2020 IEEE International Conference on Robotics and Automation (ICRA)

31 May - 31 August, 2020. Paris, France

SA-Net: Robust State-Action Recognition for Learning from Observations

Nihal Soans, Ehsan Asali, Yi Hong, and Prashant Doshil

Abstract— Learning from observation (LfO) offers a new
paradigm for transferring task behavior to robots. LfO requires
the robot to observe the task being performed and decompose
the sensed streaming data into sequences of state-action pairs,
which are then input to LfO methods. Thus, recognizing the
state-action pairs correctly and quickly in sensed data is a
crucial prerequisite. We present SA-Net a deep neural network
architecture that recognizes state-action pairs from RGB-D
data streams. SA-Net performs well in two replicated robotic
applications of LfO — one involving mobile ground robots and
another involving a robotic manipulator — which demonstrates
that the architecture could generalize well to differing contexts.
Comprehensive evaluations including deployment on a physical
robot show that SA-Net significantly improves on the accuracy
of the previous methods under various conditions.

I. INTRODUCTION

Recent robot learning methods for learning from demon-
stration [2], [3] allow a transfer of preferences and policy
from the expert performing the task to the learner. These
methods have allowed the learning robots to successfully
perform difficult acrobatic aerial maneuvers [1], carry out
nontrivial manipulation tasks [15], penetrate patrols [4], and
merge autonomously into a congested freeway [13]. One way
by which this transfer occurs is the learner simply observing
the expert perform the task. Observing the expert engaged in
the task is expected to yield trajectories of state-action pairs,
which is then input to the algorithms that drive some of these
methods. Consequently, recognizing the expert’s state and
action accurately from observations is crucial for the learner.
If the learner is a robot, its observations are sensor streams.
Very likely, these will be streams from camera and range
sensors yielding RGB and depth (RGB-D) data. Thus, the
learning robot must recognize sequences of state-action pairs
quickly and accurately from RGB-D streams. This is a key
component of the learning from observation (LfO) pipeline.

In this paper, we present SA-Net, a deep neural network
that recognizes state-action pairs from RGB-D data streams
with a high accuracy. This supervised learning method offers
a general deep learning alternative to the current adhoc
techniques, which often rely on problem-specific implemen-
tations using OpenCV. Figure 1 gives an overview of how
SA-Net is deployed. SA-Net aims to recognize from a
sensor stream, the expert’s state and action. The state is often
the 2D or 3D coordinates in a global reference frame and the
orientation. The action is derived from the motion performed
by the robot.

INihal Soans, Ehsan Asali, Yi Hong and Prashant Doshi is with Dept.
of Computer Science, University of Georgia, Athens GA 30606, USA
pdoshi@cs.uga.edu

978-1-7281-7395-5/20/$31.00 ©2020 IEEE

640x480x3 ﬁ (1), (x2,y)
YoLo |
Object
detection

|

(s1,31), (s2,32), . Algorithms
> for LD

SA-Net

Depth stream

Fig. 1: Overview of the I/O of SA-Net for state-action recognition
from RGB-D streams of a TurtleBot patrolling a corridor.

As the learner’s position may not be fixed, SA-Net seeks
to recognize the coordinates and orientation of the observed
object(s) relative to the learner’s location and project it on the
global reference frame. While the RGB frame offers context,
the depth data is relative to the observer. Coordinates are
recognized by interleaving convolutional neural nets (CNN)
and pooling layers followed by fully-connected layers input
to a softmax. This allows the use of all four channels, RGB-
D, in recognizing the coordinates. Identifying the expert’s
orientation and action is more challenging. Both of these
rely on temporal data, and SA-Net utilizes frames from time
steps t — 2, t — 1, and current time step ¢. Each frame is
cropped previously by a network such as Faster R-CNN [8]
or YOLO?2 [16] to focus attention on the expert. The network
backtracks the movement inside the bounding box for time
step t — 1 and ¢t — 2 using a layer of time-distributed CNNs
followed by two convolutional long-short-term memory nets
(LSTM) [10]. SA-Net continues to utilize the depth channel
here by running an intercept to the previously described
fully-connected nets that provides the relative distance.

We evaluate SA-Net on two diverse tasks. (i) It is used to
identify the state-action sequences of two TurtleBots that are
simultaneously but independently patrolling a hallway. SA-
Net is deployed on a third TurtleBot that is observing the
patrollers from a vantage point, and is tasked with penetrating
the patrol [4]. (it) SA-Net is used to identify the state-
action sequences of a PhantomX robotic arm that is engaged
in pick-and-place to sort objects. In both tasks, SA-Net
exhibits high accuracy while being able to run on computing
machines with limited processing power and memory on
board a robot. Ablation and robustness studies demonstrate
that the architecture is effective and that SA-Net can handle
some typical adverse conditions as well. Consequently, SA-
Net offers high-accuracy trajectory recognition to facilitate
robots engaged in LfO for various tasks.

2153

II. RELATED WORK

Traditionally, the state and action of an observed robot is
recognized by tracking a marker associated with the robot.
For example, Bogert and Doshi [4] utilizes a colored box on
top of the TurtleBot for blob detection in CM Vision coupled
with 3D point-cloud processing. This centroid-based method
simplifies the estimation of the robot’s trajectory but is not
robust to occlusion of the marker and to noise in the context.

Recently, deep NNs have demonstrated significantly im-
proved performance on tasks involving image and video
analysis [9], [26]. Related to our method are the NN archi-
tectures in computer vision for recognizing human gestures
and activities though these rely predominantly on videos. For
example, Ji et al. [11] recognizes human actions in surveil-
lance videos using a 3D-CNN. Furthermore, a recurrent NN
(RNN) combined with 3D-CNN [12] classifies and tempo-
rally localizes activities in untrimmed videos. Rezazadegan
et al. [18] introduced two-stream VGG16 based CNNs that
utilize spatial and optical flow images to recognize robotic
activities. Depth modality can be leveraged for gesture recog-
nition using two separate CNN streams with a late fusion
network [7]. Alternately, RGB and depth modalities can be
superimposed to extract features for action recognition with
CNNs [23]. These action recognition methods learn from
videos by treating them as either 3D volumes with multiple
adjacent frames [11], one or multiple compact images [14],
[18], [23], or as an image frame sequence [12]. Our method
belongs to the last category and handles the image and depth
sequence with LSTMs, which learn temporal dependencies.

Among methods that use LSTMs, Wang et al. [24] adopts
3D-CNNs to extract features from video clips and uses the
LSTM to extract dynamic features for recognizing actions
in the video. Another related work [21] leverages a bidi-
rectional LSTM to capture temporal changes. But, this may
not distinguish between moving forward and backward or
left vs. right motions. In comparison to these sophisticated
NN designs, SA-Net’s architecture for action recognition is
simpler because it avails of an additional modality — depth
streams. Furthermore, in contrast to these methods focusing
on recognizing actions, SA-Net is tasked with recognizing
the state and action pairs simultaneously in real time from
just a few frames, as demonstrated by the experiments.

A recent deep NN architecture SE3-Nets [6] predicts the
rigid body motion of objects in the robotic scene. However,
SA-Net has a different focus: to recognize or summarize a
robot’s trajectory from RGB-D streams rather than estimate
its visual representation using 3D point cloud or images.

I1I. SA-Net ARCHITECTURE

As SA-Net is tasked with recognizing state-action pairs,
this motivates a network design that efficiently mixes con-
volutional and recurrent NNs, which we describe below.

A. Problem Definition

We aim to automatically estimate the state and action
pairs of an expert from RGB-D streams using deep NNs.
Given the expert’s three video frames captured by a learner

at time points t —2, t — 1, and ¢, our network jointly predicts
the state (X,Y, Z,0) and action (A) of the expert at the
current time point ¢. Here, the tuple (X,Y, 7) in the state
representation describes the location coordinate of the expert
in a 3D environment; the Z dimension is ignored for 2D
cases. The 6 describes the orientation of the expert. In this
paper, we consider discrete state and action spaces, which
allows formulating the task as a multi-label classification
problem. Formally, the problem can be formulated as:

(X,Y,Z,0,A) = f(It—2,It—1,1+; ®), where
X e{0,...,Nx -1}, Y €{0,..,Ny —1},Z € {0, ..., Nz — 1},
9€{0,...Ng—1}, A€ {0,...,Na—1}.

Here, f denotes the mapping function learned by our
classification network; I;_o, I;_1, and I; are the three frame
inputs; © represents the parameter set of the network for
classifying the state and action jointly; Nx, Ny, and Ny
are the discretized dimensions in each coordinate; Ny is the
number of the expert’s orientations — for instance, we have
four orientations including north, south, east, and west in
the TurtleBot application; N 4 is the number of actions, e.g.,
four actions including move forward, stop, turn right, and
left. Overall, the network includes two coupled components
for the state and action recognition, which are learned
simultaneously. SA-Net’s architecture is shown in Fig. 2.

B. State Recognition

State recognition aims to determine the expert’s coordi-
nate (X,Y, Z) and its orientation 6. Typically, the expert’s
coordinate can be identified on the basis of its surrounding
environment. Therefore, we use one image frame with-
out considering the temporal information in our coordinate
recognition module. Different from state recognition, ori-
entation recognition requires more than one image frame
to recognize hard-to-distinguish orientations. As shown in
Fig. 3, the TurtleBot is oriented differently in the two images,
but the image difference is too subtle to correctly separate
these two orientations of the TurtleBot. In such situations,
image sequence plays an important role in recognizing the
orientation. Therefore, in the state recognition of SA-Net, we
separate the prediction of the coordinate (X, Y, Z) from that
of the orientation 6, as one network stream takes the static
image as input while the other takes the image sequence.
Coordinate recognition As shown in the top stream of
the network in Fig. 2, only the image frame at time point
t is used to predict the expert’s location coordinate. We
assign a pre-defined coordinate system for each environment;
that is, each image frame will be classified into a unique
coordinate, which is represented by an absolute location
(X,Y, Z) with respect to the origin in the coordinate system.
The expert’s coordinates are learned from images captured
by the learner; however, the learner’s location may change in
different situations. To improve the network’s generalization,
we leverage the relative distance between the expert and the
learner to help in the recognition of the expert’s coordinate.

In the coordinate recognition branch, we have two
sets of coordinate-related predictions: the relative distance
(AX,AY, AZ) and the absolute coordinate (X,Y, Z). These

2154

Buijood
(exg s ‘gxg :d)
Buijood

B
X
B
]
w
X
@
)

(exg 'S ‘zexexg 1)
(exg 'S ‘zex6Xe 14)

Object Detection

(zxZ 'S ‘zexexg i)

(zxz 'S ‘zexexg 1)
AUOD-dL
Burjood-aL

(€X€ S “pXp i)

B
w
X
w
.
[N}
o
%]
N
X
>

TXT 'S ‘Ogxexe id)

(

»
o
= - P> § X, Y,2)
N T x
= oa »
K S
= > — 3 (AX, AY, AZ)
%
ul
%{__ gh F: Filter
= g S: Stride
FC: Fully Connected
TD: Time distributed
@ : Concatenation

NL1ST-AU0D

N

Action

Xewyos

Fig. 2: An overview of the SA-Net architecture. This network jointly predicts the state and action of an expert using the observed RGB-
D data streams and corresponding sequential data cropped by an object detection model. The final outputs of the network include the
coordinate X, Y, Z, the orientation 6, and the action. The additional output of relative coordinate AX, AY, AZ is used in the training.

two prediction tasks share the same process of image feature
extraction, which includes five convolutional layers and three
max pooling layers. The convolutional layers use 32 filters
with the same kernel size 3 x 9 and the same 3 x 3 stride.
The three pooling layers are located after the first, third, fifth
convolutional layers, respectively, with filters of size 4 x 4,
2 x 2, and 2 x 2 and strides of size 3 x 3, 3 x 3, and 2 x 2.
Following the convolutional and pooling layers, two fully
convolutional (FC) layers are used in the classification. As
the prediction of relative distance contributes to coordinate
prediction, we have an additional FC in the stream of coor-
dinate classification after concatenating the pre-activation of
the softmax from the relative distance classification.

—

Fig. 3: An example of a TurtleBot in two similar images but having
different orientations.

Orientation recognition Different from the coordinate pa-
rameter, the orientation of the expert guides its movement
particularly so in the context of mobile robots. Therefore,
in both orientation and action recognition we would like the
network to have its attention on the expert itself, especially
when the expert is far away from the learner and relatively
small in the whole image frame. To achieve this goal, we
adopt object detection to make the expert stand out for per-
ceiving its behavior. More details about the object detection
are given in Section III-D. After object detection, we have
three new sequential frames, which are cropped from the
original RGB-D image inputs and re-sized to images of size

150 x 100 to facilitate orientation and action recognition of
the expert. The sequential frames are essential in orientation
recognition to differentiate hard examples as shown in Fig. 3.
To handle the sequential image inputs, we use time-
distributed convolutional (TD-Conv) layers in the stream for
recognizing orientation. These layers collect image features
required for orientation recognition from all three time steps.
In particular, we have two TD-Conv layers, followed by one
time-distributed max pooling layer and another TD-Conv
layer. Each TD-Conv layer has 32 filters of size 3 x 3 and
stride of 2 x 2, and the pooling layer uses a filter of size
4 x 4 and stride of 3 x 3. We observe that the orientation and
action recognitions are connected to coordinate recognition,
albeit loosely. To motivate this, note that the TurtleBot is
less likely to turn left or right if it is in the middle of
a corridor. Thus, we concatenate the whole-image features
extracted from the coordinate recognition with the spatio-
temporal features extracted from the cropped image sequence
to predict the expert’s orientation. A similar operation is
performed in action recognition, as discussed next.

C. Action Recognition

Similar to the orientation recognition, actions are recog-
nized using the same three sequential cropped images after
object detection (Section III-D). The goal is to determine the
expert’s action — for example, in which cardinal direction
is the expert moving. Because the orientation and action
recognition are working on the same input, they share the
first three layers for extracting lower-level features from
cropped images at all time steps. The action recognition
then uses two convolutional LSTM layers to further compose
higher-level features and capture temporal changes in the
image sequence. These two new layers also use 32 kernels
of size 3 x 3 and stride of 2 x 2. In this branch we leverage
all features extracted from the state (both coordinate and
orientation) recognition to support the action recognition.
In tasks involving mobile robots, the orientation and action

2155

are often coupled and we use concatenation to make full
use of extracted features. Orientation helps in predicting the
action but is, of course, not sufficient. A mobile robot moving
toward the observer exhibits the same orientation, which does
not reveal the move-forward action. If the state and action
are known to be independent, these connections would be
removed and SA-Net handles the two independently.

D. Expert Detection

This object detection module provides inputs for the orien-
tation and action recognition of the expert. We use the RGB
data stream at the current time point ¢ to perform the object
detection using an existing model, YOLO2 [16]. Using the
predicted bounding box for the expert [(z1,y1), (22, y2)], we
crop the images from the frames ¢t — 2, t — 1, and ¢. We keep
a small amount of surrounding environment background;
this buffered cropping is calculated by the linear equation,
Ay =7 X Ay + Cmin. Here, » > 1 is the cropping factor
that determines how aggressively the users want to crop the
image; Ay is the width |z1 — a2| or the height |y; — y2| of
the bounding box before the buffered cropping, while A, is
the corresponding value after the cropping; and c¢,,;, is the
minimum amount of cropping, e.g., 10 pixels. In all of our
experiments, we set 7 = 1.1.

E. Masking for Learning from Multiple Experts

In practice, we may have more than one expert. However,
SA-Net is not explicitly designed to recognize the state
and action pairs of multiple experts. Despite this, we can
allow multiple experts by using masking that ensures only
one expert exists in the images for recognition. Specifically,
we leverage the object detection (Section III-D) to separate
the experts and generate a new image for each. To generate
the image for one expert, we remove all others using their
detected bounding boxes and replace the removed regions
with the background image stored in memory. Thus, we have
new images for each expert to pass through the net for state-
action recognition. As shown later, this use of masking to
segregate experts in each frame does not negatively impact
the simultaneous tracking of multiple robots across frames.

IV. EXPERIMENTS

SA-Net exhibits a general architecture useful in multiple
domains. We evaluate it on two tasks offline and online on
a physical robot and report on our extensive experiments.

A. Tasks

We evaluated SA-Net on two diverse LfO tasks. First, it
was deployed on a TurtleBot tasked with penetrating cyclic
patrols by two other TurtleBots in a hallway as shown in
Fig. 4(a). Each patroller can assume one of 4 orientations
and 4 actions. This task replicates a well-known testbed for
evaluating LfO methods such as inverse reinforcement learn-
ing [4], [5]. The other task involves observing a PhantomX
arm mounted on a TurtleBot (Fig. 4(b)) and performing pick-
and-place to sort objects of two types. An overlooking Kinect
360 RGB-D sensor observes the arm [20]. This task adds a

third dimension, the height of the end effector, to the state,
and the arm has 6 possible orientations and 6 actions that
correspond to the motion of the end effector in the 3D space.

= T

O =N whuo

Fig. 4: (a) A map of the hallway patrolled by two TurtleBots. The
learner, shown in blue, observes the patrols from its vantage point
using a Kinect 360 RGB-D sensor. A 2D grid is superimposed on
the hallways. (b) SA-Net is deployed on a computer connected to a
Kinect 360 that observes a PhantomX arm mounted on a TurtleBot.
A 3D grid is superimposed for the coordinates of its end effector.

B. Formative Evaluation

We evaluated SA-Net using stratified 5-fold cross valida-
tion for both tasks. 500 RGB and depth image pairs, each
annotated with a bounding box only, were utilized to train a
Faster R-CNN [17] whose output then trained a YOLO2 net
to learn the bounding boxes for cropping the images. The
complete data had 60K annotated sets of RGB and depth
image frame pairs for the patrolling task and 10K sets for
the manipulation task. Each set consists of an uncropped pair
and three cropped pairs at time points ¢t — 2, ¢t — 1, and t.

Table I shows the prediction accuracy on the 2D or 3D
coordinates and orientation that make up the state, and on
the action for each task. We show the mean and standard
deviation across the 5 runs. Notice that in both problems, SA-
Net generates predictions of state and action with very high
accuracy, with those for the manipulation task being slightly
less accurate than those for the patrolling. This is generally
consistent across all folds yielding low standard deviations.
The action recognition compares favorably to that by the
two-stream CNN [18] previously discussed in Section II.

C. Ablation Study

We performed an ablation study on a smaller data set to
understand the sensitivity of SA-Net’s performance on its
key components. The ablation study removes a part of the
network and conducts experiments on the revised model.

2156

Task Method X Y Z 0 Action
Patrollin SA-Net 98.85+0.02 99.97+0.014 — 99.994+0.01 99.74+0.01
g Two-Stream CNN [18] — — — — 87.53£0.61
. . SA-Net 97.64£0.02 95.2240.01 96.16+0.49 98.174+0.04 99.13+0.02
Manipulation

Two-Stream CNN [18] —

84.05+3.39

TABLE I: Mean and standard deviation of SA-Net’s performance from a 5-fold cross validation for the patrolling and manipulation tasks.
We show the prediction accuracy of state and action for both tasks. This is compared with another deep NN based method that performs

action recognition only from spatial and optical flows [18]. Note that * — * denotes not applicable.
Ablation X Y 0 Action
SA-Net w/o Relative X and Y 81.38+1.50 91.44+146 91.24+1.26 83.63+1.86
SA-Net w/o data from ¢ — 1, ¢t —2 96.56+0.01 98.32+0.01 79.43+1.33 78.86+3.57
SA-Net w/o depth channel 87.23£1.50 95.12+1.49 83.56+1.52 81.12+1.00
SA-Net w/o object detect 68.74+2.26 69.95+1.26 21.65+2.39 33.89+0.96

TABLE II: Four ablation experiments in the patrolling task and the impact on the prediction accuracy of state and action.

Relative X and Y In this experiment on the patrolling
task, we eliminate that part of SA-Net which contributes
to establishing the 2D grid coordinate of the observed robot
relative to the observer’s location. This part relies more on
the depth data. Consequently, we may expect the network
to memorize the location by relying more on RGB data but
unable to detect changes in its own deployed position. Row
1 of Table II shows a significant drop in the prediction
accuracy of state and action with a more pronounced drop
in the accuracy of predicting the X-coordinate and action.
These two rely significantly more on the relative distances.
Temporal sequence data In this experiment, we eliminate
the part of SA-Net responsible for processing temporal data
from previous time steps t — 1 and ¢ — 2. This also eliminates
those two input channels and keeps input from time step
t only. We hypothesize this removal to significantly impact
the recognition of orientation € and action, both of which are
thought to rely on sequence data. On the other hand, a single
frame could be sufficient to identify the orientation in many
cases. Table II, row 2 presents prediction accuracies that are
significantly lower for # and action, while recognizing the 2D
coordinates is generally not affected. As such, the temporal
data is indeed important for SA-Net in general.
Multimodal data Next, we study if depth data is needed
for the predictions and how the network will behave when
its removed. Can we make the network learn the state and
action from RGB data only? Row 3 of Table II shows that the
predictions of X-coordinate, #, and action are significantly
degraded in the absence of the depth channel. The Y-
coordinate is least impacted as we may expect. As a patroller
approaches the observer, there are multiple states for which
the RGB frames are similar. In the absence of depth, the
network memorizes certain features and overfits on those.
Object detection Finally, we precluded the object recog-
nition performed by YOLO2, resulting in no cropped im-
ages as input. The drastic drop in prediction quality of all
coordinates, orientation, and action (row 4) gives evidence
that object detection is required. Coordinate recognition
suffers because object detection is needed for masking each

expert in the context of multiple experts. In recognizing the
orientation and action, object detection plays a more integral
role focusing SA-Net’s attention, which is demonstrated by
a larger degradation in their prediction accuracy.

D. Summative Evaluation on Physical Robots

We deployed the trained SA-Net with masking (Sec-
tion III-E) on a physical TurtleBot that observed two other
TurtleBots patrolling the hallway and on a TurtleBot that
is connected to a Kinect 360 overlooking a PhantomX arm
picking and placing small objects. SA-Net can be used
in ROS as a service and the corresponding component
architecture is shown in Fig. 5(a).

/SA_Service

———— ¢

/Client

Service:getSA

[I Topic Service Subscriber
(a)
Memory usage 742MB+ 3MB
Faster R-CNN — SA-Net 6s+ 0.4s
YOLO2 — SA-Net 1.1s% 0.3s

()
Fig. 5: (a) ROS nodes architecture for SA-Net on a robot. (b) SA-

Net resource utilizations on a TurtleBot2 standard ASUS notebook
with Intel Core i3, 4GB RAM. Note the run time benefit of YOLO2.

Though, it is generally challenging to report the prediction
accuracy in online physical experiments, we logged the
RGB-D stream and SA-Net’s predictions for each frame in
the stream. These predictions were later verified manually.
Table III reports the prediction accuracy on the observed
state-action pairs. We compared SA-Net’s performance on
the patrolling task with a traditional CMVision based im-
plementation that detects the centroid of the colored box on
each robot in the Lab color space and analyzes the depth
data. Notice that this method, which was utilized previously

2157

Task Method X

Y Z 0 Action

Patrolling SA-Net

97.23£0.29 98.12+0.49
Centroid method [4] 94.154+0.00 96.13+0.00

96.25+£0.67 96.16+0.68
93.16£0.00 78.2640.68

Manipulation SA-Net

87.56+0.02 89.25+£0.02 91.124+0.03 88.32+0.01 91.18+0.01

TABLE III: SA-Net’s accuracy in physical experiments for the two tasks under typical conditions. Action prediction is much improved

over the baseline method for the TurtleBots.

Test X Y 0 Action

SA-Net w/ Noise 92.651+0.87 96.65+0.72 95.23+0.40 95.12+0.76
Centroid method w/ Noise 34.204+6.62 44.43+1.42 23.23+1.31 42.45+1.88
SA-Net w/ Occlusion 45.15+0.87 54.60+0.76 64.12+0.99 46.36:1.00
Centroid method w/ Occlusion 18.23+2.13 17.3441.57 14.42+0.15 43.12+0.80

TABLE IV: Robustness testing of SA-Net and the centroid method [4] on the patrolling task with background noise and occlusion.

for this task [4], is particularly poor in recognizing the
patroller’s action and SA-Net improves on it drastically.
As such, SA-Net should lead to improved LfO. SA-Net’s
reduced accuracy in the manipulation task is due to the
increased complexity from a third coordinate and more
manipulator actions. Next, we evaluate SA-Net’s predictions
under various conditions:

Noise test In this experiment, we test if background noise
impacts the prediction accuracy of the network. The noise
is defined as objects that look like or have similar char-
acteristics as the target, and dimmed ambient light. Such
background objects, shown in Fig. 6(a), include a human
wearing a similar-colored shirt and boxes of same color.

-

Fig. 6: Robustness tests involving background noise via similarly
colored boxes on the floor, low ambient light, human sharing the
space, and observed robot is partially occluded.

Occlusion test In this experiment, the target is covered par-
tially to approximate 50% occlusion; we cover the TurtleBot
by a cardboard box or a white cloth as shown in Fig. 6(b).
These robots then patrol the hallways as before.

In Table IV, we show SA-Net’s prediction accuracy in
each context. For the noise test, the predictions are average
of 15 runs split into 5 with a human, 5 with boxes, and
5 with dimmed ambient light. For the occlusion test, again
an average of 15 runs is shown with the object partially
covered to approximate 50% occlusion. Notice that SA-Net’s
predictions degrade and rather dramatically under occlusion
of the target object. The latter drop is because of SA-Net’s
reliance on RGB data, which get curtailed under occlusion.
Nevertheless, it’s predictions remain significantly better in
both tests than the traditional centroid-based blob detection
method. In particular, the centroid-based method fails to

detect the observed robots under occlusion. Similarly colored
boxes do not excessively impact SA-Net demonstrating that
the object detection is not critically dependent on the marker.

How much memory is consumed by the ROS deployment
of SA-Net? Figure 5(b) reports the total amount of RAM
held by the ROS service for good performance on state-
action recognition. We also show the maximum time in
seconds taken by SA-Net for prediction when paired with
Faster R-CNN and paired with YOLO?2 in the patrolling task
having two targets. Notice that pairing with YOLO2 speeds
up the prediction by a factor greater than five.

V. CONCLUDING REMARKS

SA-Net brings the recent advances in deep supervised
learning to bear on a crucial step in LfO. It represents a
general architecture for recognizing state-action pairs from
RGB-D streams, which are then input to underlying methods
for LfO such as inverse reinforcement learning [3]. SA-
Net demonstrated recognition accuracies on two diverse LfO
tasks that are significantly better than previous conventional
techniques and a recent architecture that analyzes videos.
This is expected to benefit the subsequent LfO. While minor
changes in components may be beneficial, an ablation study
revealed that the major architectural parts of the NN are
indeed needed. A low resource utilization signature allows
SA-Net to be deployed on board robotic platforms. Though
SA-Net is shown to predict discretized state and action
pairs, it could predict continuous ones by changing the
classification network to a regression network.

SA-Net brings another benefit to LfO. Recent techniques,
such as maximum entropy deep inverse reinforcement learn-
ing [25], utilize a NN. SA-Net can be merged with the NN
for inverse reinforcement learning, potentially producing the
first end-to-end deep learning approach for LfO. As future
work, SA-Net’s performance could be improved by improv-
ing the LSTM [22] or learning under weak supervision [19].

ACKNOWLEDGEMENTS

This research was partially supported by NSF grant #IIS
1830421. We thank Kenneth Bogert for help with evaluation
of the CMVision based baseline method.

2158

[1]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application
of reinforcement learning to aerobatic helicopter flight. Advances in
Neural Information Processing Systems (NIPS), pages 1-8, 2007.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469-483, 2009.

S. Arora and P. Doshi. A survey of inverse reinforcement learning:
Challenges, methods and progress. CoRR, abs/1806.06877, 2019.

K. Bogert and P. Doshi. Multi-robot inverse reinforcement learning
under occlusion with interactions. In International Conference on
Autonomous Agents and Multi-Agent Systems, pages 173-180, 2014.
K. Bogert and P. Doshi. Toward estimating others’ transition models
under occlusion for multi-robot irl. In Twenty-Fourth International
Joint Conference on Artificial Intelligence (IJCAI), pages 1867-1873,
2015.

A. Byravan and D. Fox. Se3-nets: Learning rigid body motion using
deep neural networks. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 173—180. IEEE, 2017.

A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Bur-
gard. Multimodal deep learning for robust RGB-D object recognition.
In Intelligent Robots and Systems (IROS), pages 681-687. IEEE, 2015.
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In
IEEE Conference on Computer Vision and Pattern Recognition, pages
580-587, 2014.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770-778, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735-1780, 1997.

S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks
for human action recognition. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 35(1):221-231, Jan 2013.

A. Montes, A. Salvador, S. Pascual, and X. Giro-i Nieto. Temporal
activity detection in untrimmed videos with recurrent neural networks.
arXiv preprint arXiv:1608.08128, 2016.

T. Nishi, P. Doshi, and D. Prokhorov. Merging in congested freeway
traffic using multipolicy decision making and passive actor-critic
learning. IEEE Transactions on Intelligent Vehicles, 4(2):287-297,
2019.

E. Park, X. Han, T. L. Berg, and A. C. Berg. Combining multiple
sources of knowledge in deep cnns for action recognition. In 2016
IEEE Winter Conference on Applications of Computer Vision (WACV),
pages 1-8. IEEE, 2016.

N. S. Pollard and J. K. Hodgins. Generalizing demonstrated manipu-
lation tasks. Algorithmic Foundations of Robotics V, pages 523-539,
2004.

J. Redmon and A. Farhadi. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018.

S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-
time object detection with region proposal networks. In Advances in
Neural Information Processing Systems (NIPS), pages 91-99, 2015.
F. Rezazadegan, S. Shirazi, B. Upcrofit, and M. Milford. Action recog-
nition: From static datasets to moving robots. In IEEE International
Conference on Robotics and Automation (ICRA), pages 3185-3191,
2017.

A. Richard, H. Kuehne, and J. Gall. Weakly supervised action learning
with rnn based fine-to-coarse modeling. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 754—
763, 2017.

M. Trivedi and P. Doshi. Inverse learning of robot behavior for
collaborative planning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2018.

A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik. Action
recognition in video sequences using deep bi-directional Istm with cnn
features. IEEE Access, 6:1155-1166, 2017.

V. Veeriah, N. Zhuang, and G.-J. Qi. Differential recurrent neural net-
works for action recognition. In Proceedings of the IEEE international
conference on computer vision, pages 4041-4049, 2015.

P. Wang, W. Li, Z. Gao, Y. Zhang, C. Tang, and P. Ogunbona. Scene
flow to action map: A new representation for RGB-D based action
recognition with convolutional neural networks. In /JEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages 416425,
2017.

[24]

[25]

[26]

2159

X. Wang, L. Gao, J. Song, and H. Shen. Beyond frame-level cnn:
saliency-aware 3-d cnn with Istm for video action recognition. /IEEE
Signal Processing Letters, 24(4):510-514, 2016.

M. Wulfmeier, P. Ondruska, and 1. Posner. Maximum entropy deep
inverse reinforcement learning. arXiv preprint arXiv:1507.04888,
2015.

J. Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici. Beyond short snippets: Deep networks
for video classification. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4694-4702, 2015.

