
Differentially-Private Control-Flow Node Coverage for Software Usage Analysis

Hailong Zhang, Sufian Latif, Raef Bassily, and Atanas Rountev
The Ohio State University

Abstract
There are significant privacy concerns about the collection

of usage data from deployed software. We propose a novel
privacy-preserving solution for a problem of central impor-
tance to software usage analysis: control-flow graph coverage
analysis over many deployed software instances. Our solution
employs the machinery of differential privacy and its general-
izations, and develops the following technical contributions:
(1) a new notion of privacy guarantees based on a neighbor
relation between control-flow graphs that prevents causality-
based inference, (2) a new differentially-private algorithm
design based on a novel definition of sensitivity with respect
to differences between neighbors, (3) an efficient implemen-
tation of the algorithm using dominator trees derived from
control-flow graphs, (4) a pruning approach to reduce the
noise level by tightening the sensitivity bound using restricted
sensitivity, and (5) a refined notion of relaxed indistinguisha-
bility based on distances between neighbors. Our evaluation
demonstrates that these techniques can achieve practical accu-
racy while providing principled privacy-by-design guarantees.

1 Introduction

Usage data generated by deployed software provides exten-
sive information about users’ interactions with this software.
Such data can be utilized for user behavior analytics, targeted
advertisement, and business decision making [72], as well as
to facilitate testing [7, 59], bug isolation [43], failure repro-
duction [13,35] and profiling [21,51,66]. A prominent recent
example of such data collection is the widespread use of web
and mobile app analytics infrastructures provided by Google,
Facebook, and Yahoo. For instance, a study of 65K popular
Android apps showed that Google Firebase code is present in
45% of them [23].

There are significant privacy concerns about the collec-
tion and use of such data. While data analysis results can be
used for enhancement of app design and marketing purposes,
individuals’ usage data becomes transparent to software de-
velopers (and analysts working with them), as well as to the

analytics service providers such as Google and Facebook.
This sensitive data could potentially be misused due to rogue
employees, legal proceedings, unethical business practices, or
security breaches. These concerns are amplified by growing
legislative efforts and societal demands for increased trans-
parency and well-defined compromises between the utility of
personal data gathering and the corresponding loss of privacy.

Each user’s usage of an app can be characterized by the
run-time control flow with respect to the execution of soft-
ware components within the app. Control-flow privacy may
be needed to protect sensitive data. Consider the following
example:

if (sensitive condition) a();
void a() { b(); }

If the program execution reveals that function a was invoked
at run time, an adversary can infer that the sensitive condition
were true. Furthermore, this inference could be indirect: for
example, even if the invocation of a were obfuscated, reveal-
ing that function b was executed could also be used to infer
the condition. As further elaborated in Section 2, many ana-
lytics platforms, including Facebook [24], Firebase [28], and
Flurry [56], allow developers to gather raw control-flow data
by collecting remotely users’ interactions for data analysis
and more complex tasks such as machine learning. Figure 1
illustrates this process. Each directed graph on the left rep-
resents the control-flow behavior of one user’s copy of the
software. A node represents a software component and an
edge represents control flow between components. When
a user interacts with her copy, her actions trigger a particu-
lar control-flow graph instance which is cached locally and
eventually sent to remote servers for data analysis.

The focus of our work is a fundamental usage analysis
for deployed software: the collection of control-flow graph
node coverage information over many instances of a software
application (detailed in Section 3). This abstracted problem
could be instantiated at various levels of granularity: a graph
node could represent a coarse-grained software component,
a GUI element, a function in the application code, or an

USENIX Association 29th USENIX Security Symposium 1021

s
1

2
3

s 1

2
4

s
4

31

2

s 52

Users Analysis Infrastructure

Stat Reports

ML Models

⋯

⋯ Adversaries

Software

Figure 1: User interactions are reported for data analysis.

individual code statement. We aim to develop a privacy-
preserving version of this analysis. Specifically, our goal
is to introduce a privacy mechanism that, in a principled
and quantifiable manner, hides the presence/absence of any
particular graph node in a user’s coverage information. We
develop a privacy-preserving solution for this problem using
the machinery of differential privacy (DP). To the best of
our knowledge, this is the first work to develop a DP control-
flow node coverage analysis. In essence, our solution helps
a software user to hide from others whether any component
of the software (represented by a graph node) was executed
by this user. One of the key technical contributions of our
work is a novel privacy definition that accounts for the causal
relationships between graph nodes, based on the structure of
the control-flow graph.

1.1 Motivation and Problem Overview
The motivation for this privacy-preserving analysis stems
from two factors. The coverage information itself may re-
veal sensitive conditions, for example, whether the user has
executed security-related functionality such as changing a
password or connecting to a VPN. Furthermore, user habits
can be mined from such data for the purposes of behavior
analytics. The power of such data mining continues to in-
crease, by combining user data from multiple sources to draw
even-more-powerful inferences. Neither software users nor
software developers can anticipate all future uses of such infor-
mation for mining of many seemingly-unrelated data streams
generated by the same user. Proactive protection against un-
known future uses (and misuses) is a desirable high-level goal
that benefits not only the users of the software but also its
developers, who can claim with confidence that they provide
proactive, principled, and quantifiable privacy protections.
Privacy-preserving software analysis. Privacy-preserving
data analysis is designed, from the ground up, with guaran-
tees about the loss of privacy and the accuracy of analysis
results. The last decade has witnessed the rise of a founda-
tional theory to deal with this challenge, centered around the
robust mathematical notion of differential privacy [19] and its
extensions and generalizations [6, 49]. DP has recently found
several adoptions in industry and government—for example,
in the Chrome browser [22, 26], in iOS 10 [2], in Uber [70],
and by the U.S. Census Bureau for the 2020 census [15].

Despite significant advances in DP theory, applying such

solutions to software analysis is challenging due to the mis-
match between traditional DP problem statements/solutions
and software analysis needs. We aim to narrow this gap by
developing a novel DP solution for the coverage analysis
described earlier and illustrated in Figure 1. We target this
problem because coverage analysis has various uses (e.g.,
coverage monitoring [59] and mobile app GUI flow analyt-
ics [29]) and also captures essential sub-components of many
other analyses of deployed software (e.g., impact analysis,
regression testing, failure reproduction, statistical debugging,
and performance profiling [7, 21, 32, 43, 51, 58, 66]).

1.2 Challenges and Contributions

The design of our solution demonstrates the key components
of a DP software analysis. In Section 4.1, we first define the
space of possible data instances—in our case, by considering
what constitutes run-time graph coverage observed at any par-
ticular deployed copy of the software. Next, we define the
critical notion of neighbors for a particular covered subgraph.
DP analyses employ the notion of neighbors when defining
privacy guarantees: namely, that (in a probabilistic sense) an
adversary cannot distinguish between the actual data item and
its neighbor data items by observing the analysis results. We
show that the traditional notion of graph neighbors used in
prior DP analyses for graph data is meaningless for control-
flow graphs because nodes in such graphs have strong correla-
tions driven by the underlying graph structure [9,39,40,45,74].
In particular, we focus on commonly-occurring correlations
due to the causality between nodes. In control-flow graphs,
it is often the case that the execution of a node n2 is caused
by the execution of another node n1 and, furthermore, n2 is
executed only if n1 is executed. When such correlations are in
place, hiding the coverage of n1 independently from any other
graph nodes is not enough, because an adversary could infer
information about n1’s coverage from observations about the
coverage of n2. For the example shown earlier, the execution
of both a and b should be protected if there are no other calls
to b. We demonstrate that such relationships are captured by
the notion of dominators, which is traditionally used in com-
piler optimizations. Based on this insight, we propose a new
notion of “graph neighbor” and use it to define the privacy
guarantees that need to be achieved by any DP solution for
this analysis to prevent such causality-based inferences.

We then propose an analysis to achieve these guarantees
(Section 4.2) by randomizing the coverage information. Our
randomizer is based on the DP notion of sensitivity, which,
intuitively, captures the difference in the output of the analysis
performed on two neighboring graphs. This sensitivity is
directly related to both the design and the accuracy of a DP
analysis. We define a new notion of sensitivity for graph
data and demonstrate how to compute it efficiently using the
dominator tree of the dynamic control-flow graph.

Next, we describe a baseline randomizer using the worst-

1022 29th USENIX Security Symposium USENIX Association

case upper bound for sensitivity (Section 5.1). This approach
achieves the theoretically-optimal worst-case analysis error,
but does not provide good accuracy on real data. This is a
fundamental limitation that requires further refinements of
accuracy/privacy goals and trade-offs. In Section 5.2 we
introduce stronger bounds on sensitivity by projecting onto
a lower-sensitivity representation, which leads to better ac-
curacy. Our experimental results show 2× error reduction,
compared to the baseline approach (Section 6). We also pro-
pose to refine the notion of indistinguishability to account for
the distance between graph neighbors. As a result, further
accuracy gains can be achieved by allowing varying privacy
protection across neighbors (Section 5.3). Experiments show
that this approach leads to 5.4× error reduction. All experi-
ments are conducted using our randomization layer on top of
existing Android analytics libraries.
Summary. We develop the first solution for differentially-
private control-flow node coverage analysis. This contribu-
tion is important both as a solution to a core software usage
analysis and as a step in a broader research agenda to develop
privacy-preserving analyses of deployed software.

2 Background

2.1 Threats and Goal
This paper focuses on control-flow data—that is, run-time
data generated with respect to some control-flow model of
the software. Such a model could come from software design
documents or from software analysis. Run-time behaviors
relative to such models have been studied extensively by re-
searchers and have been targeted by many techniques for
remote analysis of deployed software. One prominent ex-
ample of such data collection is the widespread adoption of
frameworks for web and mobile app analytics [23, 42]. They
allow developers to perform data analytics that generates
interesting control-flow coverage related statistics, such as
event histograms, as well as more sophisticated user behavior
models, such as users’ routines of using an app. In addi-
tion to population-wise behaviors, data analytics also aims at
finding specific control-flow patterns by individual users for
purposes such as targeted advertisement. In a typical usage
scenario for existing analytics frameworks for web/mobile
apps [28, 29, 56], each user is assigned a pseudonym (user
identifier) that is chosen by the application and developers
can make further requests to other services relying on the
pseudonym [64]. This mechanism allows developers to track
and connect seemingly independent actions and devices by
the same user.

We consider each user’s local copy of the software and the
physical device that it runs on to be secure and not compro-
mised. A broad definition of adversary consists of any party
beyond these, including the analysis service providers (e.g.,
Google and Facebook), the analysts who access the collected

data, as well as the network providers. The software and its
source code, as well as the information sent to the remote
analysis servers, are visible to the adversary. We assume that
the adversary also has access to each user’s pseudonym as
described earlier—that is, she knows the identity of each user
by some auxiliary data such as emails and IP addresses.

In our threat model, an adversary tries to identify the
control-flow data at each user, more specifically, to estimate
with high probability whether a particular software compo-
nent has been executed by a user—for example, an app GUI
screen containing sensitive content that can be used to classify
users’ interests, or a code function to reset a password. Here
the execution can be represented by a run-time control-flow
graph instance and each component corresponds to a node
in the control-flow graph model. The adversary’s aim is to
discover the presence of a specific node in a given run-time
graph instance with high probability. Such information is a
key building block in attempts to infer user-specific patterns
of behavior. Existing analytics infrastructures provide no pro-
tection for this scenario, since the raw control-flow data for a
user (sent to and stored on remote servers) is also accessible
to the adversary, as illustrated in Figure 1.

One natural solution is to perturb the information reported
to the remote server in order to hide the execution of soft-
ware components. Various techniques for perturbation of
control-flow information could be considered based on the in-
formation available to the adversary. For example, one could
imagine a sophisticated adversary who utilizes a priori infor-
mation about the distribution and probabilistic associations of
components, and performs statistical inference based on such
information [45]. We are not aware of any work that considers
such advanced scenarios. Instead, we focus on the more prac-
tical scenario where the adversary could exploit the causal
relationships between nodes in the control-flow graph. An ex-
ample discussed earlier illustrated such relationships: suppose
that the execution of a node n2 implies that another node n1
was executed because n2 can only be caused by n1. This type
of strong correlation, which is typical for software control
flow, could potentially be used by an adversary. Our goal is
to prevent adversaries from such causality-based analysis by
data randomization, while still allowing analysts to draw use-
ful empirical statistical conclusions of software usage across
all users. Specifically, we define the software usage analysis
problem as a control-flow graph node coverage problem (in
Section 3). We regard the presence/absence of each graph
node at users as private information and propose to utilize
differential privacy [18, 20] to prevent inference analysis of
run-time nodes based on their causal relationships.

2.2 Differential Privacy

Differential privacy (DP) [18, 20] is a general approach for
protection against a wide range of privacy attacks. In such
scenarios, there is release of some data and an adversary

USENIX Association 29th USENIX Security Symposium 1023

attempts to learn private individual information from the data.
Anonymizing or removing personally-identifiable information
cannot guarantee privacy, as demonstrated in prior work [17,
52, 53], because additional data sources can be combined
with the anonymized data to uncover sensitive information.
Differential privacy has emerged as a prominent approach
for protection against privacy attacks. We will not attempt a
detailed description of this rich field of research; extensive
overviews are available elsewhere [20, 55].

There are two major models for defining DP problems:
centralized model and local model. In the centralized model,
the data curator (also referred to as “server”) is trusted for
collection of data. In the local model, the server is not trusted:
raw data that reaches it can be observed by an adversary.
For such locally differentially private (LDP) problems, each
user performs local data perturbation via a local randomizer
before releasing any information to the server. The LDP
model is particularly well suited for remote software analysis.
This model provides privacy guarantees to the software user
regardless of the unpredictable actions from the software
analysis infrastructure and its clients and adversaries.

More formally, an ε-LDP protocol/algorithm applies an
ε-local randomizer R : D → T to each user’s item v ∈ D.
The software analysis infrastructure/server collects all R(v)
from users for data analysis and provides the results to the
client—that is, to the software developer/analyst. The privacy
is due to the ε-local randomizer R such that ∀v,v′ ∈D, t ∈ T :
Pr[R(v) = t]≤ eε Pr[R(v′) = t]. Thus, by observing the output
t of the local randomizer (as reported to the remote server),
an adversary cannot distinguish with high probability the case
when the private data is v from the case when this data is v′.
This holds even if the adversary has additional knowledge
(beyond R and t) from auxiliary sources. The privacy budget
ε≥ 0 defines the strength of privacy protection.

As an example of an ε-local randomizer, consider a single
bit element v that is either 1 or 0. Randomized response [71]
flips the bit with probability q and keeps the bit with probabil-
ity 1−q. This simple randomizer satisfies the above definition
with ε = ln q

1−q .

2.3 Privacy for Graphs

Differentially-private analysis of graph data has been consid-
ered almost exclusively in the centralized model [37, 38, 54,
61]. Two graph privacy definitions have been proposed. Node
privacy [61] considers the indistinguishability of two undi-
rected neighbor graphs G and G′, where G′ can be obtained
from G by deleting one node and all its adjacent edges. A
node-private analysis provides plausible deniability about the
presence of any particular node in the graph. More precisely,
for any graph G, if an adversary observes the randomized
output R(G), the probability that the input to the randomizer
R was G is very close (by a factor of eε) to the probability that
the input to R was any neighbor of G in which one node of G

was removed (together with its adjacent edges). Thus, the ad-
versary cannot conclude with high probability that any graph
node was actually present in the protected private graph. An
alternative weaker notion of privacy is edge privacy [37, 54],
which obfuscates the presence of any graph edge.

Node privacy provides stronger protection, but achieving
high accuracy for node-private analyses is inherently more
difficult than for edge-private ones [61]. We focus on this
more challenging problem. As we argue in the next sections,
this notion of node privacy cannot be applied directly to analy-
sis of control-flow graphs due to causal relationships between
nodes, and novel definitions (and the related new analysis
algorithms) need to be developed.

3 Problem Statement

In many software analysis problems, a control-flow model
is instantiated at run time when the software is executed.
Examples of such models include statement-level control-
flow graphs, call graphs, calling context trees, and GUI screen
transition models. Generally, such a model is a directed graph
G = (N,E,s) with node set N and edge set E ⊆ N×N. The
start node s ∈ N represents the start of any run-time execution
and the root of G.

When the software is executed, run-time events correspond
to dynamic instances of graph nodes and edges. For example,
if G is the program’s call graph, run-time event “function mi
calls function m j” corresponds to a dynamic instance of graph
edge mi→m j. We use Gc to denote the subgraph of G defined
by these run-time-covered nodes and edges. Here c⊆N is the
set of nodes covered during the program run. Node coverage
analysis reports the set of nodes c. Alternatively, c could be
thought of as a binary coverage vector c ∈ {0,1}|N| which is
the indicator vector of the corresponding set of covered nodes.
In a minor abuse of notation, we will use c to denote both a
set of covered nodes and its corresponding coverage vector.

Information about node coverage plays an important role
in the area of remote analysis of mobile and web apps, us-
ing analysis infrastructures such as Google/Firebase Ana-
lytics [28, 29] and Facebook Analytics [24]. For exam-
ple, Google Analytics presents to developers reports of his-
tograms of events about the population of users who have
executed them. Such information is also essential for vari-
ous software monitoring tasks. For instance, residual cov-
erage monitoring [59] cumulatively collects and calculates
the basic block coverage in the control-flow graph of a pro-
gram. In general, many analyses of deployed software de-
pend on some form of control-flow coverage information
[3, 7, 11, 21, 33, 34, 43, 44, 58, 66, 73].
Differentially-private node coverage analysis. Consider m
software users identified by integer ids i ∈ {1, . . . ,m}. All
users run the same software, which has some publicly known
control-flow model G. This model would typically be con-
structed by the software developers for their own analytics

1024 29th USENIX Security Symposium USENIX Association

needs. The deployed software would contain instrumentation
to record and report events related to run-time coverage of G.
We consider G to be publicly known, as an adversary could
reverse engineer this model from the code of the deployed
software using a wide range of existing techniques.

The node coverage ci ∈ {0,1}|N| of user i describes the
run-time behavior of that user’s instance of the software. In
node coverage analysis, the software developer’s goal is to
determine, for each node n∈N, the frequency of n’s coverage
across all users—that is, f (n) = |{i ∈ {1, . . . ,m} | n ∈ ci}|.
Equivalently, the goal is to obtain an aggregate vector f ∈N|N|
such that f = ∑i ci, where the summation is element-wise for
vectors ci. In a differentially-private setting, instead of f
the developer will obtain an estimated aggregate vector f̂
where, with high probability, the node frequency estimates
f̂ (n) are close to the actual node frequencies f (n). This
analysis provides information about how users of the deployed
software interact with it—for example, how many users have
accessed a particular screen in an app’s GUI, which is a typical
concern in mobile app analysis via infrastructures such as
Google/Firebase Analytics [28, 29]. As another example,
gathering data about which code regions are executed by
software users provides rich feedback to software developers
and helps them validate and refine assumptions they have
used in pre-deployment testing and validation [59].

An LDP coverage analysis applies an ε-local randomizer
R : {0,1}|N|→{0,1}|N| to each user’s observed coverage ci.
The resulting zi = R(ci) is sent to the server. The server
collects all zi and uses them to compute the estimates f̂ .

4 Privacy-Preserving Coverage Analysis

In this section, we first define the neighbor relation for dy-
namic graphs Gc and, by extension, the corresponding cover-
age vectors c. This definition is specifically crafted to elim-
inate the possibility of causality-based inference. We then
propose an LDP analysis based on this definition.

4.1 Defining Neighbors

As described in Section 2.3, one key question for achieving
node privacy is the definition of neighbors. Using the tradi-
tional notion from DP graph analysis [61], a neighbor graph
Gc′ would be obtained from a given Gc by removing a single
node and its adjacent edges. Thus, coverage vector c′ would
differ from c by a single bit. However, this notion is meaning-
less for control-flow graphs and their coverage vectors, since
not all vectors represent feasible run-time behaviors—that is,
we will never observe them during execution. We define this
key property of feasibility as follows:

Definition 1 (Feasibility). A dynamic graph Gc with start
node s and its coverage vector c are feasible if s ∈ c and

s n5n4n3n1 n2

feasible c = [111110], infeasible c′ = [110110], feasible ∆n2 (c) = [110000]

Figure 2: Feasible and infeasible coverage.

every covered node is reachable from s along a path of cov-
ered nodes and edges, i.e., for any n ∈ c there exists a path
〈s,n1, . . . ,nk,n〉 in Gc such that n j ∈ c for 1≤ j ≤ k.

Here n ∈ c denotes that n is in the set of nodes encoded
by c. If Gc and c do not satisfy these properties, there does
not exist a run-time execution that could have produced them.
To illustrate this point, consider the graph G in Figure 2,
where s is the start node. Coverage vector c is feasible, as
it represents the covered set {s,n1,n2,n3,n4}. However, c′

which represents {s,n1,n3,n4} is not feasible since n3 and n4
cannot be reached from s along a path of covered nodes. No
software execution can generate c′ as a coverage vector.

As with traditional DP graph analyses, we consider the
removal of a graph node in order to define the notion of a
neighbor graph. However, our definition takes into account
the feasibility constraint. Given a feasible dynamic Gc and
some node n ∈ c \ {s}, the neighbor graph Gc′ = ∆n(Gc)
obtained by removing n is defined as follows: (1) Gc′ is a
subgraph of Gc, (2) n /∈ c′, (3) Gc′ is feasible, and (4) Gc′ is
maximal (i.e., there does not exist a proper supergraph of Gc′

with properties 1–3). Intuitively, the last constraint ensures
that we do not remove “too many” nodes and edges from Gc.

Graph ∆n(Gc) exists and is unique, as shown by Lemma 1.
The proof of the lemma is deferred to the appendix. For
brevity, we will often use c′ = ∆n(c) to denote that Gc′ =
∆n(Gc) for a given Gc. For illustration, in Figure 2 the re-
moval of n2 from c requires the removal of n2 and n3 as well,
in order to preserve feasibility. Thus, the neighbor ∆n2(c)
is the covered set {s,n1}. If one were to use the traditional
definition of neighbors described in Section 2.3, the removal
of n2 would produce the infeasible vector c′ shown in the
figure.

Lemma 1. Let Gc be a feasible dynamic graph. For any
n ∈ c\{s}, there exists a unique feasible subgraph Gc′ such
that n /∈ c′ and Gc′ is maximal.

The set of neighbors for the coverage vector c of a given
Gc is defined as follows:

Definition 2 (Neighbors). Given a feasible coverage vec-
tor c, its neighbors are the set {∆n(c) | n ∈ c \ {s}} ∪
{c′ | ∃n ∈ c′ \{s} : ∆n(c′) = c}.

This definition considers both the removal of a node n from
c (the first term in the formula) and the addition of a node n
to c (the second term in the formula) as means of obtaining a
neighbor vector. Thus, the neighbor relation is symmetric.

Next, we show that ∆n(c) for given Gc and n can be con-
structed efficiently. In a control-flow graph with a start node s,

USENIX Association 29th USENIX Security Symposium 1025

a node d dominates a node n (denoted d dom n) if every path
from s to n goes through d [1]. A node trivially dominates
itself. Given a feasible Gc, let domGc denote its dominator
relation. The key observation is that the nodes dominated by
n (plus their adjacent edges) are exactly the ones that need to
be deleted to obtain the neighbor graph:

Proposition 1. For any node n ∈ c\{s}, we have ∆n(c) =
c\{n′ | n domGc n′}.

The proof is deferred to the appendix. This property allows
us to find efficiently all ∆n(c) for a given Gc, which is needed
for our randomizer (as described later). Consider the domi-
nator tree for Gc, which is a standard representation of the
dominator relation. For any node, the set of its ancestors in
the tree is exactly the set of its dominators. For the simple Gc
in Figure 2, the dominator tree is the same as the graph itself
(root s dominates all nodes, n1 dominates all nodes except
s, etc.). The dominator tree can be constructed efficiently;
we use a classic approach by Lengauer and Tarjan [41] with
complexity O(|E| log |N|). Given n ∈ c\{s}, the dominator
subtree rooted at n provides all and only nodes that should be
removed from c to obtain its neighbor ∆n(c).

This property also allows us to take into account the causal
relationships between nodes. A reversed arrow in the domina-
tor tree represents a deterministic causal effect. For the exam-
ple in Figure 2, n2→ n1 in the reversed dominator tree of Gc
indicates that the execution of n2 is always caused by the exe-
cution of n1.1 Thus, the hiding of n1 must also involve hiding
of n2. In general, using this observation, we are able to per-
turb the existence of an entire set of nodes {n′ | n domGc n′}
and thus hide their execution simultaneously, in order to avoid
causality-based inference.

As discussed shortly, our randomizer only needs to consider
the size of set ∆n(c) rather than the actual nodes in it. A
linear-time bottom-up traversal of the dominator tree for Gc
can annotate each node n with the size subGc(n) of the subtree
rooted at that node. Thus, given any n, we can easily obtain
|∆n(c)| as |c|− subGc(n).

4.2 LDP Analysis
Consider again our problem: for user i, coverage vector ci ∈
{0,1}|N| describes the behavior of that user’s code instance.
The same local randomizer R : {0,1}|N|→{0,1}|N| is used by
all users. Each user reports R(ci) to the analysis infrastructure.
All reports are gathered and post-processed to construct an
estimate of ∑i ci. Such analysis, based on Definition 2, can
achieve control-flow graph node privacy as follows:

Definition 3 (ε-Node-LDP). Randomizer R is ε-node-LDP
if for any pair of coverage vector neighbors c,c′ for G from
Definition 2, we have Pr[R(c) = t] ≤ eε Pr[R(c′) = t], where
ε≥ 0 is the privacy budget.

1This does not imply “executing n1 always causes execution of n2”.

Sensitivity. To define analyses that satisfy Definition 3, it is
important to consider the concept of sensitivity. This notion is
employed in various forms by many DP analysis algorithms.
In our analyses we will use this idea to capture the properties
of the “graph neighbor” relation defined earlier.

Definition 4 (Local Sensitivity). Consider a feasible graph
Gc and its corresponding coverage vector c. The local sensi-
tivity of c is LS(c) = maxn∈c\{s} |c|− |∆n(c)|.

LS(c) captures how sensitive Gc is to the removal of any
of its nodes n.2 Intuitively, the larger the local sensitivity, the
more extensive randomization needs to be added by R in order
to satisfy Definition 3, since the randomized output has to
“hide” the differences between c and any ∆n(c). This increased
randomization is manifested by an increased probability of
flipping any bit in the coverage vector.

Example 1. In Figure 2, consider c = {s,n1,n2,n3,n4}.
Here we have ∆n4(c) = {s,n1,n2,n3}, ∆n3(c) = {s,n1,n2},
∆n2(c) = {s,n1}, and ∆n1(c) = {s}. The local sensitivity is
LS(c) = |c|− |∆n1(c)|= 4.

Given Gc, computing LS(c) is straightforward. Recall that,
with the help of Proposition 1, we can efficiently find all ∆n(c)
by considering the dominator tree for Gc. Suppose each node
n in this tree is annotated with the size subGc(n) of the subtree
rooted at n. Then LS(c) is the largest value of subGc(n) among
the nodes n that are children of the start node s in the tree.

Example 2. Figure 3 shows an example from the parking
Android app [69]. This app navigates users to parking places,
records history of parking locations, and reminds users about
parking time. It uses Google Analytics [29] to collect GUI
screen view events from users. The developer defines a
dictionary of GUI screens to be collected and reported to
the Google Analytics remote servers. Figure 3a shows the
control-flow model G for this app, with nodes correspond-
ing to different screens and edges showing possible transi-
tions between screens. Consider the run-time behavior of
one app user, corresponding to graph Gc and its coverage
vector c = [1101010111]. The graph and its dominator tree
are shown in Figure 3b. Each node n in the tree is annotated
with subGc(n), the size of its corresponding subtree. The local
sensitivity for Gc is LS(c) = subGc(n1) = 6.

Randomizer definition. Suppose we know an upper bound
S of LS(c) for all possible feasible c for a given graph G. The
randomizer R can be defined as follows:

Definition 5 (Randomizer). Given a feasible c, R indepen-
dently flips each bit in c with probability p = 1/(1+ e

ε

S).

Then the following proposition holds:

2Since the “neighbor” relation from Definition 3 is symmetric, the sensi-
tivity of adding a node n to Gc will be accounted for by LS(c′) for another
coverage vector c′ such that c = ∆n(c′).

1026 29th USENIX Security Symposium USENIX Association

s: Splash

n1: LastParkingFragment

n3: HelpActivity

n6: HistoryFragment

n2: CompassActivity

n7: ParkActivity

n8: SettingsActivity

n4: AboutActivity

n9: ZoneEditorActivity

n5: AutoParkActivity

(a) GUI screen view graph G

s n1
n3

n7 n5n8

n9

c = [1101010111]

n9

1

n3

1

s

7

n1

6

n5

2

n7

1

n8

1

(b) Gc, coverage vector c, and dominator tree for Gc

Figure 3: Graphs from the parking app.

Proposition 2. The R from Definition 5 satisfies ε-node-LDP.

The proof is deferred to the appendix. Each user i applies
local randomizer R to add noise to local vector ci.3 After the
remote software analysis infrastructure collects and reports a
histogram h = ∑i R(ci) over all users, this noisy data is pro-
cessed to account for the effects of the randomizers. For any
node n, the expected value of the number of occurrences of n
in h is f (n)e

ε

S p+(m− f (n)) p where f (n) is real frequency
of n, m is the number of users, and p is probability from Defi-
nition 5. If the collected histogram h has a frequency h(n) for
n, then the estimate f̂ (n) for the real frequency f (n) is

f̂ (n) =

(
1+ e

ε

S

)
h(n)−m

e
ε

S −1
(1)

It is easy to see that the expected value of estimate f̂ (n) is
f (n). Thus, f̂ (n) is an unbiased estimator of f (n). To improve
accuracy, the estimate is reset to zero if it is negative, and is
reset to m if it exceeds m.

Note that this approach is designed for “one-shot” random-
ization, i.e., Gc and c are deleted at the user end once R(c) is
generated. Any subsequent requests for data will receive the
same value of R(c). In contrast, in a framework that allows
submission of multiple realizations of R(c), the privacy pro-
tection will degrade due to composition [20]. Our approach

3Since we are interested in (estimates of) total node frequencies across
all users, and not for individual users, we design R to produce vectors that
are not necessarily feasible.

can prevent such degradation and has practical usage, for
example, by Facebook in their ads system [12].

The approach also excludes the consideration of contexts,
i.e., from which nodes a node is reached at run time. A classic
example of a context is the calling context (i.e., the chain of
callers) for a call graph node. Solving this problem requires
the randomizer to record and obfuscate paths in the control-
flow graph model. We leave this challenging problem for
future work.

5 Selection of Sensitivity Bound

The choice of probability p in Definition 5 guarantees that
R is ε-node-LDP. Thus, the main question is how to select
the sensitivity upper bound S. One obvious choice for S is
given by the global sensitivity, which is the maximum value
of the local sensitivity taken over all realizations of feasible
coverage vectors. In our baseline approach, we instantiate S
with the global sensitivity in the technique described in Sec-
tion 4. It is important to point out that this baseline approach
provably achieves the optimal worst-case estimation error,
which scales with the global sensitivity. This follows from
a straightforward extension of the known lower bound on
the worst-case error associated with LDP frequency estima-
tion [5]. However, as demonstrated by our empirical results
(Section 6), the accuracy resulting from the baseline approach
is usually modest since the global sensitivity is quite large.

To circumvent this fundamental limitation, we propose al-

USENIX Association 29th USENIX Security Symposium 1027

c1=[1111010110]
R(c1)=[0111000000]

c2=[1101010110]
R(c2)=[0110010110]

c3=[1101010010]
R(c3)=[0111001110]

c4=[1101010110]
R(c4)=[1010010011]

c5=[1101010110]
R(c5)=[1010000011]

c6=[1101011110]
R(c6,)=[1100010000]

c7=[1101100110]
R(c7)=[1111100101]

c8=[1101010111]
R(c8)=[0001001010]

c9=[1111010110]
R(c9)=[1100001100]

c10=[1101000100]
R(c10)=[1001000001]

Users Analysis Infrastructure

h=∑R(⋅)= [6 6 6 5 1 3 3 4 5 4]

= [10 10 10 5 0 0 0 0 5 0]

Post-Processing

Real frequency vector for comparison:
= [10 10 2 10 1 8 1 9 9 1]

Figure 4: Randomization using global sensitivity Sgs and
ε = 1 for the parking app, with 10 users.

ternative approaches that entail either a relaxation of the utility
guarantee (Section 5.2) or a relaxation of the privacy guaran-
tee (Section 5.3). In particular, in Section 5.2, the proposed
approach offers a conditional utility guarantee, i.e., it achieves
good accuracy but only for a sub-collection of well-behaved
control-flow graphs. The approach in Section 5.3 entails
assigning different levels of privacy protection for different
nodes in the graph (depending on how “revealing” a node
is). These approaches are simple, practical alternatives that
provide meaningful privacy guarantees, while significantly
improving the accuracy resulting from the baseline approach
as demonstrated in the experiments shown in Section 6.

5.1 Baseline: Global Sensitivity
One choice for S in Definition 5 is to consider the worst-case
value for LS(c). For our problem, this worst-case value is
Sgs = |N|−1. Here suffix gs is short for “global sensitivity.”
For any G and any feasible c for G, LS(c)≤ Sgs since, in the
worst case, c contains all nodes in N and its farthest neighbor
contains only the start node s. Since G is known to all remote
instances of the software, each local randomizer R can use
the same value S = |N| − 1 to add noise to its local vector.
Figure 2 illustrates this case: for c = {s,n1,n2,n3,n4,n5} and
its neighbor ∆n1(c) = {s}, we have LS(c) = |N|−1 = 5.

Example 3. Consider the example of m = 10 users for the
parking app, shown in Figure 4. The sensitivity bound is
Sgs = 9 as there are 10 nodes in the control-flow model from
Figure 3a. This bound is a priori knowledge to all users. Each
user generates her own coverage vector ci independently and
runs R with Sgs locally. In this example, ε is set to 1. The
analysis infrastructure collects all randomized R(ci) vectors to
get h = ∑i R(ci) = [6 6 6 5 1 3 3 4 5 4]. Using Equation 1, we
then obtain a vector of estimates f̂ = [10 10 10 5 0 0 0 0 5 0],

with all decimals rounded to the nearest integer.
The real frequency vector is f = [10 10 2 10 1 8 1 9 9 1].

Clearly, the differentially-private estimates for this example
are rather inaccurate. This is due to the small number of users
as well as the loose upper bound Sgs.

This baseline approach could introduce significant amount
of noise. For illustration, consider ε = 1 and S = |N|−1 =
100. The probability p of flipping any bit is 0.4975, which is
very close to the probability 0.5 that would produce uniformly-
distributed random vectors drawn from {0,1}|N|. Next, we
discuss two techniques that lead to reduction of the noise
introduced by the randomization. The potential accuracy
improvements were in fact observed in our experiments. As
a high-level example, using 15000 dynamic graphs obtained
from 15 Android apps, we observed error reduction of 2×
and 5.4×, respectively; details are elaborated in Section 6.

5.2 Tighter Bound via Restricted Sensitivity
A tighter sensitivity bound can be achieved with certain hy-
potheses. A hypothesis H in our context is a subset of the
set D of all possible feasible coverage vectors. The specific
hypotheses we consider are parameterized by a value k < Sgs
and defined as Hk ⊆D where LS(c)≤ k for all c ∈Hk. The
sensitivity bound is S = k in this case. This technique is
similar in spirit to restricted sensitivity [6] that guarantees dif-
ferential privacy for a restricted class of datasets. The result
of the analysis is useful if the hypothesis is correct, which in
our case means that all coverage vectors have local sensitivity
not exceeding k. The result may be inaccurate if some vectors
have local sensitivity greater than k.

To ensure that the hypothesis holds for the input domain of
randomizer R, one solution is to define a projection function
µ : D → Hk by which c is transformed into µ(c) such that
LS(µ(c)) ≤ k. Then R is applied to µ(c). We design µ as
follows. For all c∈Hk, we have µ(c)= c. For any other c∈D ,
we prune Gc according to its dominator relation. Specifically,
consider each child node n of the start node s in the dominator
tree for which |c|− |∆n(c)| > k. (If this condition does not
hold, n and its tree descendants do not need to be pruned.)
We conduct breadth-first search starting from n and prune the
last subGc(n)−k traversed nodes from the dominator tree and
from Gc. The corresponding bits in c are set to 0.

Example 4. Consider the coverage vector c = [1101010111]
and its corresponding dominator tree in Figure 3b. If k = 5,
as |c| − |∆n1(c)| = 6 > 5, by removing the leaf node n9 at
the last level in the subtree, the projection produces µ(c) =
[1101010110]. Next, consider an extreme case where k = 1.
The projection µ(c) needs to trim from Gc a set of 5 nodes
{n3,n5,n7,n8,n9}. The final output of the projection is µ(c)=
[1100000000]. Its local sensitivity is LS(µ(c)) = 1≤ k.

After the projection step, each user reports R(µ(c)) to the
server for further analysis. Overall accuracy depends not only

1028 29th USENIX Security Symposium USENIX Association

on R but also on k. When k� Sgs, we have a very tight bound
such that the noise introduced by R reduces significantly,
while the noise due to the projection µ increases. For the
extreme example above, the utility of the analysis result is
expected to drop since most of the information of c is lost
after the projection. This highlights the trade-offs between
privacy and accuracy in any DP analysis. In Section 6, we
conduct empirical evaluation on the impact of k and show that
practical accuracy can be achieved by properly selecting the
value for k.

5.3 Relaxed Indistinguishability of Neighbors

The above techniques ensure the same level of indistinguisha-
bility for all neighbors of a coverage vector. However, in
practice, not all neighbors are of the same significance in
terms of privacy protection. For instance, consider a news
app that records users’ reading content. It might be accept-
able to reveal that a user is reading sports news instead of
business news, but disclosing whether it is about basketball
or football may be undesirable as this information can be
used for targeted advertisement. As another example, API
methods invoked by the Android framework (e.g., activity
lifecycle callbacks) are expected to be covered in any non-
trivial execution. The weakened hiding of their presence is
a reasonable compromise. Thus a relaxed indistinguishabil-
ity level depending on some notion of “distance” between
any pair of neighbors would be useful. Intuitively, neighbors
with small distance require more extensive randomization.
For the above example of the news app, the more specific
the news topic is, i.e., news are “closer” to each other, the
more privacy concerns a user may have and the more noise is
needed. Distance-based indistinguishability has been studied
theoretically [8] as a generalization of traditional DP.

We investigate a distance metric d∗ based on the differ-
ence of each pair of neighboring coverage vectors c and
∆n(c). More specifically, d∗(c,∆n(c)) = α× |c \∆n(c)| =
α× subGc(n), where α is a parameter that allows developers
to fine-tune the trade-offs between the privacy guarantee and
the accuracy of analysis results. We define the privacy bud-
get ε′ depending on this metric to achieve (d∗,ε)-privacy [8]:
ε′ = ε×d∗(c,∆n(c)). This can be realized by setting S = 1/α

in Definition 5, of which the proof is similar to the one for
Proposition 2. In general, if the distance is large between
two neighbors, the privacy budget will also be large and R
only introduces a small amount of noise to “hide” their differ-
ence. If the distance is 1, we will have the same protection as
by the traditional DP techniques introduced earlier. For the
example in Figure 3b, we have ε′ = ε×d∗(c,∆n1(c)) = 6αε,
while ε′ = ε×d∗(c,∆n9(c)) = αε which guarantees stronger
protection.

The intuition behind this metric is that nodes that are close
to the root of the dominator tree are likely to be covered by
most run-time executions and thus are less sensitive in terms

of privacy. For instance, the analysis of 15000 realizations of
screen view graphs for 15 Android apps from Section 6 shows
that nodes that are in all dynamic graphs for an app (which
strongly indicates that their executions are deterministic and
the protection of their existence is impossible) have an average
dominator tree level of 2, while nodes that appear in less than
half of the graphs have an average level of 4. Intuitively,
stronger protection is desirable for a node n if its execution
is specific for a small group of users, compared to the case
where n’s execution is deterministic and happens for all users.

As a concrete example, in Figure 3, the “LastParkingFrag-
ment” screen (n1) in the parking app is the landing screen
after the “Splash” screen and is observed in all run-time exe-
cutions in our experiments. Such population-wise behaviors
likely cannot be used as user-specific usage patterns and may
be of less interest to the adversary. Thus we believe that
reducing the effort to hide its existence is a reasonable com-
promise. Meanwhile, among 1000 independent executions of
the parking app in the experimental evaluation, the “ZoneEd-
itorActivity” screen (n9) is observed only once. It could be
used as a fingerprint for that particular user and thus requires
more protection. A vector c and its neighbor ∆n9(c) should be
indistinguishable after randomization to prevent adversaries
from inferring the occurrence of n9.

This technique is an example of d-privacy [8] which is a
generalization of differential privacy. There are other possible
choices for techniques to help improve utility. For example,
consider a set of non-sensitive nodes that is defined as part
of the analysis specification. Metric d∗ can set the distance
of neighbors with respect to these nodes to a very large value
(e.g., d∗ = ∞), so that the privacy protection for such neigh-
bors are minimized. Utility-optimized LDP [50] can also be
used, by providing ε-node-LDP protection for graph instances
that include sensitive nodes while relaxing the protection of
graphs containing only non-sensitive nodes. However, the
original algorithms in [50] fail to consider the correlation
between data items and cannot be directly employed here. It
would be interesting to investigate the problem of control-flow
node coverage with predefined non-sensitive nodes, depend-
ing on domain-specific and software-specific considerations.

In our experimental evaluation in Section 6.3 and 6.4, we
used α = 0.5 for comparison with the two techniques intro-
duced earlier. We also obtained data for other values of α

and evaluated their effects on accuracy and privacy for this
definition d∗ of distance metric, as described in Section 6.4.

6 Implementation And Evaluation

6.1 Implementation
We implemented the data collection and randomization as part
of a Java library located between the software’s application
code and any existing analytics libraries. Figure 5 shows an
overview of our layer. While this design could be applied to

USENIX Association 29th USENIX Security Symposium 1029

Analytics
Libraries

App Code

Local
StorageTracker

Dispatcher
Perturbation Analytics

ServersLocal
Storage

Figure 5: Implementation overview.

other languages and usage scenarios, our specific implementa-
tion focuses on the Android platform. The tracker component
tracks node coverage. Whenever an edge transition occurs, a
call to the tracker records the transition and stores it into a lo-
cal database. The perturbation component utilizes Android’s
JobService to regularly query the database to construct cov-
erage vectors and run the randomization. The dispatcher
component receives the perturbed data and calls correspond-
ing APIs to send it to remote analytics infrastructures. The
local storage for the dispatcher is a cache of any unsent data
in case the app exits abnormally.

Our implementation supports Google Analytics (GA) [29],
a popular framework for collecting data from deployed mobile
apps, as its underlying analytics service. A recent study of
thousands of Android apps [23] has identified that GA was
used by 26% of the analyzed apps. We are in the process of
adapting this approach to Firebase and Facebook Analytics,
the two other most popular analytics frameworks for Android
apps; the implementation details are essentially the same.

We also developed an instrumentation tool that inserts our
library into close-source apps using the Soot code rewriting
framework [65]. Calls to Google Analytics APIs are redi-
rected to corresponding methods in the tracker component. In
our experiments, we use this instrumentation to record screen
view events. For call graph data, discussed shortly, we instru-
mented each method to record any caller-callee relationships
on the main thread.

6.2 Data Collection
To evaluate the proposed techniques, we gathered two kinds
of control-flow graphs: GUI screen graphs and call graphs.
Each GUI screen graph was obtained by analyzing the se-
quence of Google Analytics GUI screen view events. A GA
GUI screen view event indicates that a particular screen in
the app’s GUI was displayed. Each screen has a unique
string name that is used as an identifier. With the help of app
code instrumentation, in our experiments we intercepted and
recorded such events to a local database (by the tracker com-
ponent). The transitions from one screen to the next define
a GUI screen graph, in which nodes are screens and edges
are transitions between screens. We first ran extensive experi-
ments with the Monkey tool for GUI testing [30] to construct
a graph G = (N,E,s) that captures possible screen transitions.
Alternatively, app developers could have GUI design infor-
mation that provides such a graph G directly. Given this G,
we simulated 1000 executions of the app. To represent the

Table 1: Apps and control-flow graph models.

App
Screen Graph Call Graph

#Nodes #Edges #Nodes #Edges

barometer 9 69 1066 1683
bible 11 75 832 1412
dpm 8 36 623 1016

drumpads 14 108 613 868
equibase 18 297 340 826

localtv 28 366 1741 3102
loctracker 14 151 199 335

mitula 16 169 3700 6879
moonphases 15 126 254 454

parking 10 58 712 1223
parrot 51 1239 3748 9804

post 9 54 791 1635
quicknews 14 120 970 1861
speedlogic 10 75 124 186

vidanta 12 112 2290 4089

data for each execution, we ran Monkey (independently from
any other executions) to obtain 10×|N| screen view events
for that execution. From that trace we determined the cover-
age vector c and the corresponding subgraph Gc of G. The
call graph models G were obtained in a similar manner; here
nodes represent methods in the app code and edges represent
calling relationships, with an artificial start node s represent-
ing the Android framework code. Using separate Monkey
runs and code instrumentation, we created 1000 traces each
with 10× |N| method call events. From these traces, call
graph coverage vectors c were constructed.

To obtain apps that use Google Analytics, we analyzed
popular apps in each category in the Google Play store and
identified apps that include GA API calls. The apps and their
control-flow models G are described in Table 1. As can be
seen from these measurements, a call graph is typically one
to two orders of magnitude larger than the GUI screen graph
for the same app (as can be expected). We chose to study
data for both GUI screen graphs and call graphs in order to
observe the effects of graph size on the accuracy of the anal-
ysis. All graphs G and the 1000 run-time realizations of Gc
are available at http://presto-osu.github.io/sec20.

6.3 Utility Analysis
6.3.1 Metrics

Theoretically, when S is large, the protocol achieves higher
privacy (i.e., the probability p in Definition 5 is large) at a cost
of lower utility. Such trade-offs between privacy and utility
are inherent in DP analyses and need to be explored carefully
in order to design practical solutions. In Sections 4 and 5,
we propose techniques based on ε-node-LDP and d-privacy
that utilize different bounds to achieve high utility of analysis

1030 29th USENIX Security Symposium USENIX Association

http://presto-osu.github.io/sec20

results. To evaluate the effectiveness of these techniques, we
consider two practical usage scenarios and questions:
• Q1: Which control-flow graph nodes are executed by at

least one user? This question is the core to many testing
and profiling techniques, e.g., residual testing [59]. The
answer is the set of nodes that are observed at run time in at
least one deployed software instance: {n ∈ N | f (n)> 0}.
Recall that the algorithm from Section 4.2 provides an
estimate f̂ of the real frequency vector f . Thus, we can
estimate the set of nodes by {n ∈ N | f̂ (n)> 0}. We use
precision and recall to measure the utility of the estimation.
• Q2: Given a node, what is the number of users who have ex-

ecuted it? This information is useful for tasks such as profil-
ing, e.g., finding popular app features. We evaluate the ac-
curacy of estimates by computing the errors | f (n)− f̂ (n)|
and characterizing their distributions, in terms of their min-
imum, maximum, median, and the first and third quartiles.
In addition, we also compute the mean error (ME) indi-
cating the average error for each node. We aggregate the
errors and then determine the mean of these values across
all nodes, i.e., ME(N, f , f̂) = ∑n | f (n)− f̂ (n)|/|N|.

6.3.2 GUI Screen Graphs

Answering Q1. We first collected all ci for 1 ≤ i ≤ 1000 to
get the ground truth f , as described earlier, and computed
f (n) = ∑i ci(n) where i ranges over all independent execu-
tions that are regarded as individual users. To compute esti-
mates f̂ , for the same range of i we randomized each ci inde-
pendently according to Definition 5, computed h = ∑i R(ci),
and post-processed h using Equation 1. To empirically com-
pare the accuracy of the proposed techniques, we used ε = 1
for the randomization; this choice was motivated by a popular
DP analysis [4]. During post-processing, the estimate was
set to 0 if it was negative, and to the number of analyzed
users if it exceeded that number. Then each estimate was
rounded to the nearest integer. We repeated this process for
100 independent trials and collected the precision and recall
for each trial. The variations among the 100 trials are due
to the randomness when perturbing ci (since ci for user i is
the same in each trial). Figure 6 reports the mean values and
the 95% confidence intervals for the 100 trials, using the GUI
screen graphs. The confidence intervals are typically very
small, and barely noticeable in this figure and a similar figure
in the following section.

When applying randomization, we first set the sensitivity
bound S to the global sensitivity Sgs = |N|−1 (in Section 5.1)
to obtain a worst-case baseline. As shown by bars “baseline”
in Figure 6, using global sensitivity yields perfect precision
but relatively low recall. The precision is perfect due to the
fact that in our run-time traces every node in graph G has been
executed by at least one user, i.e., there are no false positives.
We include this redundant precision data only for complete-
ness and for uniformity with the data for call graphs presented

0.0

0.5

1.0

Pr
ec

isi
on

baseline tighter relaxed

ba
rom

ete
r
bib

le
dp

m

dru
mpa

ds

eq
uib

ase
loc

alt
v

loc
tra

cke
r
mitu

la

moo
np

ha
ses

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

spe
ed

log
ic

vid
an

ta
0.0

0.5

1.0

Re
ca

ll

Figure 6: Precision and recall for GUI screen graphs.

b t r

50

100

Er
ro

r

barometer

b t r

100

200

bible

b t r

50

100

150
dpm

b t r

100

200

drumpads

b t r

100
200
300

equibase

b t r

200

400

Er
ro

r

localtv

b t r

100

200

loctracker

b t r

100
200
300

mitula

b t r

100

200

300
moonphases

b t r

100

200
parking

b t r

200

400

Er
ro

r
parrot

b t r

50

100

150
post

b t r

100

200
quicknews

b t r

100

200

speedlogic

b t r

50
100
150

vidanta

Figure 7: Distribution of errors | f (n)− f̂ (n)| for GUI screen
graphs. The “b”, “t” and “r” on the x-axes are short for
“baseline”, “tighter” and “relaxed”, respectively.

later (where false positives are present). We have recall be-
low 0.8 in 5 out of the 15 apps. Practically, this means that
more than 20% of nodes are lost after randomization and post-
processing. The figure also shows similar measurements for
the tighter bound and relaxed indistinguishability techniques.

To select an appropriate k for the tighter bound, we used
k = bt× Sgsc where t = {0.95,0.9, . . . ,0.05} and computed
the largest difference between true and estimated frequencies,
i.e., maxn∈N | f (n)− f̂ (n)|. We chose the k that minimized
the largest difference for each app. For example, we set
k = b0.35×Sgsc= 3 for the parking app leading the bound
to be 3× smaller. The impact of k varies from app to app.
This is mainly due to variance of the structure of graphs and
dominator trees of each app.

By using the tighter bound and relaxed indistinguishability
level for neighbors, the recall is significantly improved. With
the tighter bound, the recall is below 0.8 for 3 apps. With
relaxed indistinguishability level, the recall is ≥ 0.85 for all
apps and is perfect for 5 apps. This means that the LDP
algorithm successfully preserves the presence of all nodes
that were actually observed at run time.
Answering Q2. To evaluate the ability of the proposed tech-
niques to recover frequencies, we first collected the error
| f (n)− f̂ (n)| of each node for every experimental subject in

USENIX Association 29th USENIX Security Symposium 1031

ba
rom

ete
r
bib

le
dp

m

dru
mpa

ds

eq
uib

ase
loc

alt
v

loc
tra

cke
r
mitu

la

moo
np

ha
ses

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

spe
ed

log
ic

vid
an

ta
0

100

200

300

400

M
E

baseline tighter relaxed

Figure 8: Mean error for GUI screen graphs.

each of the 100 independent trials and computed the mean of
the errors. Figure 7 presents the box plots showing the distri-
bution of average errors for all nodes in the screen graphs of
the 15 apps. There is significant reduction in error for most
apps. For the example of the parking app, the average error
per node is 2.4× smaller when using tighter bound and 4.1×
smaller when using relaxed indistinguishability, comparing to
the baseline approach. We can also see that in a few apps, e.g.,
equibase, moonphases and vidanta, the improvement by
using tighter bounds is negligible and sometimes the baseline
approach performs even better. The reason is that the local
sensitivities of run-time graph instances for these apps are
very close to Sgs. When we apply tighter bounds, the loss
of user data by the projection overwhelms the gain from the
reduced noise by the tighter bound for randomization.

We then computed the ME for each app. Recall that ME
indicates the amount of error on average each node will en-
counter when applying the three approaches for selecting
sensitivity bound. Figure 8 shows the mean values of ME
across 100 trials and the 95% confidence intervals. Compared
with the baseline analysis, on average across the apps, ME is
2× and 5.4× smaller when using tighter bound and relaxed
indistinguishability, respectively.

6.3.3 Call Graphs

Answering Q1. GUI screen graphs for Android applications
are typically small, since the GUI structure of an app is highly
unlikely to contain hundreds of screens. To evaluate the per-
formance of the proposed techniques on larger graphs, we
obtained call graph data as described earlier. The coverage
measurements for this data were computed in the same man-
ner as for the GUI screen graphs. We ran 100 independent
trials for each experiment. Figure 9 reports the means and
95% confidence intervals of precision and recall over the 100
trials. As expected, using the global sensitivity as the sen-
sitivity bound introduces the largest amount of noise due to
the large size of N. The recall is under 0.6 for all apps. By
manual investigation, we found that for many infrequently-
executed methods the frequency estimates were negative and
thus were zeroed out after post-processing. In these cases, the
noise overwhelmed the small frequency counts and the nodes

0.0

0.5

1.0

Pr
ec

isi
on

baseline tighter relaxed

ba
rom

ete
r
bib

le
dp

m

dru
mpa

ds

eq
uib

ase
loc

alt
v

loc
tra

cke
r
mitu

la

moo
np

ha
ses

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

spe
ed

log
ic

vid
an

ta
0.0

0.5

1.0

Re
ca

ll

Figure 9: Precision and recall for call graphs.

b t r
0

250

500

Er
ro

r

barometer

b t r
0

250

500

bible

b t r
0

250

500

dpm

b t r
0

250

500

drumpads

b t r
0

250

500

equibase

b t r
0

250

500

Er
ro

r

localtv

b t r
0

250

500
loctracker

b t r
0

250

500

mitula

b t r
0

250

500

moonphases

b t r
0

250

500

parking

b t r
0

250

500

Er
ro

r
parrot

b t r
0

500

post

b t r
0

250

500

quicknews

b t r
0

250

500

speedlogic

b t r
0

250

500

vidanta

Figure 10: Distribution of errors | f (n)− f̂ (n)| for call graphs.

were not correctly discovered. Note that frequently-executed
methods typically have more accurate estimates, and thus
can be discovered successfully. For example, we considered
the subset of methods with ground-truth frequency exceeding
25% of the frequency of the most frequent method. Aver-
aged across all apps, the ME for this subset is 2.9× (global
sensitivity), 2.2× (tighter sensitivity) and 11.6× (relaxed in-
distinguishability) smaller than the ME for all nodes.

Using the tighter sensitivity bound, there is only a little im-
provement on the recall, i.e., 1.3× increase averaged across
all apps. This implies that, at least for these specific runs in the
experiment, the balance between the accuracy gain and loss by
the projection is hard to achieve and strong privacy guarantees
cannot be achieved without sacrificing accuracy. The recall
has an observable jump when the relaxed indistinguishability
is used and 13 out of 15 apps have recall ≥ 0.8. The recall is
much higher if we only consider frequently-executed meth-
ods. For example, for the subset of high-frequency methods
described earlier, the approach achieves perfect recall for all
apps when using relaxed indistinguishability.
Answering Q2. Figure 10 shows the distribution of errors of
nodes in call graphs. In the baseline approach, the probability
p from Definition 5 is very close to 0.5 due to the large |N|,
causing the flipping of any bit in a vector to be almost random.
Accordingly, the error for all apps is 500 on average, which
is 50% of users. In the figure, we can see significant decrease

1032 29th USENIX Security Symposium USENIX Association

ba
rom

ete
r
bib

le
dp

m

dru
mpa

ds

eq
uib

ase
loc

alt
v

loc
tra

cke
r
mitu

la

moo
np

ha
ses

pa
rki

ng
pa

rro
t

po
st

qu
ick

ne
ws

spe
ed

log
ic

vid
an

ta
0

100

200

300

400

500

M
E

baseline tighter relaxed

Figure 11: Mean error for call graphs.

of error when applying the other two approaches. As for
screen graphs, we used k = bt×Sgsc for tighter bounds and
found that t ≤ 0.1 produced the best worst-case accuracy, i.e.,
maxn | f (n)− f̂ (n)| was minimized. This means that we could
reduce the sensitivity bound by at least 90% to improve utility
of results while keeping the same privacy guarantee.

Figure 11 shows ME values. The metric is 2× smaller on
average when using tighter bound comparing to the baseline
approach. The best accuracy is achieved, with 14.5× smaller
ME, when using relaxed indistinguishability by providing less
protection for neighbors that are “far away” from each other,
which in the case of call graphs means that two neighboring
executions share only a small set of common methods.
Processing cost. The cost of computing LS(ci) is rather small.
For example, call graphs Gci for app mitula are the largest
ones in our data, with 2011 nodes per graph on average. The
average time to compute LS(ci) for one of these graphs is
about 15 ms. Given the sensitivity bound S, the average time
to compute R(ci) for these graphs is about 30 ms. Clearly,
for the graphs considered in our experiments, the cost of data
processing is negligible.

6.4 Parameter Exploration

Deciding the appropriateness of a given ε with respect to
utility requires understanding the purpose and constraints of
the analysis. For example, in Section 6.3, we observed that for
some usage scenarios of node coverage analysis, conclusions
about infrequently executed nodes cannot be reached with
high accuracy. However, such loss of information might not
be important if the analysis goal is to discover “hot” nodes.
In such cases, a small value of ε can achieve practical utility.

Recall from Section 2.1 that the goal of the adversary is to
correctly estimate the run-time existence of specific nodes at
users with high probability. Thus, besides utility, another im-
portant and interesting question is how the proposed approach
performs in practice under various ε in terms of preventing
the inference of node coverage information. In the rest of this
section, we demonstrate a causality-based attack utilizing the
feasibility property. Although such an attack is under ideal-
ized conditions and is unlikely to occur in practice, is provides
useful guidance for selecting ε and for comparing the intrinsic

privacy trade-offs of the three proposed techniques.
We assume a strong adversary who knows G and the details

of the randomizer R, including the values of parameters such
as ε. The adversary also knows all users’ run-time realizations
of the control-flow graph, except for one graph c∗ of the target
user. Let Cprior denote the set of known graph realizations.
For the target user, the adversary knows the true values of all
bits in c∗ except for the bit for one node n∗. The goal of the
adversary is, by seeing the output R(c∗), to determine whether
n∗ is executed an run time, i.e., whether n∗ ∈ c∗.

Next, we describe the details of two attacks that can be
conducted before and after the adversary receiving R(c∗).
• Attack based on feasibility and likelihood. The attack

includes two steps. First, before receiving R(c∗), the ad-
versary estimates the existence of n∗ in c∗ utilizing the
feasibility property from Definition 1. In particular, she
sets the bit of n∗ in c∗ to 0 to generate a new coverage
vector c∗0. Then she checks its feasibility by performing
reachability analysis from the start node. If c∗0 is infeasible,
i.e., removing n∗ results in an illegitimate run-time graph,
the adversary concludes that n∗ ∈ c∗.
If by the first step the adversary cannot infer the existence
of n∗ in c∗, she performs the second step as follows. The
adversary learns a probability q of the occurrence of n∗ in
the coverage vectors in Cprior, i.e., the percentage of users
who have executed n∗ at run time. She then uses this as
a priori knowledge that allows bias towards the answer
with higher probability. If most users (q > 50%) in Cprior
executed n∗ at run time, it is more likely that the target
user also did so, i.e., n∗ ∈ c∗. Otherwise, the adversary
concludes that n∗ /∈ c∗.
• Attack based on randomization result. This attack is

based on the previous attack but with the following ad-
ditional statistical analysis after the adversary observing
a realization of R(c∗). If n∗ ∈ R(c∗) is observed, she
computes and compares the conditional probabilities for
n∗ ∈ R(c∗) given conditions n∗ ∈ c∗ and n∗ /∈ c∗, i.e.,
q× Pr[n∗ ∈ R(c∗) | n∗ ∈ c∗] = q(1− p) and (1− q)×
Pr[n∗ ∈ R(c∗) | n∗ /∈ c∗] = (1−q)p where q is the probabil-
ity learned in a similar way as in the attack above and p is
from Definition 5. These two conditional probabilities cor-
respond to the scenarios where 1) n∗ is in c∗ and R keeps
the bit of n∗ and 2) n∗ is not in c∗ but R flips the bit, respec-
tively. The adversary draws the conclusion that n∗ ∈ c∗ if
the former is larger than the latter, and n∗ /∈ c∗ otherwise.
The case when n∗ /∈ R(c∗) is observed is handled similarly.
As discussed earlier, we assume that the adversary is inter-

ested in nodes that reveal user-specific usage patterns. In our
illustrative case study, instead of picking a node that appears
in (almost) all graphs, we choose n∗ to be the “SettingsAc-
tivity” screen (n8) in G of the parking app in Figure 3. This
node is in 460 out of the 1000 executions. In the experiments,
we repeat the two attacks independently for 100 trials. In each
trial, we randomly select a testing set of 500 graphs for the

USENIX Association 29th USENIX Security Symposium 1033

-5 -4 -3 -2 -1 0 1 2 3 4 5
log2ε

0.0

0.1

0.2

0.3

0.4

Po
ER

baseline
tighter

relaxed (α= 0.5)
relaxed (α= 1)

relaxed (α= 2)
PrER

Figure 12: Comparison of privacy loss.

target user. Set Cprior consists of the remaining 500 graphs.
We record the number of incorrect adversary guesses (out of
500), from which we compute error rates.

The error rates of the two attacks are denoted by prior er-
ror rate (PrER) and posterior error rate (PoER), respectively.
PrER indicates the probability that the adversary falsely esti-
mates the execution of n∗ at the target user based on known
bits in c∗ and her knowledge of Cprior. PoER indicates the
probability that the adversary makes an incorrect guess even
after observing R(c∗). The difference between PrER and
PoER shows the loss of privacy due to revealing R(c∗), and
thus implies the effectiveness of R in hiding the occurrence of
n∗. If the difference is 0, the adversary’s observation of R(n∗)
does not reveal any information about n∗. Larger difference
implies more privacy loss and thus less protection.

Figure 12 shows the average of PrER and PoER for 100
independent trials. We use ε = {2−5,2−4, . . . ,25} for each
technique in Section 5, denoted as “baseline”, “tighter” and
“relaxed (α = 0.5)”, respectively. We also alter the value of
α to evaluate its effects on privacy and utility, which will be
discussed shortly. We can see that using global sensitivity
provides the best protection due to its largest amount of noise
added. Applying relaxed indistinguishability performs the
worst since it has the lowest bound. The choice of ε plays
a critical role. As shown in the figure, all approaches (with
α = 0.5 for relaxed indistinguishability) are effective for ε≤
1 with difference < 0.04, i.e., releasing R(n∗) causes the
success rate of the adversary’s guesses to increase by less than
4%. When ε≥ 23, the noise added are not sufficient to deceive
the adversary for all three approaches with difference > 0.1.
Especially, the protection by using tighter bound and relaxed
indistinguishability with α = 0.5 is negligible, producing
PoER below 10%.
Trade-offs by tuning α. Recall from Section 5.3 that the dis-
tance metric d∗ is defined based on the size of sub-dominator
trees and parameter α. The results discussed so far are for
α = 0.5. However, the choice of the value of α, and in turn
the distance metric, does provide freedom to obtain trade-
offs between utility and privacy. We explore the effects of
these trade-offs by altering α. Specifically, we conduct ad-
ditional experiments, compute the precision, recall and ME
using α = {1,2} under ε = 1. For screen view graphs, the

recall is improved for all apps, being ≥ 0.9 when α = 1 and
≥ 0.95 when α = 2. We have also observed 10.4× and 23.2×
reduction in ME for α = 1 and α = 2, respectively, relative
to the baseline technique. For call graphs, the improvement
on precision comparing to the results by setting α = 0.5 is
barely noticeable. The recall are improved by a few percent-
ages on average across all apps: 0.02 for α = 1 and 0.05 for
α = 2. However, there exists a significant reduction in ME
for call graphs. It is 19.2× and 61.4× smaller comparing to
the baseline technique, for α = 1 and α = 2, respectively.

As mentioned earlier, we have also used α = {1,2} to
calculate PrER and PoER for evaluating the effects of R on
privacy protection. The results are shown in Figure 12, la-
belled with “relaxed (α = 1)” and “relaxed (α = 2)”. We can
see that for the extremely powerful adversary considered in
the experiments, these two settings of α cannot achieve the
same level of privacy protection provided by other techniques.

Note that the hypothetical adversary we considered is very
knowledgeable. In practical circumstances, the adversary is
very unlikely to know all but one bits in a coverage vector if
privacy protection is applied in the first place. Thus the limits
on ε and α can be relaxed in practice. Still, these results allow
us to compare the three techniques against each other, and
provide a general characterization of their privacy protection
properties.
Summary. Our results demonstrate that node coverage analy-
sis of control-flow graphs could be achieved with both privacy
and practical accuracy. At the same time, the results clearly
show that there is a fundamental trade-off between the degree
of privacy protection and the utility of the analysis estimates.
In addition to the theoretical exploration of this space pre-
sented in Section 4 and Section 5, we experimentally identify
practical trade-offs that could be used for future developments
of privacy-preserving software analyses.

7 Related Work

Differential privacy. Several examples of prior work on dif-
ferential privacy were already discussed. There exists a large
body of work on protection of correlated data [9,39,40,45,74]
and graphs with DP [16, 36–38, 61, 62, 67]. In particular,
Liu et al. [45] demonstrate an attack based on probabilistic
dependence and propose dependent differential privacy that
accounts for the dependence in a centralized settings. Our
work is focused on the local model and provides a concrete
algorithm based on dominator trees to discover deterministic
correlation of graph nodes without any other probabilistic
assumptions on graph nodes. Liu and Mittal [46] propose
LinkMirage to mediate privacy-preserving access to social
networks by obfuscation of links. Qin et al. [60] aim at
providing LDP of social networks where each user holds
an adjacency list of her friends. While these studies provide
edge-DP, our solution achieves the more challenging node-DP
for control-flow graphs considering the causal relationships

1034 29th USENIX Security Symposium USENIX Association

between nodes.
User behavior privacy. There is a significant body of work
on understanding and defending collection of user data in
browsers. Specifically, Lerner et al. [42] find that third-party
tracking on the web has increased in prevalence and complex-
ity. Olejnik et al. [57] report that browsing histories can be
used for user identification. These works motivate our study
on software usage analysis. Fan et al. [25] apply DP on time
series of pageviews. Their techniques could potentially be im-
proved by considering structure/hierarchy of websites, similar
to control flows that are used in this paper. Reznichenko and
Francis [63] collect advertisement data with DP and propose
to use privacy deficit to measure privacy loss across multi-
ple queries on the data. While our approach permits only
one-shot data collection, it may be possible to extend it with
similar concepts to allow continuous data collection.

Privacy leakage in mobile apps has also been studied ex-
tensively. Liu et al. [47] propose Alde for static and dynamic
analysis of the data collection by analytics libraries. Chen et
al. [10] discuss attacks that manipulate user profiles to control
ads delivering. Meng et al. [48] point out that ads in free
mobile apps could potentially leak sensitive user information.
Seneviratne et al. [68] find that more than half of the paid apps
contain at least one tracker. LinkDroid [27] tracks app-level
linkability of usage behaviors of the same user across differ-
ent apps. Han et al. [31] employ dynamic information flow
tracking to monitor sending of sensitive information. These
works highlight the privacy issues in mobile app analytics
and motivate our work. They consider leakage of personal
information such as devices IDs, ignoring control-flow data
being collected. Our work focuses specifically on privacy-
preserving collection of control-flow data.
General control-flow data collection. Privacy has also
been considered in general software analysis. Elbaum and
Hardojo [21] marshal and label data with the encrypted
sender’s name for anonymization at the deployed site. Clause
and Orso [14] anonymize inputs that cause failures in de-
ployed software. There are no theoretical guarantees about the
privacy protection these techniques provide. In general, such
approaches may suffer from carefully tuned attacks such as
linkage attacks, in which data is gathered from several sources
to reveal personally-identifiable information [17, 52, 53]. Our
approach, which is based on DP and its generalizations, is
designed from the ground up with strong and well-defined
privacy guarantees: despite any additional information an ad-
versary may obtain from other sources, she cannot distinguish
with high probability the presence/absence of any graph node
in the user’s private data.

Many works have considered collection of various forms
of control-flow data from deployed software, and could be in-
teresting targets for developing DP analyses. Liblit et al. [43]
minimize per-user overhead during information gathering
by using sampling of program executions. Nagpurkar et
al. [51] propose an instruction-based profiling approach for

deployed software. DiCE [7] explores system behaviors to
check whether the system deviates from its desired behavior.
Saha et al. [66] collect execution information across software
instances by running the program multiple times with the
same input. The control-flow data of interest in these ap-
proaches includes execution traces, coverage and counts of
statements and functions, and throw/catch counts. Our work
presents a promising building block for the development of
principled privacy-preserving versions of these approaches.

8 Conclusion

Over the last decade, pervasive data gathering has become
the norm. Combined with rapid advances in large-scale data
analytics and machine learning, this presents fundamental
challenges to privacy. Exploring the trade-offs between pri-
vacy protections and the utility of data gathering/analysis is
a critical scientific challenge. To study such trade-offs in the
analysis of deployed software, we explore the use of differ-
ential privacy. With the help of this rigorous technique, we
develop a novel node coverage analysis of control-flow graphs.
By carefully defining feasibility constraints and neighbor re-
lations for such graph, our study highlights the key trade-
offs in algorithm design and presents effective choices for
these trade-offs. Our evaluation demonstrates that, with these
choices, both privacy and accuracy can be achieved for this
control-flow analysis. This work is a promising step in the
larger landscape of privacy-preserving software analysis and
analytics. We believe that applying similar techniques based
on differential privacy to other software analysis problems
will be a fruitful direction for future work.

Acknowledgments. We thank the reviewers for their valu-
able feedback. This material is based upon work supported
by the National Science Foundation under Grant No. CCF-
1907715.

References

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jef-
frey D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2006.

[2] Apple. Learning with privacy at scale.
https://machinelearning.apple.com/2017/
12/06/learning-with-privacy-at-scale.html.

[3] Piramanayagam Arumuga Nainar, Ting Chen, Jake
Rosin, and Ben Liblit. Statistical debugging using
compound boolean predicates. In ISSTA, pages 5–15,
2007.

[4] Raef Bassily, Kobbi Nissim, Uri Stemmer, and
Abhradeep Thakurta. Practical locally private heavy
hitters. In NIPS, pages 2285–2293, 2017.

USENIX Association 29th USENIX Security Symposium 1035

https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

[5] Raef Bassily and Adam Smith. Local, private, efficient
protocols for succinct histograms. In STOC, pages
127–135, 2015.

[6] Jeremiah Blocki, Avrim Blum, Anupam Datta, and
Or Sheffet. Differentially private data analysis of so-
cial networks via restricted sensitivity. In ITCS, pages
87–96, 2013.

[7] Marco Canini, Vojin Jovanović, Daniele Venzano, Boris
Spasojević, Olivier Crameri, and Dejan Kostić. Toward
online testing of federated and heterogeneous distributed
systems. In USENIX ATC, pages 20–20, 2011.

[8] Konstantinos Chatzikokolakis, Miguel E Andrés,
Nicolás Emilio Bordenabe, and Catuscia Palamidessi.
Broadening the scope of differential privacy using met-
rics. In PETS, pages 82–102, 2013.

[9] Rui Chen, Benjamin C Fung, Philip S Yu, and Bipin C
Desai. Correlated network data publication via differen-
tial privacy. The International Journal on Very Large
Data Bases, 23(4):653–676, 2014.

[10] Terence Chen, Imdad Ullah, Mohamed Ali Kaafar, and
Roksana Boreli. Information leakage through mobile
analytics services. In HotMobile, pages 15:1–15:6.
ACM, 2014.

[11] Trishul M Chilimbi, Ben Liblit, Krishna Mehra,
Aditya V Nori, and Kapil Vaswani. Holmes: Effec-
tive statistical debugging via efficient path profiling. In
ICSE, pages 34–44, 2009.

[12] Andrew Chin and Anne Klinefelter. Differential pri-
vacy as a response to the reidentification threat: The
Facebook advertiser case study. NCL Rev., 90:1417,
2011.

[13] James Clause and Alessandro Orso. A technique for
enabling and supporting debugging of field failures. In
ICSE, pages 261–270, 2007.

[14] James Clause and Alessandro Orso. Camouflage: Au-
tomated anonymization of field data. In ICSE, pages
21–30, 2011.

[15] Aref N. Dajani, Amy D. Lauger, Phyllis E. Singer,
Daniel Kifer, Jerome P. Reiter, Ashwin Machanava-
jjhala, Simson L. Garfinkel, Scot A. Dahl, Matthew
Graham, Vishesh Karwa, Hang Kim, Philip Leclerc,
Ian M. Schmutte, William N. Sexton, Lars Vilhuber,
and John M. Abowd. The modernization of statistical
disclosure limitation at the U.S. Census Bureau. https:
//www2.census.gov/cac/sac/meetings/2017-09/
statistical-disclosure-limitation.pdf.

[16] Wei-Yen Day, Ninghui Li, and Min Lyu. Publishing
graph degree distribution with node differential privacy.
In SIGMOD, pages 123–138, 2016.

[17] Irit Dinur and Kobbi Nissim. Revealing information
while preserving privacy. In PODS, pages 202–210,
2003.

[18] Cynthia Dwork. Differential privacy. In ICALP, pages
1–12, July 2006.

[19] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam Smith. Calibrating noise to sensitivity in private
data analysis. In TCC, pages 265–284, 2006.

[20] Cynthia Dwork and Aaron Roth. The algorithmic
foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3-4):211–
407, 2014.

[21] Sebastian Elbaum and Madeline Hardojo. An empirical
study of profiling strategies for released software and
their impact on testing activities. In ISSTA, pages 65–75,
2004.

[22] Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Ko-
rolova. RAPPOR: Randomized aggregatable privacy-
preserving ordinal response. In CCS, pages 1054–1067,
2014.

[23] Exodus Privacy. Most frequent app trackers for
Android. https://reports.exodus-privacy.eu.
org/en/reports/stats.

[24] Facebook. Facebook analytics. https://analytics.
facebook.com.

[25] Liyue Fan, Luca Bonomi, Li Xiong, and Vaidy Sun-
deram. Monitoring web browsing behavior with differ-
ential privacy. In WWW, pages 177–188, 2014.

[26] Giulia Fanti, Vasyl Pihur, and Úlfar Erlingsson. Build-
ing a RAPPOR with the unknown: Privacy-preserving
learning of associations and data dictionaries. PETS,
2016(3):41–61, 2016.

[27] Huan Feng, Kassem Fawaz, and Kang G Shin.
LinkDroid: Reducing unregulated aggregation of app
usage behaviors. In USENIX Security, pages 769–783,
2015.

[28] Google. Firebase. https://firebase.google.com.

[29] Google. Google Analytics. https://analytics.
google.com.

[30] Google. Monkey: UI/Application exerciser for An-
droid. http://developer.android.com/tools/
help/monkey.html.

1036 29th USENIX Security Symposium USENIX Association

https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://www2.census.gov/cac/sac/meetings/2017-09/statistical-disclosure-limitation.pdf
https://reports.exodus-privacy.eu.org/en/reports/stats
https://reports.exodus-privacy.eu.org/en/reports/stats
https://analytics.facebook.com
https://analytics.facebook.com
https://firebase.google.com
https://analytics.google.com
https://analytics.google.com
http://developer.android.com/tools/help/monkey.html
http://developer.android.com/tools/help/monkey.html

[31] Seungyeop Han, Jaeyeon Jung, and David Wetherall.
A study of third-party tracking by mobile apps in the
wild. Univ. Washington, Tech. Rep. UW-CSE-12-03-01,
2012.

[32] Murali Haran, Alan Karr, Alessandro Orso, Adam
Porter, and Ashish Sanil. Applying classification tech-
niques to remotely-collected program execution data. In
ESEC/FSE, pages 146–155, 2005.

[33] Lingxiao Jiang and Zhendong Su. Context-aware statis-
tical debugging: From bug predictors to faulty control
flow paths. In ASE, pages 184–193, 2007.

[34] Lingxiao Jiang and Zhendong Su. Profile-guided pro-
gram simplification for effective testing and analysis. In
ESEC/FSE, pages 48–58, 2008.

[35] Wei Jin and Alessandro Orso. BugRedux: Reproducing
field failures for in-house debugging. In ICSE, pages
474–484, 2012.

[36] Zach Jorgensen, Ting Yu, and Graham Cormode. Pub-
lishing attributed social graphs with formal privacy guar-
antees. In SIGMOD, pages 107–122, 2016.

[37] Vishesh Karwa, Sofya Raskhodnikova, Adam Smith,
and Grigory Yaroslavtsev. Private analysis of graph
structure. In VLDB, pages 1146–1157, 2011.

[38] Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya
Raskhodnikova, and Adam Smith. Analyzing graphs
with node differential privacy. In TCC, pages 457–476,
2013.

[39] Daniel Kifer and Ashwin Machanavajjhala. No free
lunch in data privacy. In SIGMOD, pages 193–204.
ACM, 2011.

[40] Daniel Kifer and Ashwin Machanavajjhala. A rigorous
and customizable framework for privacy. In PODS,
pages 77–88, 2012.

[41] Thomas Lengauer and Robert Tarjan. A fast algo-
rithm for finding dominators in a flowgraph. TOPLAS,
1(1):121–141, January 1979.

[42] Adam Lerner, Anna Kornfeld Simpson, Tadayoshi
Kohno, and Franziska Roesner. Internet Jones and the
raiders of the lost trackers: An archaeological study of
web tracking from 1996 to 2016. In USENIX Security,
2016.

[43] Ben Liblit, Alex Aiken, Alice Zheng, and Michael I
Jordan. Bug isolation via remote program sampling. In
PLDI, pages 141–154, 2003.

[44] Ben Liblit, Mayur Naik, Alice Zheng, Alex Aiken, and
Michael Jordan. Scalable statistical bug isolation. ACM
SIGPLAN Notices, 40(6):15–26, 2005.

[45] Changchang Liu, Supriyo Chakraborty, and Prateek Mit-
tal. Dependence makes you vulnberable: Differential
privacy under dependent tuples. In NDSS, 2016.

[46] Changchang Liu and Prateek Mittal. LinkMirage: En-
abling privacy-preserving analytics on social relation-
ships. In NDSS, 2016.

[47] Xing Liu, Sencun Zhu, Wei Wang, and Jiqiang Liu.
Alde: Privacy risk analysis of analytics libraries in the
Android ecosystem. In SecureComm, pages 655–672,
2016.

[48] Wei Meng, Ren Ding, Simon P Chung, Steven Han,
and Wenke Lee. The price of free: Privacy leakage in
personalized mobile in-apps ads. In NDSS, 2016.

[49] Ilya Mironov. Rényi differential privacy. In CSF, pages
263–275, 2017.

[50] Takao Murakami and Yusuke Kawamoto. Utility-
optimized local differential privacy mechanisms for dis-
tribution estimation. In USENIX Security, pages 1877–
1894, 2019.

[51] Priya Nagpurkar, Hussam Mousa, Chandra Krintz, and
Timothy Sherwood. Efficient remote profiling for
resource-constrained devices. TACO, 3(1):35–66,
March 2006.

[52] Arvind Narayanan and Vitaly Shmatikov. Robust de-
anonymization of large sparse datasets. In S&P, pages
111–125, 2008.

[53] Arvind Narayanan and Vitaly Shmatikov. De-
anonymizing social networks. In S&P, pages 173–187,
2009.

[54] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith.
Smooth sensitivity and sampling in private data analysis.
In STOC, pages 75–84, 2007.

[55] Kobbi Nissim, Thomas Steinke, Alexandra Wood,
Micah Altman, Aaron Bembenek, Mark Bun, Marco
Gaboardi, David O’Brien, and Salil Vadhan. Differ-
ential privacy: A primer for a non-technical audience
(preliminary version). Vanderbilt Journal of Entertain-
ment and Technology Law, 2018.

[56] Oath. Flurry. http://flurry.com.

[57] Lukasz Olejnik, Claude Castelluccia, and Artur Janc.
Why Johnny can’t browse in peace: On the uniqueness
of web browsing history patterns. In HotPETs, 2012.

USENIX Association 29th USENIX Security Symposium 1037

http://flurry.com

[58] Alessandro Orso, Taweesup Apiwattanapong, and
Mary Jean Harrold. Leveraging field data for impact
analysis and regression testing. In ESEC/FSE, pages
128–137, 2003.

[59] Christina Pavlopoulou and Michal Young. Residual test
coverage monitoring. In ICSE, pages 277–284, 1999.

[60] Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao,
and Kui Ren. Generating synthetic decentralized social
graphs with local differential privacy. In CCS, pages
425–438, 2017.

[61] Sofya Raskhodnikova and Adam Smith. Private analysis
of graph data. In Encyclopedia of Algorithms, pages
1–6. Springer Berlin Heidelberg, 2014.

[62] Sofya Raskhodnikova and Adam Smith. Lipschitz ex-
tensions for node-private graph statistics and the general-
ized exponential mechanism. In FOCS, pages 495–504,
2016.

[63] Alexey Reznichenko and Paul Francis. Private-by-
design advertising meets the real world. In CCS, pages
116–128, 2014.

[64] Franziska Roesner, Tadayoshi Kohno, and David
Wetherall. Detecting and defending against third-party
tracking on the web. In NSDI, pages 12–12, 2012.

[65] Sable. Soot analysis framework. https://soot-oss.
github.io/soot.

[66] Diptikalyan Saha, Pankaj Dhoolia, and Gaurab Paul.
Distributed program tracing. In ESEC/FSE, pages 180–
190, 2013.

[67] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao
Zheng, and Ben Y. Zhao. Sharing graphs using differ-
entially private graph models. In IMC, pages 81–98,
2011.

[68] Suranga Seneviratne, Harini Kolamunna, and Aruna
Seneviratne. A measurement study of tracking in paid
mobile applications. In WiSec, 2015.

[69] TalentApps. ParKing: Where is my car? Find my
car - Automatic. https://play.google.com/store/
apps/details?id=il.talent.parking.

[70] Uber. Uber releases open source
project for differential privacy. https:
//medium.com/uber-security-privacy/
differential-privacy-open-source-7892c82c42b6.

[71] Stanley L Warner. Randomized response: A survey
technique for eliminating evasive answer bias. Journal
of the American Statistical Association, 60(309):63–69,
1965.

[72] Yale Privacy Lab. App trackers for Android. https:
//privacylab.yale.edu/trackers.html.

[73] Alice Zheng, Michael Jordan, Ben Liblit, and Alex
Aiken. Statistical debugging of sampled programs. In
NIPS, pages 603–610, 2004.

[74] Tianqing Zhu, Ping Xiong, Gang Li, and Wanlei Zhou.
Correlated differential privacy: Hiding information in
non-iid data set. IEEE Transactions on Information
Forensics and Security, 10(2):229–242, 2014.

A Proofs

Lemma 1. Consider the set of all feasible subgraphs Gc′ for
the given Gc such that n /∈ c′. This set is not empty because
it contains, at the very least, the trivial graph containing only
the starting node s. Since the set is finite, at least one of its
elements is maximal. To show uniqueness, suppose that two
different graphs from the set are both maximal. It is easy to
see that the graph containing the union of their nodes and
edges also belongs to the set, which means that neither of the
original two graphs could have been maximal.

Proposition 1. Consider Gc and its subgraph Gc′ obtained by
removing all nodes in {n′ : n domGc n′} and their adjacent
edges. We need to show that (1) n /∈ c′; (2) Gc′ is feasible;
and (3) Gc′ is maximal. (1) trivially follows from n domGc n.
For (2) we need to establish that in Gc′ , all nodes are reachable
from the start node s. Suppose this is not true for some k ∈ c′.
Clearly, k is reachable from s in Gc. Graph Gc′ is obtained
from Gc by removing all n′ such that n domGc n′. Thus, every
path from s to k in Gc contains at least one such n′. Since
n domGc n′, each such path also must contain n. This means
that n domGc k, which contradicts k ∈ c′. Finally, (3) requires
that Gc′ be maximal. Consider some proper supergraph Gc′′

of Gc′ that is a feasible subgraph of Gc and has n /∈ c′′. It
is easy to see that c′′ contains at least one node k such that
n domGc k. Since c′′ is feasible, there is at least one path from
s to k in Gc′′ . This path also exists in Gc, and thus n belongs to
it because it dominates k in Gc. This contradicts n /∈ c′′.

Proposition 2. Let c be a feasible coverage vector. For any
n∈ c and t ∈ {0,1}|N|, consider the ratio between Pr[R(c) = t]
and Pr[R(∆n(c)) = t]. This ratio is bounded from above by
the product of x terms e

ε

S , where x is the number of bits in
c that were changed to obtain ∆n(c). Each of the x terms is
contributed by one of the flipped bits. Since x≤ S, this ratio
is bounded from above by eε. Similarly, the ratio is bounded
from below by e−ε. Given any neighbors c,c′, either c′ =
∆n(c) or c=∆n(c′), therefore Pr[R(c) = t]/Pr[R(c′) = t]≤ eε.
Thus, R satisfies Definition 3.

1038 29th USENIX Security Symposium USENIX Association

https://soot-oss.github.io/soot
https://soot-oss.github.io/soot
https://play.google.com/store/apps/details?id=il.talent.parking
https://play.google.com/store/apps/details?id=il.talent.parking
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://medium.com/uber-security-privacy/differential-privacy-open-source-7892c82c42b6
https://privacylab.yale.edu/trackers.html
https://privacylab.yale.edu/trackers.html

