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Abstract— With the continuous drive toward integrated circuits
scaling, efficient yield analysis is becoming more crucial yet more
challenging. In this paper, we propose a novel methodology for
wafer map defect pattern classification using deep selective learning.
Our proposed approach features an integrated reject option where
the model chooses to abstain from predicting a class label when
misclassification risk is high. Thus, providing a trade-off between
prediction coverage and misclassification risk. This selective learning
scheme allows for new defect class detection, concept shift detection,
and resource allocation. Besides, and to address the class imbal-
ance problem in the wafer map classification, we propose a data
augmentation framework built around a convolutional auto-encoder
model for synthetic sample generation. The efficacy of our proposed
approach is demonstrated on the WM-811k industrial dataset where
it achieves 94% accuracy under full coverage and 99% with selective
learning while successfully detecting new defect types.

I. INTRODUCTION

The continuous scaling of integrated circuit (IC) technologies
along with the increase in state-of-the-art design complexity
have exacerbated the challenges associated with designing robust
circuits [1]. With such scaling, catastrophic defects and process
variations stand out among the most prominent factors limiting
the product yield of IC designs [1].

A critical first step towards improving yield during the IC
design cycle is to identify the underlying factors that contribute
most to yield loss, and for that, wafer map analysis is a key.
Traditionally, wafer inspection was performed by experienced
engineers who can identify the failure cause based on the wafer
defect pattern. However, such process is tedious and an automated
alternative is desired [2, 3].

In literature, different approaches have been proposed to ad-
dress this task. In particular, machine learning techniques have
been proposed to tackle the job using both unsupervised and
supervised learning paradigms [2—8]. With unsupervised learning,
clusters of wafer maps are constructed, and experienced engineers
then label each of them with its defect pattern [3-5, 9]. however,
defect labeling for wafers is not straightforward with such ap-
proach and it typically requires human experience. On the other
hand, supervised learning techniques rely on features extracted
from the wafer maps to build a classification model that is capable
of classifying new wafer maps based on their defect type [2, 6, 7].
In [6, 7], features extracted based on spatial signature are used in a
K-nearest neighbor framework for defect classification. Similarly,
Radon-based features and a set of geometry features were used in
a support vector machine framework for defect type classification
in [2].

The aforementioned approaches rely on a set of features to
capture the spatial properties of wafers. However, these wafers
can be instinctively perceived as images with defect patterns
being spatial features of these images. Hence, the native spatial
characteristics of the defect patterns can be best preserved by
using the natural representation of wafers as images. Recently,

machine learning has achieved immense success in vision related
tasks spanning different applications. Motivated by this success,
we propose using convolutional neural networks to address the
wafer map defect classification task as an image classification
problem.

In this paper, we propose a novel framework for wafer map
defect pattern classification using deep selective learning. Beside
achieving superior accuracy compared to conventional approaches
by leveraging the intrinsic image representation of a wafer,
our proposed approach exhibits unique features that are tailored
to address two challenges accompanying the task. One major
challenge arises from the fact that some wafers may exhibit new
defect patterns that were not previously seen by the model during
training. In such a case, the model is expected to give a wrong
label which can mask a new type of defects. Moreover, some
wafer maps may exhibit more than one defect pattern which can
overwhelm the classification model. To handle these cases, we
propose using a convolutional neural network with an integrated
reject option [10, 11]. In other words, given a user set compromise
between risk and coverage during training, the model is trained
to optimize for classification and rejection simultaneously. With
this option, the model can choose to discard predictions with high
risk of misclassification; i.e, the model abstains from prediction
for some samples to maintain a low risk level. Clearly, the reject
option can further improve the accuracy of the model on the
selected samples. It can also be used to detect new defect classes
and changes in the data distribution. In addition, the wafers not
labeled by the model are expected to be different, i.e., these are
wafers which engineers are interested in examining. Hence, the
model can help allocate human resources where they are needed.

Secondly, defect classes have different frequencies of occur-
rence which typically result in an imbalanced training process
where some minority classes are dominated by other majority
ones. In this work, we propose using data augmentation to
generate synthetic samples from the under-represented classes.
In particular, we train a convolutional auto-encoder to generate
samples from the distribution of the target class and use synthetic
samples alongside the original ones in the training process [12].

With its unique features, the proposed approach can achieve
superior results when compared to state-of-the-art wafer map
defect classification approach when tested on the WM-811k
industrial wafer map dataset [13]. Our main contributions can
be summarized as follows:

o A novel approach for wafer map defect classification using
convolutional neural networks is proposed.

o The proposed approach is equipped with an integrated reject
option which can be leveraged to reduce the misclassification
risk for the model.

o The selective learning feature can be used for new defect
detection, data change detection, and resource allocation.



o A data augmentation framework based on convolutional
auto-encoder is proposed to generate synthetic samples for
under-represented defect classes.

o Experimental results demonstrate our proposed approach is
able to achieve superior accuracy compared to the conven-
tional approach with accuracy of 99% and 94% for the
scenarios with and without the reject option.

The rest of this paper is organized as follows. Section II
presents the problem formulation and the used dataset. Section III
provides a detailed explanation of the proposed approach. Sec-
tion IV demonstrates the effectiveness of our approach with com-
prehensive results and applications, and conclusions are drawn in
Section V.

II. PRELIMINARIES

Identifying root causes behind IC defects is instrumental in main-
taining a high yield. Towards this end, wafer defect classification
plays an important role in correlating defect patterns with defect
causes; and thus, helps address them in a timely manner to boost
the yield.

In this work, we consider the WM-811k industrial wafer map
dataset [13] which contains nine different wafer patterns. These
patterns are obtained by marking die locations on the wafer with
either pass or fail. Fig. 1 shows a sample wafer map from each
defect type: Center, Donut, Edge-Location, Edge-Ring, Random,
Location, Near-Full, Scratch and None. As shown in Fig. 1, the
wafer maps are represented using a single channel grey-scale
image of size 256 x 256 pixels with 3 pixel levels: 0, 127 and 255.
Locations with pixel level O (i.e., black pixels in Fig. 1) are those
not part of the wafer. Grey pixels with pixel level 127 represent
die locations with a pass label while white pixels represent those
with a fail label.

The objective is to train a model capable of classifying wafers
into their corresponding defect type. Among works that have
used the WM-811k industrial dataset, the state-of-the-art approach
relies on a set of features extracted from the wafer maps combined
with a support vector machine (SVM) classifier [2]. In such
an approach, the feature extraction step can jeopardize some
important information in the wafer map. Intuitively, the wafer
maps can be viewed as images and the defect patterns are spatial
features of these images. Hence, using the wafer maps in their
image representation can best preserve the defect information.
Thus, in this work, we propose a wafer map defect detection
framework using deep selective learning featuring a convolutional
neural network with an integrated reject option. In addition,
we propose using a data augmentation scheme built around a
convolutional auto-encoder to address the imbalance challenge in
the wafer classification task.

(i) None

(f) Location  (g) Near-Full (h) Scratch

Fig. 1: Sample wafer examples for different pattern types.

III. WAFER MAP DEFECT CLASSIFICATION

In their nature, defect patterns are spatial patterns that can be
visually detected on a wafer map image. Therefore, a suitable
approach to classify different spatial patterns is through casting
the problem as an image classification task and leveraging con-
volutional neural networks to handle it. In this work, we propose
using a convolutional neural network equipped with (i) a reject
option and (ii) a convolutional auto-encoder framework for data
augmentation. The details of these two features will be discussed
in sections III-A and III-B respectively.

For the core classification task, we develop a convolutional
neural network (CNN) with 3 convolutional layers and one fully-
connected layer (FC) as shown in Table I. All three convolutional
layers are associated with a 2 X 2 maximum pooling step. The
output layer is also a fully-connected layer with a number of
neurons equal to the number of target classes n.. To get the
prediction, a softmax operator is applied to the output layer and a
one-hot vector is generated such that the index of the class with
the highest softmax score is set to 1. The typical loss function
used for such problem is the cross-entropy function which can be
expressed, for a single sample, as [14]:

(f i)y =Yy log f®) (ay),
k=1

6]

where z; is a sample input image, y; is a one-hot vector of size
n. whose k—th element ygk) is equal to one if k is the true class
label of sample x;, and f(x) represents the CNN model whose
output is the one-hot encoded label prediction.

[ Layer Name [ Convl [ Conv2 [ Conv3 | FC [ Output |

# of Filters 64 32 32 256 Ne
Filter Size 5x5 3x3 3x3 - -
Pooling 2x2 2x2 2x2 - -

TABLE I: The details of the core CNN architecture.

A. Selective Learning
Machine learning model trust and risk analysis have been recently
under spotlight [15, 16]. The questions of when to trust a
particular machine learning prediction and how to quantify the
risk associated with acting upon it are still not fully answered. In
our work, we equip the CNN model with a reject option which
allows the model to abstain from making predictions for particular
samples when the risk of misprediction is high [10, 11]. This
option provides a compromise between risk and coverage, where
coverage is a measure that reflects the probability of the model
not abstaining from making predictions. In other words, if the
cost associated with a misprediction is high, the user may choose
to reduce the risk at the cost of reducing the coverage as well.

This option comes in handy when tackling the wafer map defect
classification problem since the model can abstain from making
predictions in two ambiguous scenarios. The first is when a new
defect pattern, not seen during training, appears on a wafer, while
the second is when more than one known pattern appear on the
wafer. The aim behind using the reject option is to push the
model to abstain from making predictions in these two scenarios
in addition to any other scenario where the prediction is believed
to be risky. Further details about the applicability of such model
are shown in Section IV-D.

A selective model is a pair (f,g), where f is the prediction
function, and ¢ is a selection function which servers as binary
qualifier for f [10, 17]:

(f.9)(@:) = {f(x»,

abstain,

if g(%) =

if g(z:) @

1
0



Input
Main Network Prediction
&
g 3 ?
V\’.: Convl | & | Conv2 |& | Conv3 [T ] FC E
& = ® | B .
® g o 32 @ 32532 Selection
— %
Fig. 2: The CNN network architecture showing both the

prediction and selection heads.

Hence, the selective model chooses to abstain from prediction
when g(x;) = 0 which represents a trade-off between risk and
coverage. In this context, coverage is defined as[10]:

Clg) = Elg(x)], 3)
which represents the probability mass of the unrejected region.

As for the misclassification risk, in the case of a model with f
alone, it can be expressed as:

however, the risk in the selective model (f,g) is given by [10]:
E[l(f(z:),yi)g(xi)]
R(f,g) = . (5)
(f.9) )
Given labeled dataset D = {(z;,v;)}Y,, the empirical estima-
tions of the expressions in (3) and (5) can be expressed as:

N
c(g|D) = %Zg(z)’ o
N
r(f.9ID) = N Lizt U(f (i), yi)g (i) @)

c(9)
Based on equation (7), one can clearly notice that risk can
be traded-off for coverage in this setup. To define an optimal
selective model, we elect to minimize the selective risk given
a constraint on the coverage. In the scope of the CNN model
proposed earlier, this requires updating the loss function to
include the selective risk, and the model architecture to predict
¢ in addition to f [10]. To do so, we first update the network
architecture to include two output heads. The first is the prediction
head implementing the main function f, while the other is a
selection head consisting of a single neuron with a sigmoid
activation to implement the function g. These two heads depart at
the end of the network architecture after the main blocks including
convolutional fully connected layers as shown in Fig. 2.

The new objective of the training process is to minimize the
selective loss while meeting the coverage constraints. This can be
expressed mathematically as new loss function [10, 18]:

Litg) =7(f,9D) + A¥(co — ¢(g/D))
where  W(z) = max(0, 2)%.
Here, cq is the target coverage, A is hyper-parameter reflecting
the importance of the coverage constraint, and W is a quadratic
penalty function.
The overall training objective is two minimize a weighted

combination of the selective loss in (8) and the empirical loss
of f obtained from (4) which is expressed as [10]:

L=aLlgg + (1 —a)y(f|D), 9)

where « is a hyper-parameter controlling the importance of loss
terms. The use of the empirical loss of f alongside the selective
loss is essential because, in its absence, the network will focus on
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Fig. 3: The auto-encoder network architecture showing both the
encoder, decoder and the latent space representation z.

a fraction ¢y of the dataset and overfit to a subset of the training
data. With this term added, the network is exposed to all training
instances throughout the training process [10].

B. Data Augmentation

In many classification tasks, class imbalance shows up as a
critical challenge that can hinder the performance of classifiers
[19, 20] which necessitates addressing it during data preparation.
In the wafer defect classification problem, different patterns have
different probabilities of occurrence which results in an imbalance
issue that should be addressed in the pre-processing phase.

In this work, we elect to use data augmentation to address
the imbalance problem [19, 21]. The key idea is to generate
synthetic samples for the under-represented classes to augment
the original dataset and reduce the effect of class imbalance.
The first step is to learn the underlying distribution of the
under-represented classes so that new examples can be sampled
from the learned distribution. This can be done using auto-
encoder networks trained to learn a latent space representation
of the samples in the target class through an encoding-decoding
scheme [12, 22, 23]. After training, the encoding block can
generate latent space representations of the original images which,
when passed through the decoding block, are expected to re-
generate the original images with high accuracy. However, if small
perturbation is added to the latent space representations before
the decoding stage, new synthetic samples, that are close to the
original ones, can be generated and used to augment the dataset.
Since the samples in the problem at hand are images, we propose
using a convolutional auto-encoder as the core engine in our data
augmentation framework.

As a first step we train a convolutional auto-encoder for an
under-represented class ¢l with the objective of reconstructing
the samples corresponding to ¢l in the training dataset. Fig. 3
shows the architecture of the convolutional auto-encoder consist-
ing of the encoder, decoder, and the latent space representation
z forming the network bottleneck. For the encoder network,
the number of filters in each convolutional stage is shown in
Fig. 3 with all filters of size 5 x 5 and a 2 X 2 maxpooling
operation accompanying each layer. The decoder network is a
mirrored version of the encoder with the same architecture having
deconvolution and upsampling replacing the convolution and
maxpooling operations in the encoder respectively. More details
about training the network are omitted due to page limit. Reader
is referred to [12] for more details.

In addition to using the auto-encoder for generating synthetic
images, image rotation is also employed. Given a target minimum
number of samples required for each class 7' and a set of ng
original samples P belonging to class cl, the data augmentation
process is executed as summarized in algorithm 1.

As a first step after training the convolutional auto-encoder,
the number of required rotations per sample necessary to meet



the target T' is computed (line 1). Next, for each image in P,
the latent space representation z (line 3) is obtained. Then, for
each rotation angle, z is perturbed by adding Gaussian noise with
zero mean and small standard deviation o (line 5) before passing
it to the decoder to generate a new image (line 6). The resultant
image is expected to have a continuous spectrum of pixels and not
only the desired three levels 0, 127 and 255; hence, a quantization
step is applied to map pixels to these three levels (line 7). The
generated image is then rotated (line 8) and salt and pepper (s&p)
noise is added to the image (line 9) before adding it to the set
of synthetic images (2. Here, s&p noise is added by randomly
selecting few die locations and flipping their label; i.e, switch a
pass to fail and vice versa.

Algorithm 1 Data augmentation for an underrepresented class

Require: A pool of data samples P, T, ng;
1: Train convolutional auto-encoder for cl; Q < 0; n, = [T/neg ] — 1;
2: for img in P do

3: Get z, the latent space representation of ¢mg using the encoder;
4: for¢in {0,...,n, — 1} do

5: 2+ z+N(0,02);

6: Pass 2’ through decoder to get image img’;
7: Quantize img’ to desired 3 level mapping;
8: Rotate 9mg’ by angle ¢ X 360/n,;

9: Add s&p noise to the image;

10: Q+ QUimg’;

11: end for

12: end for

13: return Q.

After obtaining the set of synthetic samples () using algo-
rithm 1, it can be merged with the original dataset during training.
If a direct merge of €2 and P is done, original and synthetic
samples will have equal weight during the training process. Here,
we introduce a weight hyper-parameter w < 1 to multiply the loss
terms corresponding to € in the objective function. Intuitively, this
translates to penalizing the objective function 1/w more when an
original sample is misclassified compared to when a synthetic
sample is.

IV. EXPERIMENTAL RESULTS

A. Dataset
In our experiments, we use a labeled subset of WM-811k indus-
trial wafer dataset [13] containing 54355 wafer maps from the
different wafer classes as listed in the Dataset section of Table II
where all the wafer maps are scaled to 256 x 256 pixel images.

It is important to note that the test-train split used in our work
differs from that used in [2] for few reasons. First, the test set
used in [2] is dominated by the Nomne class due to the inherent
data imbalance. While this is natural in a usage scenario, the
overall accuracy is not a representative metric under this testing
setup. A model that is capable of learning this majority class can
achieve very high overall accuracy, while still performing poorly
on the defect classes which are more important for yield analysis.

In fact, when the None class is excluded from the analysis, the
method proposed in [2] achieves 44.35% accuracy on the test set.

Another observation is that the defect data in the “Train” and
“Test” sets used in [2] are significantly different. One indication of
this is the low accuracy [2] achieves when None class is excluded.
To further validate this in our experiments, the “Train” data was
split into 0.7:0.1:0.2 for training, validation and test. In other
words, 20% of the “Train” data is kept for testing while 80% is
used for training/validation. Results showed that the model, under
full coverage, can achieve 97%, 94% and 94% accuracy on the
three splits respectively; however, it performs poorly on the “Test”
set. While generalization to the unseen samples from the “Train”
set shows that no over-fitting is taking place, poor performance on
the “Test” set suggests data discrepancy. Another indication for
this is that, under a selective labeling scenario with 50% coverage
as the minimum target, the results on the 3 splits in the “Train”
data achieved 99% accuracy with actual coverage between 45-
57%. However, coverage on the “Test” data was about 5% while
still achieving 99% accuracy on the selected samples.

On one hand, these experiments imply that there exists major
differences in the distributions of the original “Train” and “Test”
data. On the other hand, it illustrates the capability of our selective
learning approach to detect the change in the distribution of data
when the actual coverage significantly drops below the target one.

Therefore, and to properly demonstrate the usability of selective
learning, we elect to use a coherent dataset for the results shown in
the remaining of this section through using the original “Train”
set only and splitting it into 0.8:0.2 train-test split denoted by
“Training” and “Testing” in Table II.

B. Data Augmentation
By examining the data distribution in Table II, one can notice
that class None dominates all other defect classes. This reflects
the class imbalance issue in the dataset. Therefore, it is important
to address this issue using data augmentation in a pre-processing
step. In practice, the accuracy on defect classes is more important
for yield analysis compared to that of the None class. Hence,
for each of the defect classes, data augmentation is performed
according to the procedure in algorithm 1 with the target number
of samples T' set to 8000. Column Train,q in Table II shows the
number of samples for each class after the augmentation. Here,
data augmentation is performed on the training data only. This
is mainly because we are interested in improving the training
process while maintaining valid testing on original data only
without including synthetic data in the test set. Moreover, when
augmenting each class, only training samples from the class are
used in algorithm 1, in other words, testing samples are left out
in both data augmentation and model training stages.

Fig. 4 illustrates a sample result from the data augmentation
process. The first row in Fig. 4 represents sample original images

Dataset c0=0.2 c0=0.5 co=0.75
Training  Testing Traingug Prec  Rec f1 Cov Pre Rec f1 Cov Pre Rec f1 Cov
Center 2767 695 8308 0 0 0 2 099 096 097 268 099 097 098 634
Donut 329 80 8180 0.9 1 0.95 9 08 094 0.86 17 093 077 0.84 56
Edge-Loc 1958 459 9668 0 0 0 6 0.57 024 0.33 17 0.75 049 0.59 132
Edge-Ring 6802 1752 10686 1 093 0.96 27 1 1 1 1370 1 098 0.99 1682
Location 1311 309 11664 093 084 0.88 61 0.57 019 0.29 21 046 059 0.52 157
Near-Full 49 5 8164 0 0 0 1 1 06 0.5 5 1 05  0.67 4
Random 498 111 8282 - - - 0 0 0 0 1 0.6 0.19 0.29 16
Scratch 413 87 8400 0 0 0 5 0 0 0 4 0.09 0.15 0.11 27
None 29357 7373 29357 0.99 1 1 2853 0.99 1 0.99 3947 098 099 098 6981
Overall 43484 10871 102697 Accuracy = 99.1% (2279'33,0) Accuracy = 99.0% (5576;%) Accuracy = 96.6% (8996'??%)
TABLE II: Details of the dataset and the results of selective learning under different coverage setup.
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Fig. 4:

from the defect classes while the second row shows corresponding
sample synthetic images generated using algorithm 1.

C. Classification Performance

With the imbalance issue handled using data augmentation, the
convolutional neural network presented in Fig. 2 is trained for 100
epochs with Adam optimizer. Both hyper-parameters A in (8) and
a in (9) are set to 0.5 throughout our experiments. On the other
hand, the parameter cg in (8), representing the minimum required
coverage, is changed throughout the experiments to demonstrate
the risk versus coverage compromise.

Our proposed approach is compared against the work in [2]
(denoted by SVM) to address classifying wafer maps in the
WM-811k dataset . In [2], Radon-based features and geometry
features are used in a support vector machine classification frame-
work. In addition, domain experts intervention is used to relabel
misclassified support vectors to further improve the accuracy.
In this work, in the absence of such expertise and to ensure
fair comparison with our proposed approach, both methods are
implemented without human intervention.

To validate our model, we first compare the performance of
our deep learning model under full coverage to that of SVM [2].
Table III shows the resulting confusion matrices corresponding
to the testing data. Overall, our approach achieves 94% accuracy
compared to 91% for SVM, while also performing better on the
actual defect classes (excluding None) where our model achieves
86% correct detection rate for defect classes compared to 72% for
[2]. While this shows the competitiveness of our deep learning
model, our key feature is actually the selective learning framework
governing the trade-off between risk and coverage.

To demonstrate this trade-off, which is the key idea selective
learning is based upon, we vary the coverage requirement value,
¢p in (9) to take the values [0.2,0.5,0.75, 1]. For the case when
co = 1, we train the model with cross-entropy loss function only
and report accuracy for the entire test set, hence, the test coverage
is 1 (results for this setup are shown in Table III). As one would
expect, demanding higher coverage is usually accompanied with
some sacrifice in accuracy. This trend is demonstrated in Fig.
5 showing the evaluation of the accuracy and coverage metrics
for the different values of ¢y, where a clear trade-off is shown
between coverage and risk (or accuracy) in which higher coverage
results in higher misclassification risk.

For different ¢y values, Table II summarizes the results where
four metrics are reported for each class: precision (Pre), recall
(Rec), fi—score (f1), and actual coverage (Cov). Due to space
limit, we elect to show the these metrics instead of the confusion
matrices since they reflect the model performance per class. As
for the actual coverage (Cov), it represents the number of samples
from each class the model chooses to label. Also shown in the
last row of the table are overall accuracy and total coverage
values. Three observations can be made based on these results.

Location Near-Full

Random

Sample data augmentation results where original (synthetic) samples are shown in the first (second) row respectively.
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Fig. 5: The selective accuracy and test coverage plotted as a
function of ¢y shows the trade-off between risk and coverage.

First, the model is indeed choosing the samples with low risk to
label which is clear from the overall accuracy values. Besides,
examining per group performance validates this point since the
model has higher coverage for classes with high f; scores as in
the case of classes Center, Edge-Ring and None for cy = 0.5.
Another observation is that, for all cases, the actual coverage on
the test set is higher than the minimum required coverage cg.
Finally, for the case of ¢y = 0.75, the model is able to achieve
96.6% accuracy with around 90% coverage which is 2.6% higher
than the 94% accuracy achieved under full coverage, and the
91% achieved by [2]. This shows that, even under high coverage
demand, the selective learning scheme is still able to minimize
misclassification risk.

D. Model Usability

The proposed selective learning scheme for wafer map defect
detection has many advantages on the application side. We list
here three of these applications: (i) detection of new defect
class(es), (ii) resource allocation for human in the loop setup,
and (iii) detection of changes in the data distribution.

One major advantage of the selective learning scheme is that it
allows detecting a new defect class when it shows up. Intuitively,
if a new defect occurs, the model should abstain from labeling
the new defect samples because they are associated with high
risk. To validate this utility, we look into the class recall for
an experiment with 50% coverage shown in Table IV, where
class Near-Full was excluded from the training process and all
its samples were used during testing. This is done to test whether
selective learning will label the samples from the unseen class.
As shown in the table (highlighted with light blue), the original
recall (neglecting the reject option) is 0% since the model has to
give one of the 8§ available labels to the new samples. However,
with selective learning, the model abstained from predicting a
label for all samples belonging to the new class.

Another application is for resource allocation. Such a model is
developed to reduce the cost associated with having experienced
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Center 665 2 1 0 11 0 0 3 13 Center 552 2 9 1 1 1 0 0 129

Donut 0 58 1 0 15 0 0 3 3 Donut 12 29 20 2 1 12 0 0 4
Edge-Loc 1 0 321 5 51 0 0 16 65 Edge-Loc 25 0 231 52 4 15 0 0 132
Edge-Ring 0 0 44 1683 13 0 0 7 5 Edge-Ring 2 0 2 1678 0 0 0 0 70
Location 4 2 13 0 199 0 1 18 72 Location 65 2 78 1 5 0 0 0 158

Near-Full | 0 0 1 0 0 2 2 0 0 Near-Full | 1 0 0 0 0 4 0 0 0

Random 2 2 16 1 14 0 63 2 11 Random 0 1 3 26 0 0 0 0 81

Scratch 1 0 4 0 38 0 0 25 19 Scratch 32 0 4 0 4 14 0 33 0
None 1 0 8 0 113 0 0 48 7203 None 3 0 3 10 0 0 0 0 1337

TABLE III:  The confusion matrices for our proposed approach (under full coverage), achieving 94% accuracy, and SVM [2]

achieving 91% accuracy are shown. Our approach demonstrates better accuracy detecting actual defect classes compared to [2].

[ | Original Recall [ Selective Recall | Coverage |
Center 0.96 0.93 129 (18.5%)
Donut 0.89 1.00 20 (25.0%)
Edge-Loc 0.79 0.00 8 (1.7%)
Edge-Ring 0.98 0.99 1271 (72.5%)
Location 0.72 0.75 28 (9.1%)
Random 0.80 - 0 (0%)

Scratch 0.22 0.00 7 (8.05%)

None 0.99 0.67 3573 (48.4%)
Near-Full 0.00 - 0 (0%)

TABLE IV: Results of an experiment where Near-Full class

was not included in training.

engineers manually label the wafer. However, the models are
still being used under the supervision of those engineers. While
the model is in use, there is typically some budget for manual
examination by the engineers; however, determining the best
small subset of wafers to thoroughly examine is not simple. With
selective learning, coverage can be set such that the model labels
the majority of samples while passing the ones with high risk
for examination. This in fact provides a perfect allocation of
resources as the model is predicting with high confidence and the
high risk samples, which are typically the most interesting for the
engineers, are automatically detected and passed for examination.

The third application of this scheme is detecting concept shifts
or major changes in the distribution of the data. Under such sce-
nario the actual coverage of the model would drop significantly;
hence, raising a flag that the model needs to be retrained on a new
dataset. This was encountered in our experiments as mentioned
in Section IV-A.

V. CONCLUSION

In this work, we present a novel wafer map defect pattern
classification framework using deep selective learning, featuring
an integrated reject option which can further improve the model
accuracy by abstaining from providing predictions for samples
with high misclassification risk. This option can significantly
increase the trust in the classification model and facilitate its
wide adoption. Moreover, the proposed approach features a data-
augmentation step using a convolutional auto-encoder to address
the class imbalance. Experimental results demonstrate our ap-
proach can achieve superior accuracy when compared to con-
ventional approach with 99% accuracy under selective learning
framework and 94% under full coverage setting.
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