot gate up to local operations (see appendix A for further
discussion). Similarly, by choosing an off-resonance time t one can apply single-qubit gates to the nuclear
spins qubits, where the type of gate (e.g. Rx(φ̃) or Rz(θ)) is determined by the CPMG unit time t, and the
angle of rotation depends on the total number N of applied CPMG units. It is worth noting that, in general,
it is preferable that the angle φCPMG

k (or φ̃k
CPMG) be either small or close to 2π. The reason is that this

allows, by appropriately choosing N, to have a total rotation angle NφCPMG
k (or Nφ̃CPMG

k ) that is close to any
target rotation angle, which increases the overall gate fidelity F . However, a rotation angle φCPMG

k (or
φ̃CPMG

k ) that is extremely small or extremely close to 2π would not be as desirable since it would result in a
larger gate time T = Nt, and thus it would reduce the fidelity of the gate.

Despite the many advantages of CPMG-based spin control, there are also drawbacks. One is that the
magnitude of the rotation angle obtained with CPMG, φCPMG (6), is not small enough to implement
high-fidelity gates. Moreover, this angle does not depend on k, and thus higher resonance orders cannot be
used or combined in a clever way to get as close as desired to the target rotation and improve the resulting
gate fidelity. Another disadvantage is that the use of large magnetic field strengths to improve the entangling
gate fidelities would also negatively affect the selectivity in the control of different target nuclear spins with
similar hyperfine interaction parameters. In other words, two or more nuclear spins with comparable
hyperfine interaction parameters under a high magnetic field would also have similar resonance conditions.
In that case, setting the value of the CPMG unit time t to couple the electron spin to the target nuclear spin
would also undesirably couple it to the other nuclear spins, hence hindering the spin selectivity. It is in view
of these limitations that we explore other types of dynamical decoupling sequences in the following
sections.

4. Controlling nuclear spins with UDD sequences

An Uhrig dynamical decoupling (UDD) sequence [58] is a series of π pulses (π rotations around the x-
and/or y-axes) which, in contrast to CPMG, are not equidistantly spaced. Instead, their fractional locations
are given by

δj = sin2(πj/(2n + 2)), (8)

for an n number of pulses (UDDn) and unit sequence time t (total time of a single UDDn sequence). Note
that for n = 2 (UDD2) the sequence is exactly equal to the building block of CPMG. Moreover, with each
additional pulse, the UDD sequence successively cancels higher orders of a time expansion for any
decoherence model [66, 67].

In type Ib diamonds, the dominant decoherence source is the spin bath of substitutional nitrogen
defects (P1 centers), whose noise spectrum is of Lorentzian shape and decreases very slowly at high
frequencies. For such a noise spectrum, previous studies [68–70] have shown that UDD with a large
number of pulses tends to perform sub-optimally in comparison to CPMG, and thus simpler sequences
(small n) are preferable to higher order ones [69]. For diamonds of the type IIa, which is the type used in
the experiments by the Delft group [32, 55, 71], the decoherence is dominated by the hyperfine interaction
with the 13C nuclear spins. Given that in diamond the noise spectrum due to a nuclear spin bath has a hard
high-frequency cutoff [60, 72], UDD is expected to perform optimally [68–70].

The single unit of a general UDDn can be iterated N times to form a long train of pulses, i.e. (UDDn)N.
We numerically calculate the dynamics under UDD applied on the electron spin and find that the nuclear
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spin evolution satisfies the periodic resonance conditions in a way similar to CPMG. However, its rotation
angle and resonance time behave differently from CPMG. Following an approach similar to the one used in
reference [55], we find analytical expressions for the conditional and unconditional rotation angles and
their respective unit times for UDD3 and UDD4 (see appendix C). For UDD3 the resonance unit time and
rotation angle are given by

tUDD3
k ≈ 2(2k − 1)π

2ωL − A‖
,

φUDD3
k ≈ 2π −

2A⊥

(
1 − 2 cos

[
(2k−1)π

2
√

2

])
ωL − A‖

.

(9)

Similarly to the CPMG case, when t is in the middle of two neighboring resonance values,
1
2 (tUDD3

k + tUDD3
k+1 ), the uncoupled nuclear spin rotates unconditionally about the x-axis by an angle φ̃UDD3.

The analytical expressions of these variables are

t̃UDD3
k ≈ 4kπ

2ωL − A‖
,

φ̃UDD3
k ≈ 2A⊥(

2
√

2 + 2
)

(ωL − A‖)2

[
π2A2

‖k2
(

cos
[√

2πk
]

+ 2
√

2 cos

[
πk√

2

]
+ 2

)
+
(

2
√

2 + 3
)

× A2
⊥

(
πk + sin

[√
2πk

]
− 2 sin

[
πk√

2

])2
]1/2

. (10)

Note that for UDD3 and, in general, for any UDDn with odd n, the electron spin does not return back to
the initial state after a single unit sequence as required, and thus the number of iterations N of the single
unit sequence must be an even number or otherwise the effect on the nuclear spins is naught. Consequently,
the analytical expressions for the rotation angles in equations (9) and (10) correspond to a pair of single
UDD3 sequences, i.e. (UDD3)2, each with unit sequence time tUDD3

k (or t̃UDD3
k ).

In contrast to CPMG and UDD3, UDD4 presents two different analytical expressions for the resonance
time, each giving different rotation angles. The first set of analytical expressions for the resonance time and
rotation angle is

tUDD4
k ≈ 4(2k − 1)π

2ωL − A‖
,

φUDD4
k ≈ 2π −

2
√

2A⊥ cos
[

(2k−1)
√

5π
4

]
ωL − A‖

,

(11)

where the resonance time coincides with the CPMG one and the magnitude of the rotation angle at any
order k is much smaller than those generated by the CPMG sequence, equation (6). On the other hand, the
second set of analytical expressions, which does not coincide with the CPMG resonance time, is

t̂UDD4
k ≈ 8(2k − 1)π

2ωL − A‖
,

φ̂UDD4
k ≈

4A⊥ cos
[

(2k−1)
√

5π
2

]
ωL − A‖

,

(12)

where the angle of rotations φ̂UDD4
k are larger than φUDD4

k . In fact, with the resonance time t̂UDD4
k UDD4

performs almost on a par with CPMG in both gate fidelity and total sequence time. Another difference
between UDD4 and CPMG (and UDD3 too) is that unconditional rotations about the x-axis do not occur
every time t is in the middle between any two sequential resonance times tUDD4

k (or t̂UDD4
k ), they only

happen at certain times given by

t̃UDD4
k ≈ 16kπ

2ωL − A‖
,

φ̃UDD4
k ≈

2kA⊥π
√

A2
⊥ + A2

‖ cos
[
k
√

5π
]2

(ωL − A2
‖)

.

(13)

In general, for both CPMG and any UDDn, the sequence unit times t̃k that generate unconditional rotations
about the x-axis are more sensitive to timing imprecision. As discussed before, the timing sensitivity is

6
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Figure 3. (a) The dot product �n0 ·�n1 of rotation axes and the rotation angle φ of a target nuclear spin under the CPMG (top),
UDD4 (middle), UDD6 (bottom) sequences, against the unit sequence time. As in figure 2, the periodic dips of �n0 ·�n1 indicate
conditional rotations and the flat regions indicate unconditional ones. For the numerical simulation we set A‖ = A⊥ = 0.1ωL,
where ωL/2π = 1MHz. (b) Close-up of �n0 ·�n1 around the first resonant time in (a). Clearly, at the first resonant time, UDD has
narrower spectral widths than CPMG. (c) Close-up of rotation angles of CPMG (blue), UDD4 (red dashed) and UDD6 (green)
at the first three resonant times (t1, t2, t3). The resonant rotation angles (φi) of CPMG are relatively constant, while those of UDD
are varying. The resonant rotation angles of CPMG at t1, t2, t3 are (φ1,φ2,φ3) = (1.93π, 1.93π, 1.94π), of UDD4 are
(φ1,φ2,φ3) = (1.98π, 1.94π, 1.94π) and of UDD6 are (φ1,φ2,φ3) = (1.996π, 1.78π, 1.91π).

connected to the sharpness of the dips and peaks of the rotation axes x projection as shown in figure 2 (see
also appendix C). As a result, the analytical expressions for the sequence unit time that generates
unconditional rotations, and the corresponding rotation angles, are less precise approximations in
comparison to the analytical expressions for the conditional rotations, and thus they should be used as
initial inputs of a numerical optimization algorithm that would give more exacts values.

We do not provide analytical expressions for the resonance times (or corresponding rotation angles) for
UDDn with n � 5 due to the increased complexity in the expressions. Instead, the numerical comparison
between UDDn and CPMG is in figure 3, where the rotation angles and resonance times of the target
nuclear spin are shown for both cases. Again, since the general UDD is not equidistantly spaced, we use the
basic sequence time t as the unit time instead of the variable inter-pulse time τ . The first resonance time t1

(first dips of �n0 · �n1 in figure 3(a)) for CPMG, UDD4, and UDD6 is the same. On the other hand, as shown
in figures 3(b) and (c), the rotation angle φ and spin selectivity (full width at half minimum of the curve for
the dot product of the rotation axes, �n0 · �n1) vary for different UDDn sequences. figure 3(c) shows the
rotation angles around the first three orders of the resonant time tk with k = 1, 2, 3 for CPMG, UDD4 and
UDD6. It is evident that the rotation angles at tk are almost constant for CPMG yet varying for UDD4 and
UDD6. The closer the magnitudes of φk is to 2π the smaller the effective rotation angle is. Therefore, we can
choose a UDD sequence with a rotation angle close enough to 2π to implement a total gate with higher
fidelity. In order to have overall short gate times, hereafter we will use the first resonance time t1 to
implement the coupling gate for nuclear spins under both CPMG and UDD sequences, unless stated
otherwise. Moreover, we will only consider UDDn sequences with n � 6 in order to avoid unnecessarily
long sequences and also to maintain the efficacy of the sequence in protecting the electron spin from noise
with soft high-frequency cutoff [69].

7
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Figure 4. Probability Px of preserving the initial |x〉 state of the electron spin when it interacts with one nuclear spin (blue and
red curves) and with two nuclear spins simultaneously (black dashed curve) after (a) and (b) CPMG and (c) and (d) UDD4 pulse
sequences. The CPMG (UDD4) sequence is formed by NCPMG (NUDD) copies of its basic unit sequence. The hyperfine interaction
parameters (A‖/2π, A⊥/2π) of the two nuclear spins interacting with the electron spin are extracted from reference [55] and are:
(15.3, 12.9) kHz for spin-1 (blue curve), and (30.6, 25.7) kHz for spin-2 (red curve). The calculation assumes a relatively strong
external magnetic field, ωL/2π = 314 kHz. Each panel shows the type of pulse sequence used in the numerical simulation and
the total sequence time T. In each panel, when the unit sequence time t is chosen as indicated by the dotted vertical line, the
targeted spin (spin-1 in (b) and (d) and spin-2 in (a) and (c)) is maximally entangled with the electron spin (Px → 1/2). The
intersection of the curve of untargeted spin (spin-1 in (a) and (c) and spin-2 in (b) and (d)) with the dotted vertical line
represents how much the untargeted spin is decoupled. Px = 1 for the untargeted spin represents complete decoupling of the
untargeted spin. (a) and (b) The CPMG sequence fails to fully control each nuclear spin individually without affecting the other
one, due to the small Px (Px = 0.8 in (b)) of the untargeted spin. Here we use a higher resonance order k = 2 (corresponding to
larger unit sequence time tk), equation (6), which improves the selectivity of the CPMG sequence. (c) and (d) Using the UDD4
sequence on the electron spin increases the coupling selectivity with each nuclear spin. The number of iterations, N(j)

i with
i ∈ {CPMG, UDD} and j the panel label, are chosen such that the electron spin is maximally entangled with one of the nuclear
spins. The iteration numbers used in each panel are N(a)

CPMG = 9, N(b)
CPMG = 18, N(c)

UDD = 33, and N(d)
UDD = 70.

4.1. Nuclear spin selectivity enhancement using UDD
A good nuclear spin selectivity, in the context of the techniques discussed in this work, implies the
successful coupling of the electron spin with a target nuclear spin and the simultaneous decoupling from
the rest of the nuclear spin bath. However, when two or more nuclear spins surrounding the central
electron spin have similar hyperfine parameter values, it becomes challenging to couple the electron spin to
one of those nuclear spins without coupling to the other. In the case of CPMG, the spin selectivity can be
improved by using a higher resonance order k [55], equation (6), i.e. larger unit sequence time tk. However,
a larger minimum pulse interval implies a reduction in the ‘dynamical decoupling limit’ [73, 74], which is
the highest-frequency component of the noise power spectral density that can be successfully suppressed by
dynamical decoupling. As a result, a CPMG sequence with larger tk will unavoidably underperform (see
section 4.2 for further discussion). Alternatively, given that the spin selectivity (full width at half maximum
of the curve for �n0 · �n1 of the target nuclear spin, see figure 3(b)), varies for different UDDn sequences,
UDD-based control is versatile enough to individually control a target nuclear spin while decoupling the
electron spin from the rest of the spin bath, without the use of higher resonance orders.

As an example of the finer spin selectivity of UDD, we simulate the interaction of two 13C nuclear spins
with the central electron spin of an NV center under dynamical decoupling sequences (see appendix E for
the case of three nuclear spins coupled to the central electron spin). We calculate the coupling–decoupling
rate of the electron spin using the system’s coherence function [60] L(t) = Tr

[
ρ(t)S+

]
/Tr

[
ρ(0)S+

]
, where

S+ = Sx + iSy is a spin ladder operator, and ρ(t) is the density matrix of the system comprising the electron
spin and two nuclear spins at time t. For the numerical calculations we set the nuclear Larmor frequency
equal to ωL/2π = 314 kHz, and we take the hyperfine interaction parameters (A‖/2π, A⊥2π) from reference
[55]: (15.3, 12.9) kHz and (30.6, 25.7) kHz for the first and second nuclear spins, respectively. Assuming an
inter-nuclear distance such that the nuclear–nuclear interaction is much weaker than the electron–nuclear
interaction, we neglect the former in our calculations. Consequently, if we assume that the system is
initialized in a product state with the electron state being |x〉 = (|ms = 0〉+ |ms = −1〉)/

√
2, then the

probability Px of preserving the initial electron state at time t is given by Px = (1 + L(t))/2. In figure 4 we
plot the probability Px after CPMG (figures 4(a) and (b)) and UDD4 (figures 4(c) and (d)) sequences with
N iterations of their respective basic unit sequences. Evidently, a probability Px equal to 1 indicates that the
electron is decoupled from the nuclear spins, and that is true for most values of the unit sequence time t in
figure 4. However, for certain values of t the sequence is in resonance with one of the nuclear spins, which
corresponds to a sharp dip in Px as shown in figure 4. At those resonance values of t, equations (6) and (11),
the rotation axes �n0 and �n1 for the target nuclear spin are approximately antiparallel (�n0 · �n1 = −1,which
corresponds to Px ≈ 0.5), and thus the resulting conditional rotation entangles the target nuclear spin with
the electron spin. In order to improve the spin selectivity of CPMG we use a higher resonance order k = 2.
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Moreover, the number of iterations, Ni with i ∈ {CPMG, UDD}, are chosen such that the electron spin is
maximally entangled with one of the nuclear spins (Px → 0.5), see figure 4. Note that, in contrast to the
CPMG case (figures 4(a) and (b)), when the signal of the target nuclear spin, which is at resonance with the
UDD4 sequence (figures 4(c) and (d)), is near Px = 0.5, the signal of the nuclear spin is effectively at
Px = 1. This means that the nuclear spins can be individually controlled without significantly affecting each
other in the process, thus minimizing the crosstalk error between spin qubits, which is a necessary
condition for realizing the control of a multi-nuclear spin register [29]. Moreover, the total sequence time T
of UDD4 is only slightly larger than that of CPMG, making it overall more appealing.

4.2. Decoupling power of UDD versus CPMG in the spin selectivity enhancing case
It has been shown in the literature that in the presence of noise with a soft high-frequency cutoff CPMG
outperforms UDD [68–70, 74, 75]. However, as mentioned in the previous section, in the particular case of
spin selectivity enhancement it is necessary to use a higher resonance order k for CPMG (larger interpulse
period). Higher values of k, in addition to making the sequences longer, affect negatively their decoupling
performance. This becomes evident when we consider the electron spin decoherence under pulse sequences.
Accordingly, we quantify the electron spin (qubit) coherence following the formulation for measuring
coherence under a dephasing Hamiltonian introduced in references [58, 68, 69]. In general, an initial qubit
state along the x-axis of the Bloch sphere accumulates a random phase due to its interaction with the
environment. The coherence of the state after a time T is given by | L(t)| = e−χ(T), where | . . . | is the
ensemble average and L(t) is the previously defined coherence function. As shown in references [58, 68, 69],
the function in the exponent of the coherence function is χ(T) = 2

π

∫∞
0

S(ω)
ω2 F(ωT)dω, where S(ω) is the

power spectral density of the noise, and F(ωT) is known as the ‘filter function’ and describes the influence
of the pulse sequence on the qubit decoherence. Therefore, to characterize the coherence-preserving power
of any pulse sequence with total time T, it suffices to calculate its filter function F(ωT).

For a general sequence of nπ pulses which are applied at the instants of time δjT with j ∈ {1, 2, . . . , n},
so that the total sequence time T is divided into n + 1 subintervals, the filter function is [58, 69]

F(ωT) =

∣∣∣∣∣∣1 + (−1)n+1 eiωT + 2
n∑

j=1

(−1)jeiδjωT

∣∣∣∣∣∣
2

. (14)

Here we are assuming instantaneous pulses, which is a good approximation as long as the duration of each
pulse is smaller than the smallest interval between pulses [68]. This is the case for NV centers, where
π-pulses can be implemented in less than 10 ns and with a fidelity above 99% [53, 76]. Moreover, for the
numerical simulations we use noiseless pulses and assume that there are no other noise sources acting on
the system. Now, for an n-pulse CPMG sequence the fractional pulse locations are δj = (j − 1/2)/n.
However, given that in this work we consider the number of iterations N of a basic sequence unit
(τ –π–2τ –π–τ) instead of the total number of pulses, the fractional pulse locations for N iterations of the
basic CPMG unit (CPMGN) would be δj = (j − 1/2)/(2N). Therefore, after some algebra, the filter
function for a CPMGN sequence is

FCPMG
N (ωT) = 16 sec2

(
ωT

4N

)
sin2

(
ωT

2

)
sin4

(
ωT

8N

)
. (15)

Alternatively, for a UDD sequence with n pulses (UDDn) the fractional pulse locations are
δj = sin2[πj/(2n + 2)]. But then again, in this work we consider N iterations of a basic sequence unit
UDDn, and thus the fractional pulse locations are given by δln+j = l/N + sin2[πj/(2n + 2)]/N. The filter
function for a (UDDn)N sequence then is

FUDDn
N (ωT) = |1 + (−1)nN+1 eiωT + 2

N−1∑
l=0

n∑
j=1

(−1)ln+j eiδln+jωT |2. (16)

With the above expressions we proceed to compare the filter functions of the pulse sequences used in
figures 4(a) and (c), which is shown in figure 5 (the filter functions of the pulse sequences used in
figures 4(b) and (d) gave similar results). The vertical black and red dashed lines in figures 5(a) and (b)
mark the frequency interval ∼[60, 250] kHz where the CPMG filter function is greater than or equal to 1,
i.e. CPMG fails to decouple the electron spin from the spin bath. In that same region, with non-negligible
noise spectral weight, UDD4 clearly outperforms CPMG. This shows that, in this type of scenario, UDD4
not only provides better spin selectivity, but also better noise-suppression compared to CPMG.
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Figure 5. Comparison of the CPMG and UDD4 filter functions plotted against the noise frequency ω/2π. The pulse sequences
are the same ones used in figure 4, where the total time of the CPMG (UDD4) sequence is 90.2 μs (110.4 μs) and the number of
iterations is NCPMG = 9 (NUDD = 33). (a) Numerically calculated filter functions for CPMG and UDD4. The horizontal dashed
black line indicates F(ω) = 1. (b) The quotient between the numerical values of UDD4 and CPMG. A quotient equal to 1
indicates equal filter functions, a quotient less than 1 (light blue shading) corresponds to UDD4 outperforming CPMG and vice
versa for a quotient greater than 1 (magenta shading). In the frequency interval ∼[60, 250] kHz (between the vertical black and
red dashed lines) the CPMG filter function is, on average, equal or greater than 1, thus losing its error-suppressing capability. In
that same frequency interval UDD4 clearly outperforms CPMG. For higher frequencies (to the right of the red dashed line ∼250
kHz) CPMG outperforms UDD4 for certain sporadic intervals, however, the noise spectral weight in such intervals is
comparatively much smaller.

Figure 6. Dot product of the nuclear spin rotation axes, �n0 ·�n1, as a function of timing error of unit sequence, centered at the
resonance times tCPMG

1 and t̂UDD4
1 of CPMG (blue curve) and UDD4 (red curve) sequences, respectively. In the numerical

calculations we use a strong external magnetic field (corresponding to a nuclear Larmor frequency of ωL/2π = 5 MHz) and
hyperfine parameters A‖/2π = A⊥/2π = 25kHz. The wider dip given by the UDD4 sequence allows for somewhat larger degree
of error in the pulse timing.

4.3. Robustness under pulse timing errors in strong magnetic fields
There are scenarios where the use of very strong magnetic fields is advantageous, e.g. in order to suppress
undesired transverse couplings. In those cases, the use of dynamical decoupling sequences to conditionally
control nuclear spins becomes more sensitive to pulse timing errors due to shorter time intervals between
pulses that can get close to the hardware temporal resolution limit. However, considering that whenever the
inner product of the target nuclear spin rotation axes (�n0 · �n1) is equal to −1, the nuclear spin rotation is
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Figure 7. (a)–(d) Infidelity (1 −F) and (e)–(h) gate time of CRX( π
2 ) gate, where (a), (c), (e), (g) were obtained with the CPMG

sequence and (b), (d), (f), (h) with the CPMG + UDD4 hybrid sequences. The Larmor frequencies used are (a), (b), (e), (f)
ωL/2π = 2.0 MHz (relatively strong magnetic field) and (c), (d), (g), (h) ωL/2π = 0.5 MHz (relatively weak magnetic field).
The axes correspond to the parallel and perpendicular components of the hyperfine interaction strength, A‖/2π (x-axis) and
A⊥/2π (y-axis), in the range of 10 kHz to 300 kHz. For each point of the contour plots we have calculated the necessary number
of iterations Ni (i ∈ {CPMG, UDD4}) for each type of sequence such that the resulting gate is a CRX( π

2 ) with the shortest gate
time that achieves maximal fidelity for the given set of parameters (see appendix D for the values of Ni). (a) and (c) The
CPMG-based CRX( π

2 ) gate infidelity is considerably increased when the magnetic field is weak, especially for nuclear spins with
stronger hyperfine parameters. (b) and (d) The CPMG + UDD4-based CRX( π

2 ) gate infidelity is less affected by the lower
magnetic field due to the smaller rotation angle of UDD4. Under the same magnetic field, the hybrid sequence CPMG + UDD4
allows more robust control in a broader hyperfine coupling parameter range. (e) and (g) CPMG-based and (f) and (h) CPMG +
UDD4-based CRX ( π

2 ) gate times. The hybrid sequence CPMG + UDD4 is always slightly longer than the CPMG sequence alone.

conditional, then it is possible to make the sequence more resistant to pulse timing error by requiring that
the gradient around the point where �n0 · �n1 = −1 be as small as possible. In other words, since the spin
selectivity depends on the full width at half minimum of the aforementioned curve, we slightly relinquish
the spin selectivity in order to obtain a sequence that is more resistant to pulse timing error.

To illustrate the previous point, figure 6 shows the inner product of the rotation axes, �n0 · �n1, of a
nuclear spin being controlled via CPMG and UDD4 sequences under a strong magnetic field
(corresponding to a nuclear Larmor frequency of ωL/2π = 5 MHz). For UDD4 we use the first order
resonance time t̂UDD4

1 of the second set (see equation (12)) and for CPMG we use its first order resonance
time tCPMG

1 . Evidently, the CPMG sequence produces a sharp deep, which does not change regardless of the
order of the chosen resonance time, whereas UDD4 gives a wider dip that corresponds to a control sequence
less sensitive to pulse timing error. Note that t̂UDD4

1 = 2tCPMG
1 , meaning UDD4 requires longer time to

guarantee its superior robustness against timing error.
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Figure 8. (a) and (b) Infidelity (1 −F) and (c) and (d) gate time of single-qubit RX ( π
2 ) gate under (a) and (c) ωL/2π = 0.5

MHz (relatively weak magnetic field) and (b) and (d) ωL/2π = 2.0 MHz (relatively strong magnetic field). The nuclear spin
single-qubit gate is implemented via the unconditional rotation caused by the CPMG sequence on the electron spin. The axes
correspond to the parallel and perpendicular components of the hyperfine interaction strength A‖/2π (x-axis) and A⊥/2π
(y-axis). Decreasing the field strength to lower the gate time unavoidably lowers the overall gate fidelity as well. Nevertheless, the
gate fidelity is still above 90% in most of the parameter space.

5. Hybrid sequences: CPMG + UDD for high fidelity gates and wider spin control
range

Given that CPMG offers fast yet non ideal large angle rotations and UDD offers slow but desirable small
angle rotations, the combination of both CPMG and UDD sequences is an attractive solution to construct
both fast and high fidelity gates. We refer to such combinations of CPMG and UDD as hybrid sequences.
These are based on several iterations of basic CPMG units to form rotations close to the desired gate,
followed by few iterations of single basic UDD units to get as close as possible to the target gate. The
resulting rotation angle Θ is given by

Θ = NCPMGθCPMG + NUDDθUDD, (17)

where θCPMG(UDD) and NCPMG(UDD) are the rotation angle and integer number of iterations of the CPMG
(UDD) sequence, respectively. The recipe for choosing NCPMG and NUDD4 is to start with the value for
NCPMG that makes the resulting gate as close to the target gate as possible. Then we perform a simple
numerical optimization where we perturb the value for NCPMG previously found and add a variable number
of iterations of the UDD4 sequences (constrained to NUDD4 � 6) in such a way that the resulting gate
fidelity is maximum. These hybrid sequences take advantage of the large rotation speed of CPMG and the
small and more precise rotation angles of UDD, giving an overall fast and high-fidelity two-qubit entangling
gate.
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Figure 9. Probability Px of preserving initial |x〉 state of the electron spin after the (a) and (b) CPMG protocol and the (c) and
(d) CPMG + UDD4 hybrid protocol. The k = 3 (third resonance) is used for both CPMG and UDD4. The hyperfine parameters
of nuclear spin 1 (blue) and nuclear spin 2 (red curve) and magnetic field setup are the same as in figure 4. Simulation in the
simultaneous presence of two nuclear spins is plotted in black dashed curve. The choice of third order resonance here results in
well separated resonance time between the two nuclear spins, thus improving the spin selectivity. For each plot we use (a)
NCPMG = 9, (c) NCPMG = 8, NUDD4 = 1 (b) NCPMG = 18, (d) NCPMG = 17, NUDD4 = 1. The CPMG + UDD4 hybrid protocol
shows similar spin selectivity and equivalent gate time compared to the pure CPMG protocol. The lack of selectivity
enhancement of the hybrid protocol is due to its predominant CPMG composition.

Figure 7 shows the gate infidelity and gate time for a two-qubit CRX( π
2 ) obtained with the CPMG

sequence and with the hybrid CPMG + UDD4 sequence. The gate infidelity is defined as [77]
1 −F = 1 − 1

n(n+1) [Tr(U† U) + |Tr(U†
0U)|2], where n is the Hilbert space dimension, U is the generated

gate, and U0 is the desired gate. The infidelity and gate time are sampled on a range of hyperfine parameter
values and for relatively weak and strong magnetic field strengths. The CPMG-based CRX( π

2 ) gate has lower
fidelity when the external magnetic field is relatively weak (figure 7(c)). In contrast, the CPMG +

UDD4-based CRX( π
2 ) gives relatively high gate fidelity under weak magnetic field strength, above 99% as

shown in figure 7(d). Moreover, as shown in figures 7(a) and (c) the large effective rotation angle incurs the
granularity pattern of the infidelity. On the other hand, due to the smaller effective rotation angle of UDD4,
the high fidelity of the hybrid CPMG + UDD4 sequence persists for a broad hyperfine parameter range and
the landscape is smoother, as shown in figures 7(b) and (d). Figures 7(e)–(h) show the gate times for
CRX( π

2 ) obtained with both type of sequences. The CPMG + UDD4-based CRX( π
2 ) has only a slightly

longer gate time than the CPMG-based one, confirming that the combination of CPMG and UDD
sequences gives an overall fast and high-fidelity CRX( π

2 ) gate.
In general, the CRX(φ) fidelity is directly proportional to the external magnetic field strength and,

therefore, it is inversely proportional to the rotation angle φk in both CPMG and UDDn sequences, which,
seeing that in general φk 
 φ̃k (see equations (6)–(13)), implies that a higher-fidelity CRX(φ) would result
in an undesirably long Rx(φ̃) gate time. Having excessively slow single-qubit gates would hamper any
further development that involves nuclear spins in defects as quantum registers or processors. However, the
use of weaker external magnetic fields not only improves the nuclear spin selectivity but it also lowers the
gate time of the single-qubit x-rotation caused by a dynamical decoupling sequence with an off-resonance
unit time t. Figure 8 shows the fidelity and gate time for the CPMG-based single-qubit rotation Rx( π

2 ),
which are calculated for a range of hyperfine parameter values and different magnetic field strengths. We
choose to use only the CPMG sequence for the calculations presented in figure 8 because the other
sequences (UDD and CPMG + UDD) give similar fidelities but worse gate times. As shown in figure 8(c)
and (d), a lower magnetic field strength reduces the overall single-qubit x-rotation gate time;
notwithstanding, a weak magnetic field also reduces the gate fidelity (figures 8(a) and (b)). Nevertheless, the
gate fidelity is still above 90% in most of the parameter space under weak magnetic fields.
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Figure 10. Comparison of the CPMG + UDD4 and CPMG filter functions as functions of noise frequency ω/2π. The
parameters for the pulse sequences used in the numerical calculations are {NCPMG = 21, NUDD = 2, T = 12.01μs} for CPMG +
UDD and {N = 21, T = 10.97μs} for CPMG. Both pulse sequences induce a high-fidelity CRx( π

2 ) gate between the electron and
target nuclear spin when the latter has the following hyperfine interaction parameters {A⊥/2π = 70kHz, A‖/2π = 170kHz}.
The pulse sequence and hyperfine parameters were extracted from figures 7(c) and (d). For the free-induction decay (FID)
process, the electron spin state freely evolves for 12.01 μs. (a) Numerically calculated filter functions for CPMG + UDD4,
CPMG, and free-induction decay (FID). The horizontal dashed black line indicates F(ω) = 1. (b) The quotient between the
numerical values of CPMG + UDD4 and CPMG. A quotient equal to 1 indicates equal filter functions, a quotient less than 1
corresponds to CPMG + UDD4 outperforming CPMG and vice versa for a quotient greater than 1 (magenta shading). Vertical
dashed black lines in both plots mark the frequency value ω1/2π ≈ 1 MHz below which noise is effectively suppressed by both
pulse sequences.

We next test the spin selectivity of the hybrid protocol. In figure 9, we compare the spin selectivity of
CPMG and CPMG + UDD4 hybrid protocols for two nuclear spins with parameters taken from reference
[55]. We set the nuclear Larmor frequency equal to ωL/2π = 314 kHz, which is the setup in figure 4. We
choose to use k = 3, the third resonance, for all CPMG and UDD4 pulse sequences, wherein two spin
resonance times are more separated to achieve better spin selectivity. In the totally entangling process of two
nuclear spin respectively, we find that the hybrid protocol and the CPMG protocol have the same gate times
(T = t(NCPMG + NUDD4)), which are only determined by their sequence iteration numbers N: (a)
NCPMG = 9, (c) NCPMG = 8, NUDD4 = 1; (b) NCPMG = 18, (d) NCPMG = 17, NUDD4 = 1. The two protocols
show similar spin selectivity, which is not surprising, given that the hybrid protocol generally consists of a
long sequence (i.e, large NCPMG) of CPMG pulses, followed by a short sequence (i.e, small NUDD) of UDD4
pulses.

Now we turn our focus toward the coherence-preserving power of the hybrid sequence CPMG + UDD.
The filter function for the hybrid sequence (CPMG)NCPMG+(UDDn)NUDD is a combination of
equations (15) and (16) and is given by

FCPMG+UDDn
NCPMG,NUDD

(ωT) = |1 + (−1)2NCPMG+nNUDD+1 eiωT + 2
2NCPMG∑

j1=1

(−1)j1 e
iδCPMG

j1
ωT

+ 2
NUDD−1∑

l=0

n∑
j2=1

(−1)ln+j2 e
iδUDD

ln+j2
ωT |2, (18)

where δCPMG
j = (j − 1/2)/ [(2(NCPMG + NUDD)) and δUDD

ln+j = (l + NCPMG)/(NCPMG + NUDD) +

sin2[πj/(2n + 2)]/(NCPMG + NUDD). In equation (18) we assume that the order of the full sequence, from
left to right, is CPMG first followed by UDD. For alternative orders the fractional pulse locations must be
slightly modified.
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We compare the CPMG + UDD4 and CPMG filter functions in figure 10. These pulse sequences, with
parameters {NCPMG = 21, NUDD = 2, T = 12.01 μs} for CPMG + UDD4 and {N = 21, T = 10.97 μs} for
CPMG, induce a high-fidelity CRx( π

2 ) gate between the electron and a target nuclear spin with hyperfine
parameters {A⊥/2π = 70 kHz, A‖/2π = 170 kHz}. The pulse sequences and hyperfine parameters were
extracted from figures 7(c) and (d), in which the sequence parameters are optimized to generate
high-fidelity CRX( π

2 ) gates in the shortest time possible. Figure 10(a) shows, apart from the CPMG +

UDD4 and CPMG filter functions, the filter function for a free-induction decay (FID) process given by [68,
69] FFID(ωT) = sin2(ωT/2). In this process the electron spin state is allowed to freely precess for certain
time T (T = 12.01 μs in figure 10(a)) under the effect of a dephasing Hamiltonian which, in an ensemble
average, produces a decay in coherence. The filter functions of both pulse sequences are, as expected, much
smaller than the filter function of FID for low-frequency noise but they get closer to each other with
increasing noise frequency until they become equal to or greater than 1 (horizontal dashed black line). The
vertical dashed black lines in both figures 10(a) and (b) mark the minimum frequency ω1/2π ≈ 1 MHz at
which both filter functions are equal to 1. Therefore, for noise frequencies equal to or greater than ω1, both
pulse sequences do not effectively suppress the noise and can even amplify the decoherence. In the same
vein, figure 10(b) shows that for noise frequencies less than ω1 both filter functions perform equivalently
(the quotient between filter functions is equal to 1) except for noise frequencies close to ω1, where CPMG
slightly outperforms CPMG + UDD4 (quotient greater than 1). However, the noise spectral density near
ω1/2π ≈ 1 MHz is already considerably small [53]. Therefore, the hybrid CPMG and UDD pulse
sequences, in comparison to CPMG alone, do not appreciably lower the ability to extend the electron spin
coherence time.

6. Conclusions

In this work we have introduced a new way of conditionally controlling nuclear spins via UDD and hybrid
dynamical decoupling sequences acting on the central electron spin in NV centers. The Uhrig sequences
provide flexibility in terms of enhancing nuclear spin selectivity, without increasing gate times. Surprisingly,
in this case UDD performs better than CPMG in terms of electron spin coherence protection too. The
hybrid approach combines CPMG and Uhrig dynamical decoupling sequences, and has the advantage of
producing fast entangling two-qubit gates between the electron and target nuclear spins with higher fidelity
than what would be obtained with using either Uhrig or CPMG sequences alone. This is because UDD gives
small rotation angles, which supplement the rotation induced by CPMG. Thus, hybrid sequences overcome
the coarse ‘granularity’ issue of CPMG-induced conditional gates. Even though the hybrid protocol does
not improve the spin selectivity over CPMG as the UDD case does, it is an improved tool to implement fast
and high fidelity gates when the spin selectivity given by CPMG is satisfactory. Moreover, the hybrid
sequence retains most of the noise-suppression characteristics of CPMG, as shown by its filter function. In
addition, in contrast to other sequences, the hybrid protocol is less restrictive regarding the strength of the
external magnetic field, allowing the use of weaker magnetic fields without significantly increasing the
overall gate time and, at the same time, giving better spin selectivity. It also allows the use of very strong
magnetic fields while reducing the sequence sensitivity to pulse timing error.

Our results are applicable not only to NV centers but also to similar defect platforms such as the SiV0 in
diamond [78] and divacancy centers in SiC [7, 39–42], both of which have a ground state with S = 1. The
latter is particularly interesting since it has two types of nuclear spins, 13C and 29Si, which can be treated as
two independent nuclear spin baths due their negligible interference [79]. Overall, our work presents a
more versatile way to control weakly coupled nuclear spins via a central electron spin, and thus it is
immediately relevant to experiments with existing capabilities in NV centers and
similar systems.

Acknowledgments

We thank T Taminiau and Mo Chen for helpful discussions. This work was supported by the NSF (Grant
Numbers 183897 and 1741656).

Appendix A. Effective CNOT gate

Here we explain that the conditional nuclear spin rotation gate CRX( π
2 ) is effectively equivalent to the

CNOT gate (CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X) up to single-qubit gates and a trivial phase. To that end, we
start from a nuclear spin coupled to the central electron spin and apply N iterations of decoupling units
satisfying the resonance condition. The N is chosen such that the total evolution operator is:
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Figure C1. Rotation angle φ and perpendicular components of the unit axes, n0,⊥ and n1,⊥, vs the unit sequence time t for
different UDDn sequences with even n. The values for the system parameters used to make the plots are ωL/2π = 2 MHz and
A‖/2π = A⊥/2π = 0.1 MHz. Note that whenever a peak (dip) of n0,⊥ coincides with the dip (peak) of n1,⊥ the nuclear spin
undergoes a conditional rotation.

CRX

(π
2

)
= |0〉〈0| ⊗ RX

(π
2

)
+ |1〉〈1| ⊗ R−X(

π

2
) (A1)

where RX

(
π
2

)
= e−i π4 σX and R−X( π

2 ) = ei π4 σX . Since R−1
X ( π

2 )R−X( π
2 ) = iX, we can make the following

simplification:
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)
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(π
2

) (
|0〉〈0| ⊗ I + |1〉〈1| ⊗ X

)
. (A2)

It is evident from the expression that CRX( π
2 ) is equivalent to the CNOT gate, up to an electron spin

state-independent nuclear gate RX( π
2 ), a R(E)

z

(
π
2

)
gate on the electron spin, and an ignorable trivial phase.

Since CRX( π
2 ) =

(
R(E)

z

(
π
2

)
RX

(
π
2

))
CNOT, to implement the standard CNOT gate one should apply the

corresponding unconditional nuclear gates and electron spin gate to counteract the R(E)
z

(
π
2

)
RX

(
π
2

)
.

Appendix B. System Hamiltonian

We consider a nuclear spin 13C that interacts with the central electron spin in the presence of a magnetic
field along the z direction. The total Hamiltonian, equation (1) in the main text, can be decomposed as the
summation of the following terms:

HE = −γeBSz +ΔS2
z

Hint = �S · A ·�I

Hbath = −γCBIz ,

(B1)

where γ is the gyromagnetic ratio, Δ is the zero field splitting, vectorized spin operators �S,�I contain x, y, z
components each, and A = Ai,j is the electron–nuclear hyperfine tensor, which contains 9 components for
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Figure C2. Rotation angle φ and perpendicular components of the unit axes, n0,⊥ and n1,⊥, vs the unit sequence time t for
different UDDn sequences with odd n. We use the same values for the system parameters used in figure C1. The regions where a
peak, nor a dip, is observed but one would otherwise expect to do so, e.g. the region under the first peak of the rotation angle, is
due to very sharp processes (and, therefore, quite sensitive to timing imprecision) that were not picked up by the numerical
calculations or simply due to the absence of conditional or unconditional x-rotations.

i, j ∈ {x, y, z}. Since the nuclear spin is not assumed to be a nearest neighbor of the electron spin, Hint can
be described by the dipole–dipole interaction:

Hint = �S · A ·�I

= �S · μ0γeγC

4πr3

(
1 − 3�r�r

r2

)
·�I

=

⎛
⎝Sx

Sy

Sz

⎞
⎠

T

·

⎛
⎝Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz

⎞
⎠ ·

⎛
⎝Ix

Iy

Iz

⎞
⎠ , (B2)

where the�r denotes the displacement vector from the electron to the nucleus. When we eliminate the
transverse components of the electron spin, as explained in the main text, we have:

Hint = Sz(AzxIx + AzyIy + AzzIz). (B3)

A proper rotation of the x–y plane can reduce the directions down to ⊥ and ‖ components w.r.t. the z-axis.
In this way, the second term in equation (2) can be obtained.

Appendix C. Derivation of the analytical expressions for the rotation angles and
resonance times for UDDn

We consider the system formed by the electron spin interacting with a single nuclear spin, whose
Hamiltonian is given by equation (4). In the main text, we used the coherence function L(t) of the whole
system to find the probability of preserving the initial state of the electron, (|x〉 = (|0〉+ |1〉)/

√
2), after a

decoupling sequence, which is Px = (1 + L(t))/2. An alternative way to find Px is using the evolution
operator of the nuclear spin alone conditioned on the electron spin input states |0〉 and |1〉, U0 and U1

respectively. This is the same approach used in reference [55]. Accordingly, the probability of finding the
electron in the initial |x〉 state after the decoupling sequence is Px = (1 + M)/2, with M = Re Tr(U0U†

1 )/2.
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Figure D1. (a) Integer values for the iteration number NCPMG used in the fidelity plot of figure 7(c). (b) and (c) Integer values
for the iteration numbers NCPMG+UDD4

CPMG and NCPMG+UDD4
UDD4 used in the fidelity plots of figure 7(d). The Larmor frequency is set

equal to ωL/2π = 0.5 MHz.

Figure D2. (a) Integer values for the iteration number NCPMG used in the fidelity plot of figure 7(a). (b) and (c) Integer values
for the iteration numbers NCPMG+UDD4

CPMG and NCPMG+UDD4
UDD4 used in the fidelity plots of figure 7(b). The Larmor frequency is set

equal to ωL/2π = 2 MHz.

The nuclear spin evolution operators after a single UDDn decoupling sequence, with n being an even
integer, are:

U0 =

j=neven∏
j=0

exp
[
−ih(1+(−1)j+1)/2Δj(n)τ

]
,

U1 =

j=neven∏
j=0

exp
[
−ih(1+(−1)j)/2Δj(n)τ

]
,

(C1)

where Δj(n) is defined as

Δj(n) =
sin

[
π(j+1)
2n+2

]2
− sin

[
πj

2n+2

]2

sin
[

π
2n+2

]2 , (C2)

with Δ0(n) = Δn(n) = 1. The Hamiltonian h(1+(−1)j+1)/2(h(1+(−1)j)/2) is either equal to h0 = ωLIz or
h1 = (ωL − A‖)Iz − A⊥Ix (see equation (3) in the main text). Here A‖ ≡ ωhcos(θ) and A⊥ ≡ ωhsin(θ),
where ωh is the magnitude of the hyperfine interaction and θ is the angle between the axes of rotation �ωL

and �ωh. In the absence of hyperfine coupling, the nuclear spin would precess about the axis �ωL with
frequency ωL (Larmor frequency). Similarly, in the absence of an external magnetic field, the nuclear spin
would precess about the axis �ωh with frequency ωh.

Note that for odd n the operators U0 and U1 do not start and end with the same single evolution
operator as is the case for even n, a required symmetry that implies that the electron spin returns to its
initial state after the decoupling sequence. Therefore, as stated in the main text, for UUDn with odd n the
basic unit sequence must be a combination of two single UDDn sequences, giving the following nuclear
spin evolution operators

U0 =

j=nodd∏
j=0

exp
[
−ih(1+(−1)j+1)/2Δj(n)τ

] j=nodd∏
j=0

exp
[
−ih(1+(−1)j)/2Δj(n)τ

]
,

U1 =

j=nodd∏
j=0

exp
[
−ih(1+(−1)j)/2Δj(n)τ

] j=nodd∏
j=0

exp
[
−ih(1+(−1)j+1)/2Δj(n)τ

]
.

(C3)
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Figure E1. Comparison of UDD4 and CPMG for the case of three nuclear spins. Like in figure 4, here we plot the probability Px

of preserving the electron’s initial |x〉 state after the (a)–(c) CPMG protocol and the (d)–(f) UDD4 protocol.

Given that the operators U0 and U1 belong to the SU(2) group, they can be expressed as rotations by an
angle φ around a unit axis �ni, this is

U0 = exp

[
−i

φ

2
�σ · �n0

]
,

U1 = exp

[
−i

φ

2
�σ · �n1

]
,

(C4)

where �σ is the Pauli vector. Note that the angle of rotation φ is independent of the electron spin input state
because Tr(U0)/2 = Tr(U1)/2 = cos[φ/2]. Using the expressions in equation (C4) we obtain [55]

M = 1 − (1 − �n0 · �n1) sin [φ/2]2, (C5)

which implies that the probability Px that the initial electron spin state |x〉 is preserved after the decoupling
sequence is equal to 1 if the unit axes �n0 and �n1 are parallel, i.e. �n0 · �n1 = 1. On the other hand, for
antiparallel axes (�n0 · �n1 = −1) Px is effectively the furthest from 1 (the exact value would depend on the
magnitude of φ), and thus the electron spin is coupled to the nuclear spin. Note that the electron and
nuclear spins are maximally entangled when �n0 · �n1 = −1 and φ = π/2 (or φ = 3π/2), and thus Px = 0.5.

Approximate analytical expressions for the resonance time t and angle of rotation φ can be found for
any UDDn sequence (including CPMG, i.e. UDD2) using equation (C5) and
cos[φ/2] = Tr(U0)/2 = Tr(U1)/2. First, assuming a high external magnetic field such that ωL 
 ωh, we
perform a Taylor series expansion in terms of ωh/ωL on both equation (C5) and cos[φ/2] = Tr(U0)/2. We
only need to keep terms up to first order to find the approximate analytical expression for the resonance
time t. We do so by first finding an approximate expression up to first order for the angle φ using equation
cos[φ/2] = Tr(U0)/2. And then plugging it in equation (C5), where M reduces to 1 in this first-order
approximation and �n0 · �n1 is set to −1 to get the interval time τ needed to implement conditional rotations
on the nuclear spin. After obtaining an expression for τ , the unit sequence time t for any UDDn sequence
with even or odd n is given by

t = τ

⎛
⎜⎝2 +

j=n−1∑
j=1

sin
[
π(j+1)
2n+2

]2
− sin

[
πj

2n+2

]2

sin
[

π
2n+2

]2

⎞
⎟⎠ . (C6)

Finally the approximate analytical expression for the rotation angle φ can be obtained by plugging the
previously found interval time τ into the Taylor series expansion of cos[φ/2] = Tr(U0)/2 but now we keep
terms up to second order. We follow a similar procedure for time t̃ and rotation angle φ̃ corresponding to
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unconditional rotations. Analytical expressions for the resonance times and rotation angles for UDDn
sequences with n � 5 are not simple enough to report them here. Moreover, as shown in figures C1 and C2,
it is not trivial to find a pattern that identifies the t values that produce unconditional rotations in UDD5
and beyond.

Appendix D. Number of iterations of the sequences used in figure 7

Figures D1 and D2 show the integer values for the iteration numbers Ni used in the fidelity plots shown in
figure 7 for Larmor frequencies ωL/2π = 0.5 MHz and ωL/2π = 2 MHz, respectively.

Appendix E. Comparison of UDD4 and CPMG over three nuclear spins

Here we compare the spin selectivity power between UDD4 and CPMG protocols, for the case of three
nuclear spins. From figure E1, we can see that the independent nuclei approximation continues to be valid
for three nuclear spins. We note that Delft group has successfully demonstrated the implementation of
quantum error correction [32], contextuality test [31], and decoherence free subspace encoding [80] based
on the selective control of several nuclear spins using dynamical decoupling. Based on the recent results on
many nuclear spin manipulation (>5) by the Delft group [22, 29, 81], we believe that the independent
nuclei approximation will continue to hold as the number of nuclear spin increases.
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[11] Atatüre M, Englund D, Vamivakas N, Lee S-Y and Wrachtrup J 2018 Material platforms for spin-based photonic quantum
technologies Nat. Rev. Mater. 3 38–51

[12] Simin D et al 2016 All-optical dc nanotesla magnetometry using silicon vacancy fine structure in isotopically purified silicon
carbide Phys. Rev. X 6 031014

[13] Humphreys P C, Kalb N, Jaco P, Morits J, Schouten R N, Vermeulen R F L, Twitchen D J, Markham M and Hanson R 2018
Deterministic delivery of remote entanglement on a quantum network Nature 558 268–73

[14] Sukachev D D, Sipahigil A, Nguyen C T, Bhaskar M K, Evans R E, Jelezko F and Lukin M D 2017 Silicon-vacancy spin qubit in
diamond: a quantum memory exceeding 10 ms with single-shot state readout Phys. Rev. Lett. 119 223602

[15] Rendler T, Neburkova J, Zemek O, Jan K, Zappe A, Chu Z, Cigler P and Wrachtrup J 2017 Optical imaging of localized chemical
events using programmable diamond quantum nanosensors Nat. Commun. 8 14701

[16] Schlipf L et al 2017 A molecular quantum spin network controlled by a single qubit Sci. Adv. 3 e1701116
[17] Layden D, Chen M and Cappellaro P 2020 Efficient quantum error correction of dephasing induced by a common fluctuator

Phys. Rev. Lett. 124 020504
[18] Aslam N et al 2017 Nanoscale nuclear magnetic resonance with chemical resolution Science 357 67–71
[19] Anisimov A N, Simin D, Soltamov V A, Lebedev S P, Baranov P G, Astakhov G V and Dyakonov V 2016 Optical thermometry

based on level anticrossing in silicon carbide Sci. Rep. 6 33301
[20] Shi F et al 2015 Single-protein spin resonance spectroscopy under ambient conditions Science 347 1135–8
[21] Lee S-Y, Niethammer M and Wrachtrup J 2015 Vector magnetometry based on S=3\2 electronic spins Phys. Rev. B 92 115201
[22] Abobeih M H, Randall J, Bradley C E, Bartling H P, Bakker M A, Degen M J, Markham M, Twitchen D J and Taminiau T H 2019

Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor Nature 576 411–5
[23] Degen C L, Reinhard F and Cappellaro P 2017 Quantum sensing Rev. Mod. Phys. 89 035002
[24] Hensen B et al 2015 Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres Nature 526 682

20

https://orcid.org/0000-0002-9985-7965
https://orcid.org/0000-0002-9985-7965
https://orcid.org/0000-0002-7898-2660
https://orcid.org/0000-0002-7898-2660
https://orcid.org/0000-0002-1939-5589
https://orcid.org/0000-0002-1939-5589
https://doi.org/10.1038/nmat2420
https://doi.org/10.1038/nmat2420
https://doi.org/10.1063/1.1626791
https://doi.org/10.1063/1.1626791
https://doi.org/10.1063/1.1626791
https://doi.org/10.1063/1.1626791
https://doi.org/10.1038/nmat4145
https://doi.org/10.1038/nmat4145
https://doi.org/10.1021/acs.nanolett.6b05102
https://doi.org/10.1021/acs.nanolett.6b05102
https://doi.org/10.1021/acs.nanolett.6b05102
https://doi.org/10.1021/acs.nanolett.6b05102
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/ncomms2771
https://doi.org/10.1038/s41467-019-09873-9
https://doi.org/10.1038/s41467-019-09873-9
https://doi.org/10.1038/nature10562
https://doi.org/10.1038/nature10562
https://doi.org/10.1038/nature10401
https://doi.org/10.1038/nature10401
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/ncomms4371
https://doi.org/10.1038/s41566-018-0232-2
https://doi.org/10.1038/s41566-018-0232-2
https://doi.org/10.1038/s41566-018-0232-2
https://doi.org/10.1038/s41566-018-0232-2
https://doi.org/10.1038/s41578-018-0008-9
https://doi.org/10.1038/s41578-018-0008-9
https://doi.org/10.1038/s41578-018-0008-9
https://doi.org/10.1038/s41578-018-0008-9
https://doi.org/10.1103/physrevx.6.031014
https://doi.org/10.1103/physrevx.6.031014
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1038/s41586-018-0200-5
https://doi.org/10.1103/physrevlett.119.223602
https://doi.org/10.1103/physrevlett.119.223602
https://doi.org/10.1038/ncomms14701
https://doi.org/10.1038/ncomms14701
https://doi.org/10.1126/sciadv.1701116
https://doi.org/10.1126/sciadv.1701116
https://doi.org/10.1103/physrevlett.124.020504
https://doi.org/10.1103/physrevlett.124.020504
https://doi.org/10.1126/science.aam8697
https://doi.org/10.1126/science.aam8697
https://doi.org/10.1126/science.aam8697
https://doi.org/10.1126/science.aam8697
https://doi.org/10.1038/srep33301
https://doi.org/10.1038/srep33301
https://doi.org/10.1126/science.aaa2253
https://doi.org/10.1126/science.aaa2253
https://doi.org/10.1126/science.aaa2253
https://doi.org/10.1126/science.aaa2253
https://doi.org/10.1103/physrevb.92.115201
https://doi.org/10.1103/physrevb.92.115201
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1038/s41586-019-1834-7
https://doi.org/10.1103/revmodphys.89.035002
https://doi.org/10.1103/revmodphys.89.035002
https://doi.org/10.1038/nature15759
https://doi.org/10.1038/nature15759


New J. Phys. 22 (2020) 073059 W Dong et al

[25] Bernien H et al 2013 Heralded entanglement between solid-state qubits separated by three metres Nature 497 86
[26] Nguyen C T et al 2019 Quantum network nodes based on diamond qubits with an efficient nanophotonic interface Phys. Rev.

Lett. 123 183602
[27] Cramer J, Kalb N, Rol M A, Hensen B, Blok M S, Markham M, Twitchen D J, Hanson R and Taminiau T H 2016 Repeated

quantum error correction on a continuously encoded qubit by real-time feedback Nat. Commun. 7 11526
[28] Wu Y, Wang Y, Qin X, Xing R and Du J 2019 A programmable two-qubit solid-state quantum processor under ambient

conditions npj Quantum Inf. 5 9
[29] Bradley C E, Randall J, Abobeih M H, Berrevoets R C, Degen M J, Bakker M A, Markham M, Twitchen D J and Taminiau T H

2019 A ten-qubit solid-state spin register with quantum memory up to one minute Phys. Rev. X 9 031045
[30] Doherty M W, Manson N B, Delaney P and Hollenberg L C L 2011 The negatively charged nitrogen-vacancy centre in diamond:

the electronic solution New J. Phys. 13 025019
[31] van Dam S B, Cramer J, Taminiau T H and Hanson R 2019 Multipartite entanglement generation and contextuality tests using

nondestructive three-qubit parity measurements Phys. Rev. Lett. 123 050401
[32] Taminiau T H, Cramer J, van der Sar T, Dobrovitski V V and Hanson R 2014 Universal control and error correction in

multi-qubit spin registers in diamond Nat. Nanotechnol. 9 171
[33] Choi J et al 2017 Depolarization dynamics in a strongly interacting solid-state spin ensemble Phys. Rev. Lett. 118 093601
[34] Meesala S et al 2018 Strain engineering of the silicon-vacancy center in diamond Phys. Rev. B 97 205444
[35] Becker J N et al 2018 All-optical control of the silicon-vacancy spin in diamond at millikelvin temperatures Phys. Rev. Lett. 120

053603
[36] Benjamin P et al 2014 All-optical formation of coherent dark states of silicon-vacancy spins in diamond Phys. Rev. Lett. 113

263601
[37] Sun S et al 2018 Cavity-enhanced Raman emission from a single color center in a solid Phys. Rev. Lett. 121 083601
[38] Seo H, Falk A L, Klimov P V, Miao K C, Galli G and Awschalom D D 2016 Quantum decoherence dynamics of divacancy spins in

silicon carbide Nat. Commun. 7 12935
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