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Abstract

Sufficient dimension reduction (SDR) is a very useful concept for exploratory analysis and
data visualization in regression, especially when the number of covariates is large. Many SDR
methods have been proposed for regression with a continuous response, where the central sub-
space (CS) is the target of estimation. Various conditions, such as the linearity condition and the
constant covariance condition, are imposed so that these methods can estimate at least a portion of
the CS. In this paper we study SDR for regression and discriminant analysis with categorical re-
sponse. Motivated by the exploratory analysis and data visualization aspects of SDR, we propose
a new geometric framework to reformulate the SDR problem in terms of manifold optimization
and introduce a new concept called Maximum Separation Subspace (MASES). The MASES nat-
urally preserves the “sufficiency” in SDR without imposing additional conditions on the predictor
distribution, and directly inspires a semi-parametric estimator. Numerical studies show MASES
exhibits superior performance as compared with competing SDR methods in specific settings.

Keywords: Categorical data analysis; Hellinger distance; semi-parametric; single index models;
sliced inverse regression; sufficient dimension reduction.

1. Introduction

1.1 Dimension reduction subspace

Over the past several decades, numerous sufficient dimension reduction (SDR) methods have been
developed to analyze data in regression problems. Consider the univariate response Y € R and the
multivariate predictor X € RP. The goal of SDR is to find a reduction R(X) € RY withg < p
such that Y is independent of X given R(X). In this article, we focus on the linear SDR, so that
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the reduction R(X) = BT X for some matrix B € RP*4 such that,
Y 1L X |BTX. (1.1)

The reduction from X to BT X preserves all the information in the regression of Y on X because
Y | X has the same distribution as Y | BTX. Let span(B) C RP denote the subspace spanned by
columns of B. Then span(B) is called a dimension reduction subspace (DRS).

Definition 1 (Cook, 1998) If the intersection of all DRSs is itself a DRS, then it is called a central
subspace (CS) and denoted by Syp(.

By definition, the CS is unique when it exists, and is then the smallest DRS. Many SDR methods
have been developed to estimate the CS. For example, sliced inverse regression (SIR; Li, 1991)
and sliced averaged variance estimation (SAVE; Cook and Weisberg, 1991) were two pioneering
methods. Numerous ideas for estimating the CS have been since proposed in the literature such as
Fung et al. (2002); Zhou and He (2008); Iaci et al. (2010); Zhu and Fang (1996); Wu (2008); Zhu
and Zeng (2006); Yao et al. (2015, 2016); Hilafu and Yin (2017); Li (2007); Chen et al. (2010); Lin
etal. (2017); Reich et al. (2011). For more background and reviews on SDR, see Cook (2007), Ma
and Zhu (2013), and Li (2018).

Many SDR methods were introduced in the context of regression with continuous response
Y. Most of these methods are still applicable to binary or categorical response, but may become
ineffective. For example, SIR is unable to estimate the CS with dimension bigger than one when Y’
is binary. In contrast, our proposal of seeking maximum separation in the conditional distributions
X | 'Y is a more direct and effective approach, especially when Y is binary.

1.2 Discriminant subspace

Studying the relationship between a multivariate predictor and a binary or categorical response are
of substantial interests in statistics, especially in discriminant analysis and categorical data analysis.
In this paper, we consider the SDR of a continuous multivariate predictor X € RP? in the presence
of a categorical response Y € {1,...,C}, where C' > 2 is the number of classes.

Analogous to the definition of the CS, Cook and Yin (2001) proposed the notion of central
discriminant subspace (CDS) for dimension reduction in discriminant analysis. The idea is to focus
on the Bayes rule of classification, which is ¢(X) = argmax,_; ¢ Pr(Y = y | X), instead
of focusing on the conditional distribution of ¥ | X in the definition of the CS. The subspace
span(B) C RP is called a discriminant subspace if $(X) = ¢(BTX).

Definition 2 (Cook and Yin, 2001) If the intersection of all discriminant subspace is itself a dis-
criminant subspace, then it is called a central discriminant subspace (CDS) and denoted by Spy|x)-

Similar to the CS, the CDS may not exist. But when the CDS exists, it is the smallest discriminant
subspace by construction. Connections between the CS and the CDS were investigated in Cook
and Yin (2001). In particular, the CDS is always contained in the CS, provided the existence.
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It is noted in Cook and Yin (2001) that the CDS Spy|x) may not be easy to estimate directly
because it depends on the choice of classifier or assumptions on the Bayes rule. Therefore, unlike
in the regression of continuous Y, much fewer methods are developed for estimating CDS or
CS in classification and categorical data analysis: Cook and Lee (1999) studied the difference
of covariances for dimension reduction in binary response regression; Wang and Wang (2010)
proposed an alternating algorithm for estimating the CDS that iteratively updates the margin based
classification function gﬁ(ﬁTX) and the basis ]§; Shin et al. (2014, 2017) and Yao et al. (2016)
developed new methods for estimating the CS in binary classifications.

1.3 Our contributions and other related works

In this paper, we propose a new concept called the Maximum Separation Subspace (MASES) for
regression and discriminant analysis with binary or categorical response. The notion of MASES has
many advantages over the CS and CDS. First of all, the existence of MASES is always guaranteed.
This provides a solid theoretical ground for studies of SDR with binary and categorical response.
In particular, we show in Theorem 1 that our definition of the “separation” under squared Hellinger
distance is equivalent to the usual “sufficiency” in SDR. Secondly, the definition of MASES is
linked naturally to a semi-parametric estimation procedure, which results in a consistent MASES
estimator for the subspace. In contrast, the definitions of the CS and the CDS offer little insight on
how to construct an estimator. Thirdly, because the MASES estimator directly seeks for the max-
imum separation among different classes or categories, it often provides a good visualization and
graphical summary as illustrated in the real data analysis (Section 6). Finally and more practically,
the MASES shares the same nice properties as the CS and CDS. When the CS exists, the MASES
will be the same as the CS and the MASES estimator developed in this paper will be a natural
estimator for the CS in binary or categorical response case. When the CDS exists, the MASES
is guaranteed to contain the CDS, and hence the Bayes’ rule will be the same based on either the
original predictor or the reduced predictor from MASES.

The idea of seeking maximum separation has a long history in statistics. It can be traced back
to the Fisher’s original discriminant analysis (Fisher, 1936), and has been widely used in discrimi-
nant analysis, regression graphics and sufficient dimension reduction (Zhu and Hastie, 2003; Cook,
2000; Pardoe et al., 2007; Cook and Forzani, 2009; Li et al., 2011). Unlike Fisher’s discriminant
analysis, which measures the separation by Euclidean distance and often is interpreted under nor-
mality assumptions, the notion of MASES is more general and is free of model and distributional
assumptions. As we discuss in Section 5.3, the MASES estimator can also be also viewed as a
generalization of semi-parametric single index models (Ichimura, 1993; Klein and Spady, 1993)
and multiple index models (Xia, 2008). Finally, our definition of maximum separation with respect
to a certain distance is conceptually very different from distance-based SDR methods (Sheng and
Yin, 2016; Lee and Shao, 2016), where the distances are measured between the response variable
Y and a linear combination of predictors BT X. In contrast, our separation is the statistical distance
between the conditional probability distributions: X | (Y = 1) versus X | (Y = 2).
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The rest of the paper is organized as follows. In Section 2, we introduce the definition and some
basic properties of MASES. In Section 3, we further reveal some important connections between
MASES and sufficient dimension reduction in general. In Section 4, we develop the estimation
procedure, discuss the selection of the MASES dimension, and establish the consistency of the
MASES estimator. In Sections 5 and 6, we present extensive simulation results and a real data
illustration, followed by a short discussion in Section 7. Finally, all technical proofs are relegated
to the Appendix.

2. Maximum Separation Subspace (MASES)

2.1 General definition

The following notation and definitions will be used in our exposition. Weuse P, = A(ATA)~1AT
to denote the projection onto span(A) and let Qs = I — P be the projection onto the orthog-
onal subspace of span(A). The Grassmman manifold, or Grassmannian, consisting of the set of
all u dimensional subspaces of R", v < r, is denoted as Gy . Unless otherwise specified, we use
fi(X), k =1,...,C, to denote the conditional density function of X | (Y = k). Similarly, for
any B € RP*4, the conditional density function of BTX | (Y = k) is denoted by f(BTX).
Let 6(f1, f2) be a distance of the two (conditional) probability density functions such that (1)
o(f1, f2) = 6(f2, f1): (2) 6(f1, f2) > 0 for all density functions f; and f» with equality if and only
if fi = fo almost everywhere; and (3) 4(f1, f2) < 0(f1, f3) + 0(f3, f2). Examples of §(f1, f2)
includes the squared Hellinger distance, the Bhattacharyya distance, the total variation distance,
the Kullback-Leibler distance, the Kolmogorov-Smirnov distance, among others.

For binary response, where C' = 2, we define D(X) = §(f1(X), f2(X)) and D(BTX) =
J(fl(BTX), fg(BTX)) for any matrix B € RP*4. For the multi-class problems, where C' > 2,
we generalize the definition of D(X)

7]
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where w;; > 0, Z Zk—3+1 wjr = 1, are the weights for all the C'(C — 1)/2 pairs of dis-
tances. The above deﬁmtlon of D(X) reduces to D(X) = (fi(X), f2(X)) for C = 2. We
introduce the positive weights wj to allow more flexibility of the methods, although the choices of
weights have little effect on our theoretical developments. One simple choice is the equal weights,
wjr = 2/{C(C —1)},1 < j < k < C. Then D(X) is the simple average of all the pairwise

distances. Another intuitive choice is the proportional weights, w;r = =z=r Pyt Pk ,
Z::l Zm>;(m+pm)

pj = Pr(Y = j). Then this weight w;;, is proportional to the probability that an observation falls
into either class j or class k. If the classes are highly unbalanced (i.e. some classes have much fewer
observations than others), then the proportional weights will be more robust than equal weights.
We will be using this proportional weights unless otherwise specified.

We next consider some properties of the distance measure D(-) defined by (2.1).

where
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Proposition 1 For any matrices A € RP*" and B € RP*9, where 0 < r < q < p, if any of the
following properties are satisfied for C = 2, then they are also true for C > 2:

1. (Boundedness.) 0 < D(ATX) < 1.

2. (Indistinguishability.) D(ATX) = 0 if and only if all pairs of probability density functions
fi(ATX) and fi.(ATX) are identical almost everywhere for ATX € RY.

3. (Perfect separation.) D(ATX) = 1 if and only if f;(ATX) and fi.(ATX) have non-
overlapping support on R? for any j # k.

4. (Invariance.) If span(A) = span(B) then D(ATX) = D(BTX).
5. (Monotonicity.) If span(A) C span(B), then D(ATX) < D(BTX).

The first three statements in Proposition 1 gives some natural interpretation of D(ATX). First,
D(ATX) is bounded between 0 and 1, which is similar to many quantities that measures depen-
dence or goodness-of-fit between two statistical objects, such as correlations, R-squares and the
(conditional) distance correlation (Székely et al., 2007; Székely and Rizzo, 2009; Wang et al.,
2015). The boundedness also guarantees the existence of the maximizer of D(AT X), which is
needed for our definition of the MASES. Moreover, D( AT X) only achieves the boundary values 0
or 1 when all the classes are perfectly separated or identical, respectively. This makes the numeri-
cal value of D(ATX) a naturally inferential object, which is easy to interpret and has the potential
to be a model-free and flexible test statistics for indistinguishable and perfectly separable linear
combinations of X.

The last two statements in Proposition 1 are crucial for developing SDR methods. In SDR, only
the subspace is identifiable while the basis matrix is not. The invariance implies that the maximum
of D(BTX) over the set of all matrices B € RP*? is the same as the maximum of D(ATX) over
the set of all semi-orthogonal matrices A € RP*9, ATA = I,,. This guarantees MASES based
on D is naturally coordinate-independent. Finally, the monotonicity implies that there exists a
smallest structural dimension that can preserve all the information about discriminant analysis and
is therefore sufficient. We assume D satisfies all the basic properties in Proposition 1 henceforth.
Let Dy = 0 and D; = maxpegrexa D(BTX), ¢ =1,...,p.

Corollary 1 There always exists an integer d > 0 such that either 0 = Dy = Dy = - -+ = Dy, or
0<Dy<--<Dg-1<Dg=---=Dp <1
The key structural dimension d is clearly unique. If d = 0, then 0 = Dy = --- = D,, and there

is no discrimination between any two classes (cf. indistinguishability in Proposition 1). If d = p,
then Dp_1 < Dy and any (linear) dimension reduction will not be sufficient. Therefore, in our
development of MASES estimator, we assume 0 < d < p without loss of generality.

Definition 3 Let 3 = arg maxgcgoxa D(BTX). The subspace span(f3) is called the maximum
separation subspace (MASES) under the distance D and is denoted by Dy |x, where D is an arbi-
trary distance that satisfies the properties in Proposition 1.
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It is possible to have multiple MASES. If so, then they all achieve the same level of separation,
and are considered equivalent. We consider our MASES for categorical response as the counterpart
of the so-called minimal dimension-reduction subspace in regression graphics (Cook, 1998). In
Section 2.2, we further study conditions that guarantee the uniqueness of the MASES.

We next consider scale-location transformations to establish the invariance property of MASES.

Proposition 2 The MASES Dy x C RP always exists. For any non-stochastic full rank matrix
A € RP*P gnd vector o« € RP, the MASES of Z = AX — avon'Y satisfies AT'DY|Z = Dyx-

If we transform X to the standardized scale Z = E;(lﬂ (X — E(X)), where Xx is the covariance

matrix of X, then Dy |x = E;(U 2Dy|z can be estimated from the standardized variables.

2.2 MASES under the squared Hellinger distance

In Definition 3, the MASES Dy x requires D to satisfy the properties in Proposition 1. We con-
firm that many statistical distances do satisfy these properties. Some examples of commonly used
statistical distances are examined as follows.

Both the squared Hellinger distance dx ( f1, f2) and the total variation distance 1y (f1, f2) are
symmetric and bounded between 0 and 1. The Bhattacharyya distance is connected to the squared
Hellinger distance: dp(fi, fa) = —log [ /fi fadx = —log{1 — dy(f1, f2)} € [0,00), but is not
bounded between 0 and 1. The symmetric Kullback-Leibler (KL) distance (Kullback and Leibler,
1951), 6k 1.(f1, f2) = [ frlog(f1/ fo)dx+ [ folog(f2/f1)dx € [0, 00). is also unbounded. There-
fore, similar to the transformation between the Hellinger distance and the Bhattacharyya distance,
we need to transform the KL distance to be used in the construction of MASES. Specifically,

Du(X) = Su(nf) = [(VAR - VARG ix=1- [ VALK @2
Dr(X) = drvififo) =5 [ 1AiGx) - fa(oldx,

Dkr(X) = l—exp{5KL(f1,f2)}=1—eXP{—/fllog(fl/f2}dx—/leog(fQ/fﬂdX}-

Proposition 3 The properties in Proposition 1 are satisfied by Dy (X), Drv(X) and Dk 1,(X).

In this paper, we focus on the squared Hellinger distance, because it is a natural choice for
the estimation purpose (cf. Section 4.1). To emphasize this particular choice of distance, we write
HQ(f],fQ) = 0u(f1, f2), H(X) = Dy(X) and let Hyx C R” be the MASES under the squared
Hellinger distance (Definition 3).

The next Theorem shows that the choice of #(BTX) is indeed a natural measure for the con-
ditional independence Y I X | BT X. Specifically, H (BT X) = #H(X) reproduces the definition
for DRS (1.1) in regression and discriminant analysis with categorical response.
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Theorem 1 For any matrix B € RP*9, ¢ < p, we have the following equivalence,
HBTX)=H(X)—= Y L X|BTX. (2.3)
In other words, span(B) is a dimension reduction subspace if and only if H(BTX) = H(X).

According to Corollary 1 and Definition 3, the MASES Hy x = span(/3) is the DRS with the

smallest dimension d, such that H(87 X) = H(X) for some basis matrix 8 € RP*?, Theorem 1
implies that Hy |x is always a DRS: Y 1L X | BTX. Moreover, the pursuit of MASES even

with an over-specified dimension d > d still produces a dimension reduction without any loss of
information.

The MASES ’Hy|x is related to the central subspace (CS; Definition 1) and the central discrim-
inant subspace (CDS; Definition 2) as follows.

Theorem 2 [f the CS exists, then the MASES is the CS, Hy|x = Sy|x, and is therefore unique
and is the smallest DRS. Moreover; if the CDS exists (while the CS may not exist), then the MASES
may not be unique but always contains the CDS, Spyx) € Hy|x-

The existence of the CS is guaranteed when X has a convex support (Cook, 1998, Proposition
6.4). In discriminant analysis, especially when the conditional density functions do not have the
same support for all classes, it is possible that the CDS exists but the CS does not. When this
happens, the MASES may be not unique, but, because of Theorem 2, any of the MASES and the
intersection of all MASES will still contain the CDS.

2.3 Two illustrative examples

We construct two examples to illustrate the possible scenarios where (i) the CS and the CDS do not
exist, and, (ii) the CDS is a proper subset of the MASES. For demonstration and visualization, we
consider the following two simulated data sets with a binary response Y = 1 or 2 and a bivariate
predictor X = (X1, X5)7, and plot the data in Figure 1.

In Example 1, we have X; ~ Unif(—1,1) and X5 = sign(X1)Z, where Z ~ Unif(0,1) is
independent of X;. ThenY = 1if X; > Oand Y = 2 otherwise. It is apparent from Figure 1
that perfect separation of the two classes is achieved through the sign of X, which is the same
as the sign of X5. Then the CS (or the CDS) does not exist, because both span((1,0)T) and
span((0,1)T) are DRS (and discriminant subspaces) but their intersection is no longer a DRS (or
a discriminant subspace). It is straightforward to verify that the MASES still exists. It is any one-
dimensional subspace of R? and is not unique. This is due to perfect separation of the two classes:
any one-dimensional BT X = b; X + by X5, by, by > 0,b1by # 0, keeps the perfect separation.
The non-uniqueness of MASES is not an issue in practice, because the dimension of MASES is
always well-defined. Therefore, all these MASES become equivalent in terms of separating classes
and our estimation procedure is guarantee to converge to one of the MASES by Theorem 4.

In Example 2, X; and X5 are independent standard normal random variable, and Y is a
Bernoulli random variable with Pr(Y = 1|X; > 0) = 1 and Pr(Y = 1|X; < 0) = 0.6. This
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Figure 1: Simulated data from the two examples. Open circles and solid dots indicate two classes.

is similar to an illustrative example in Cook and Yin (2001). Clearly Y only depends on X, but
the Bayes’ rule is to always classify Y = 1, regardless of the predictor information. This means
that the CDS is the null space (), while the CS and MASES is span((1,0)7'), which contains useful
information in the discriminant analysis beyond Bayes’ rule. From Figure 1, we see that the solid
dots all reside in the half plane of X; < 0. This example shows that the CDS may miss some
information of the conditional distributions X | Y and Y | X.

3. Connections with other methods under various probabilistic models

An advantage of the MASES definition is that we never need to impose the coverage condition.
For most of the SDR methods that targets at the CS, the coverage condition assumes that the esti-
mator’s population target subspace exhaustively recovers the CS. This condition is often implicitly
assumed without ways of verification. On the other hand, MASES is always exhaustive by defini-
tion. In this section, under various probabilistic models, we investigate and reveal the connections
between the MASES and other classification, discriminant analysis, and sufficient dimension re-
duction methods.

3.1 Fisher’s discriminant analysis and the linear discriminant analysis model
We begin with the linear discriminant analysis (LDA) model,

Xl(Y:y)NN(p‘y:E):y:la---:Ca (3.1

where ¥ > 0 is the common covariance structure across classes. The model (3.1) is an idealistic
model for providing a theoretical justification of Fisher’s linear discriminant analysis approach. We
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emphasize that this model is not the origin of Fisher’s LDA. As mentioned in the Introduction, the
idea of seeking maximum separation can be traced back to Fisher’s LDA. We first consider binary
classification where Y = 1 or 2. Then Fisher’s LDA direction is obtained from maximizing the
ratio of between-class variation and within-class variation,

T . o T
WLDA = arg max { W (e = p2) (g1 = pr2) “”} =27 (1 — pa), (3.2)

weRpx1 wlEXw

where ¥ = E{cov(X | Y)} is re-defined as the within-class variation without assuming (3.1). By
projecting the data onto this direction, X +— w{D A X, the maximum separation of the two classes
is achieved. Intuitively, this is exactly the same motivation of our proposed MASES framework —
finding directions/subspace to achieve maximum separation between classes.

For C' = 2, the Bayes’ rule of classification under (3.1) is

oLpA (X) = arg Eli:i,)é Pr(Y =k | X) = arg Ilglalug{log Pr(Y =1) —logPr(Y =2) + WEDAX},

which reproduces the Fisher’s LDA direction (3.2). By straightforward calculation, H(BTX) =
1 — exp{—%(p1 — p2)"B(BTEB)!BT (11 — p5)} for any B € RP*? with full column rank.
Then the maximum separation D), = H(X) =1 —exp{—% 1 — po) T B (g — po)} is attained
by plugging in B = wipa. Therefore, the MASES Hy|x = span(wLpa).

For C > 2, let 3p = Zgzl(py — 1) (g — p)T /C be the between class covariance, where
p = E(X). Itis easy to see that span(X) = span(ps—peq, - - - , e — 1) and thus the rank of 33,
is always less than C. The multi-class LDA sequentially finds directions that maximizing the ratio
(wT'Byw)/(w! Xw), which leads to the LDA subspace Sppa = X 'span(X;). On the other
hand, many SDR methods estimates the CS based on conditional mean and covariance functions,
which leads to the generalized eigenvalue problems. We next summarize the connections between
LDA, SIR (Li, 1991), SAVE (Cook and Weisberg, 1991) and MASES under the LDA model.

Proposition 4 Under model (3.1), all the following subspaces are equal to the MASES Hy x,
which has dimension d < min(C' — 1,p): Sy|x, SLpa = Y~ 1span(X;), Ssir = Eilspan(zb),
and Ssavy = Eilspall(zx — E)

Proposition 4 states the equivalence between these different methods: MASES, LDA, SIR and
SAVE. This result is not surprising. Although these methods may have different motivations, as is
clear from their target subspaces, they are all expected to recover the same meaningful subspace
under the simple LDA model. The common covariance assumption is more important than the nor-
mality assumption in Fisher’s derivation of his discriminant direction (3.2). Without the normality
assumption, however, the first two sample moments are no longer sufficient statistic for the distri-
butions of X | Y = 1and X | Y = 2. Then Fisher’s LDA is still a sensible approach by focusing
only on the first two moments to define the distance between two conditional distributions, while
the MASES utilizes the entire density functions in measuring the distance.



ZHANG, MAI AND ZOU

3.2 Quadratic discriminant analysis model

Consider the quadratic discriminant analysis (QDA) model,
X|(Y:y)""N(aUyaEy}a yzlaac: (33)

where 3, > 0 can now vary across classes. Cook and Forzani (2009) studied the likelihood-based
sufficient dimension reduction under this model, and showed that the CS is exhaustively estimated
by SAVE, but SIR (and similarly LDA) may lose important information by ignoring the changes in
the covariance structures X,,.

Proposition 5 Under model (3.3), Sppa = Ssir C 'Hy|x = Syp( = SgAVE = Eilspan(zl _
EX, .oy B0 — XX)

Another related method called difference of covariances (DOC; Cook and Lee, 1999) was in-
troduced as a companion of SIR and SAVE in the context of binary response regression, which
estimates the subspace Spoc = 2;(1/ 2spa;n(Eg — ;). It was shown in Lemma 2 of Cook and
Lee (1999) that Sgig C Ssave and Spoc € Ssave. Although SAVE is more comprehensive
than SIR and DOC, the two methods SIR and DOC can be used together to visualize different
aspects of the data: SIR focuses on the mean function E(X | Y') and DOC focus on the covariance
cov(X | Y). Same philosophy applies to MASES: although MASES is the most comprehensive, it
is often still helpful to provide summary plots of the data using methods such as SIR and DOC.

3.3 Single and multiple index models

In regression, the index models of the form Y = f(B8T X, €) are widely studied, where 3 € RP*¢,
f is a real-valued function and ¢ is the error term that is independent of X. This class of models
includes more special cases such as Y = f(37X) + ¢, with constant error, and Y = f(37X) +
g(BTX) - €, with heteroscedastic error, where f and g denote generic functions that are usually
unknown. Single index model has d = 1 and multiple index models y allow d > 1. For binary or
categorical response, we introduce a multinomial index model (MIM) as

Pr(Y = | X)=Pr(Y = | 87X) = f;(8"X,¢;), j=1,...,C, (3.4)

where f;’s are functions with positive values and €;’s are potential random disturbance that are
independent of X and are typically assumed to be zero. Itis clear that the CS is span(3). However,
the generality of (3.4) makes it possible for both SIR and SAVE to fail to recover all the important
directions. Nonetheless, MASES is exhaustive in recovering the CS.

Proposition 6 Under the MIM (34), SSIR U SSAVE - Spall(ﬁ} = HY|X = SY|X-

10
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3.4 Support Vector Machines (SVM) and Principal Support Vector Machines (PSVM)

In this section, we first connect our notion of maximum separation with that of support vector ma-
chines (Boser et al., 1992; Cortes and Vapnik, 1995) under the probabilistic SVM model proposed
by Franc et al. (2011). We then discuss and compare our method with a sufficient dimension reduc-
tion method called principal support vector machine (PSVM, Li et al., 2011). The two solutions,
MASES and PSVM, are further compared in numerical studies (Section 5).

For the purpose of gaining intuition, we follow Franc et al. (2011)’s notation and restrict our
analysis to the linear SVM (and later, linear PSVM) in binary classification without the bias term,
where Y € {41, —1} is the class label for two balanced classes of data X € RP. The linear SVM
is defined by minimizing the following convex loss function over parameter vector (a.k.a. normal
vector) w € RP,

Ln(w; \) = —w w+ ZE(Y w'X,), (3.5)
i=1
where A > 0 is a regularization constant and £(Y, w'X) = max{0,1 — Y - w'X} is the hinge
loss of classification. After obtaining Wgyy = arg miny, Ly (w; A), the linear SVM classifier is
Y = sign(W;;X). When the training data are separable, the linear SVM has a direct geometric
margin maximization motivation. See Hastie et al. (2009, Chapter 4.5) for more background on
separating hyperplanes and maximum margin-based classification. The separation in MASES is
defined by the distance of the two conditional distributions f(X | Y = +1) and f(X | Y = —1)
and is always well-defined even when the training data are not separable.
Based on this definition of the linear SVM, there is an interesting semi-parametric probabilistic
SVM model (Franc et al., 2011), where the joint probability density function is,

p(X,Y) = C(r) - h(X) - exp{—£(Y,7ul X)/2}, (3.6)

where 7 > 0 and C(7) > 0 are the normalizing constant, u € RP? is the unit vector such that
uu = 1, £(-,-) is the same hinge loss function as in (3.5), and function h(X) makes p(X,Y")
integrable and also ensures C'(7) not involving u. The following proposition sheds light on when
the SVM is efficient in recovering the central subspace.

Proposition 7 Under the model (3.6), span(Wsyw ) is the MLE for Hyx = Sy|x = span(u).

Closely related to SVM, for continuous response Y € R, Li et al. (2011) proposed the PSVM
method to estimate the CS. For a categorical response Y € {1,...,C} (or after discretizing the
continuous response), let Y = I(Yi = k) —I(Yi = k4 1), k=1,...,C —1,be (C —1)
binary response Then for each binary response Y;¥, we apply SVM on the standardlzed predictor
Z; = EX (X — X} to obtain the parameter vector Ck € RP from minimizing (3.5). Finally, the
estimator for the CS Sy|x is the span of f);(lﬁ?j, j = 1,...,d, where d is the dimension of

the central subspace and v; is the j-th leading eigenvector of Zf:_ll Ek&g . Under the linearity
condition and the coverage condition, PSVM fully recovers the CS which is also the MASES
according to Theorem 2.

11
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4. Estimation and Consistency

4.1 Estimation procedure

Given the MASES dimension d, the MASES can be obtained from maximizing ’H(BTX} 2.1
over all matrices B € RP*?, and then Hy|x = span(B) by Definition 3. By Proposition 1, we
know that this optimization is essentially over all d-dimensional subspace of RP, i.e. optimiza-
tion over Grassmannian G, 4. Existence of the solution (global optimum) is guaranteed because
the parameter space of optimization, the Grassmannian, is compact and the objective function is
bounded, i.e. 0 < H(BTX) < 1. Since the objective function for C' > 2 is the weighted sum of
pairwise objective functions H?(f;(BT X), f(BTX)) for all j,k = 1,...,C, we only describe
the estimation procedure for C' = 2. Then the population objective function to be minimized is

Fpop (B) =1_ H(BTX} _ / \/fl (BTX)fQ (BTX)dX - B { \/fl (BTX) fQ(BTX) } ? (41)

f(BTX)

where f(BTX) is the marginal density function of BTX. Given i.i.d. samples (X;,Y;), i =
1,...,n, the sample objective function is constructed as

n BTX. BTX. n
F(B}—ZA VABTX,)A(BTX,) SR, )
P1f1 (BTX;) + p2fa(BTX;) + 6n P
where pp, = ni/n, k = 1,2, and the constant ,, > 0 is a small number to let the denominator
be bounded away from zero for all sample points X;. The stabilizing constant &, also makes sure
that =1 F'(B) converges to the population objective function Fpep(B) uniformly in B. We will
discuss more about J,, in Theorem 3. For k = 1, 2, the multivariate kernel density estimator is

-~ 1
RBX) = — Y e Pen{-CR) BT X - X3}, @3)
(n—Dhi | 2=

where h, = n~'/% is used in all the numerical studies. Our choice of h, is motivated by the

optimal bandwidth of Gaussian basis functions, h, = 1.06 - 7 - n‘lﬁ, where we use & = 1 as the
sample standard deviation if in practice we standardize the predictor X initially. We do not include
sample 7 in the summation to avoid over-fitting and to reduce bias (cf. Ichimura, 1993; Klein and
Spady, 1993).

We find the derivatives of the sample objective function to facilitate the iterative optimization.

Proposition 8 The derivative of the sample objective function (4.2) is

dF(B) <
B = = (A ;W” - X)(X; -X)"B }, (4.4)
i=1 B

where A; = (fltf%) ﬂ prQ@ p1f1®+5ﬂ}/{2 plflz+p2f2¢+5n}2} fk% fk(BTxt k=1,2
z_;i = ( 1 Yh 2dUaJ/(Zm;é¢ Ym=Y; Uim) and Uz_;i = exp{ (2h2d ”BT Xi—Xj )” }

12
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Based on the explicit forms of F(B) and dF'(B)/dB in (4.2) and (4.4), we may use any off-the-
shelf optimization methods to obtain the MASES estimator B. Our current implementation adopts
the sg_min Matlab package for Stiefel and Grassmann manifolds optimization (Edelman et al.,
1998), which preserves the orthogonality constraint BTB = I;. Other numerical methods for
optimization with orthogonality constraints (e.g. Wen and Yin, 2013) can also be straightforwardly
incorporated into our implementation.

4.2 Initialization, sequential algorithm, and dimension selection

For our non-convex iterative optimization, it is crucial to obtain a good initial estimator. When
d = 1, we randomly generate 100 directions B1,...,Bigp € RP and select the one with the
smallest F'(B) as the initial estimator; when d > 1, we use the following sequential algorithm to
obtain an initial estimator By € RP*% and use it in the full Grassmannian optimization of F'(B).
Let bJ € RP, j =1,...,d, be the sequential directions obtained. Let Bj = (bl, . bJ} and
let (BJ,BQJ) be an orthogonal basis for RP. Set initial value bg =By = @ and Bm = Ip For
j=0,...,d— 1, do the follow steps to get the d-dimensional MASES basis Bd = (bl, ,bd).

1. Minimize the sample objective function, b = arg ming,ege—3 pTh=1 F(ﬁojb).
2. Let Bj+] = ﬁng € RP be the (j + 1)-th maximal separation direction.

In our experience, the Grassmannian optimization converges faster and is much more stable us-
ing this initialization than using the random starting values when d > 1. Moreover, the above
sequential algorithm provides a nested solution for the MASES and hence motivates the MASES
dimension selection procedure as follows.

From Corollary 1, we know that the MASES dimension d is determined by 0 < Dy < --- <
D41 < Dg = --- = D,, which suggests selecting d by examining the estimated distances D,.
qg = 1,...,p. Under the squared Hellinger distance, we can directly estimate ﬁq as ﬁ(ﬁgX) =
1-— n‘lF(ﬁq), where ﬁq € RP*4 q = 1,...,p, is the g-dimensional minimizer of the sample
objective function F'(B) in (4.2). However, the manifold optimization does not usually produce
nested solutions, i.e. spa,n(ﬁq) Z Spaﬂ(ﬁq+1). Therefore, we select the MASES dimension based
on the sequential directions. Forg =1, ..., p, we define \; = ﬁ(BgX} =1 —n_lF(Bq) €(0,1)
be the g-th added separation. Then, we select the MASES dimension as

7 Agt1

d = arg min
g q )‘q)

(4.5)

which is conceptually similar to the ratio-based estimators of dimension in SDR and factor analysis
literature (Lam et al., 2011; Lee and Shao, 2016, e.g.). Numerical performance of this dimension
selecting procedure is very encouraging: see Section 5.3 for various simulation models, and see
Figure 6 in Section 6 for the illustrations of the “scree-plot” based on added separations A4 and the
ratio plot of A\;11/A, in a real data example.

13
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Finally, when the number of categories C'is not small, another initialization approach in prac-
tice is to find an one-dimensional MASES for every two classes. Then we can combine the in-
formation by eigen-decomposition of ), bj,kb?:k, where bj . is the direction using data from
classes j and k. This type of decomposition is similar to the one in the PSVM (Section 3.4).

4.3 Consistency

In this section, we first establish the uniform convergence of the sample objective function n~! F'(B)
to the population objective function Fj,,,(B), and then establish the consistency of the minimiz-
ers of F(B). In the following Theorems 3 and 4, we assume the following conditions for any
B e RP*¢ BTB = I, and foreachclass k= 1,...,C.

(C1) There exists a constant M; > 0 such that the density function fk(BTX) satisfies that
V2 £ (BTx)|lop < M; for any x. The operator norm of a matrix M € RP*Y is defined

as |M||,, = inf{c > 0 : [Mv]|y < c||v]l2, ¥v € R9}.

(C2) There exists a constant M, > 0 such that the density function f,(BTX) < M,.

Theorem 3 If §, — 0 and max{h,, h;dﬂn_lf‘l} = 0(6y,), then n~1F(B) defined by (4.2) con-
verges to Fp,op(B) in (4.1) uniformly in B as n — oo.

The above results suggest that the bandwidth can be set as h, = n™® for a € (0, ﬁ) to
get consistency in the objective function. When d = 1, our finding is in accordance with the
theoretical developments in the single-index model literature (Lemma 2 Klein and Spady, 1993,
for example). Because max{hy,, hn®/2n=1/ 4} = 0(6,,), the constant 6, goes to 0 very slowly. In
our numerical experiments, we let h, = n~ Y5 forbothd = 1 and d = 2, &p be in the order of
n~ 8 for B € (0,—0.15) (d = 1) and 8 € (0, —0.05) (d = 2). In our experience, a properly chosen
constant d,, has little effect to the estimation of MASES. Therefore, in all our numerical studies,
we set &, = 0 for simplicity.

Next, we study the consistency of the MASES estimator under two scenarios. The first scenario
is when Hyx is unique, which can be guaranteed by the existence of the CS. Let 3, 3; € Rpxd
be the minimizers of F'(B) and Fj,o,(B), respectively. Instead of studying the properties of B
directly, we investigate its projection matrix. This is because a or even [3;, is not identifiable. For
any B € RP*? and any full rank matrix O € R%*?, we must have F(BO) = F(B). Therefore,
the minimizer ,@ is not unique, even if we require it to be semi-orthogonal. Similarly, 3; is not
unique. On the other hand, the subspaces spanned by 3 and 3;, as well as the corresponding pro-
Jection matrices, are uniquely defined. We hence present the consistency in terms of the projection
matrices, P; = B(BTB) AT and P, = B:(8T8,) 14T

The second and more complicated scenario is when Hy x is not unique. From previous dis-
cussion (cf. Section 2), we know that this means there are multiple d-dimensional subspaces
that achieve the same separation in the population and are thus equivalent. We show that when
the MASES is not unique in the population, our MASES estimator is guaranteed to converge to

14
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one of the many equivalent subspaces. Define B; = {B € RP*¢ : F,. (B) is minimized},
B = {B € RP*?: F(B) is minimized }. We have the following theorem.

Theorem 4 Under the same assumption as Theorem 3, if the population objective function Fpop(B)
has a unique global minimum at Hyx = span(B;), then the sample estimator P j converges in

probability to the population minimizer P g, as n — oo; otherwise, for any B € B, we have that
mingeg |Pg — Pl|% — 0 with a probability tending to 1 as n — oo.

An important implication of Theorems 2 and 4 is the following: when the CS exists, the
MASES estimator is consistent for the CS. Applying Theorem 2 to Example 1 (Figure 1), where the
CS does not exist and the MASES is not unique, we have B; = {(b],bQ}T 1 bi,ba > 0,b1b2 # 0}
and MASES estimator converges to one of the perfect separation subspaces from B;.

5. Simulations

In simulation studies and real data analysis, we compare the proposed MASES estimator with
several types of SDR methods: (1) widely accepted benchmark methods that are based on the first
two conditional moments of X given Y, including SIR (Li, 1991), SAVE (Cook and Weisberg,
1991), and DR (Li and Wang, 2007, directional regression); (2) recently developed probability-
enhanced dimension reduction methods, PRE-CUME (Zhu et al., 2010; Shin et al., 2014) for SDR
in classification; (3) cMAVE (Yin and Li, 2011, MAVE ensemble with the characteristic functions),
which was shown in Yin and Li (2011) to be more effective than MAVE (Xia et al., 2002, minimum
average variance estimator) and its variations such as sliced regression (Wang and Xia, 2008); (4)
PSVM (principal support vector machines Li et al., 2011).

In Section 5.1 and Section 5.2, we consider models with binary response and one-dimensional
subspace. In particular, Section 5.1 focuses on inverse models that generate X conditional on
Y'; and in Section 5.2 we include forward models where Y is generated based on a single-index
function of X. In Section 5.3, we include more challenging models where the subspace is two-
dimensional and Y is categorical with more than two classes. The simulation parameters, such as
means and covariances of normal distributions, were chosen such that the classes were reasonably
separable so that these simulation examples were useful for distinguishing different SDR methods.
Figures 2 and 3 visually demonstrate how challenging the simulation examples were. We also
included the results of dimension selection in Section 5.3. For each model setting, we simulated
100 independent replicates data sets. In all simulation models, the CS exists so that the MASES
estimator and the SDR methods all target at the same subspace, and the comparison is fair.

5.1 Inverse models

In this section, we consider a binary response Y € {1,2}, and a multivariate predictor vector
X € R? with p = 15. We let 3 € RP*! be a basis for the subspace of interest, i.e. span(3) =
Hyx = Sy|x. For each simulation setting, a random vector 3 and its orthogonal completion

By € RP*(P~1) are randomly simulated such that (3, By) is an orthogonal basis for RP. We
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Figure 2: Simulation models with one-dimensional MASES. Top four plots: graphical illustration
of the inverse models. The horizontal axis is the discriminant direction 37X and the vertical axis
is an arbitrary direction 37 X such that 31’3 = 0. Open circles and solid dots represent the two
classes Y = 1,2, respectively. Bottom three plots: Graphical illustration of the forward mod-
els. The horizontal axis is the discriminant direction 87X and the vertical axis is the probability
p(X)=1-Pr(Y =1|X)=Pr(Y =2| X).

16



MAXIMUM SEPARATION SUBSPACE (MASES)

Models SIR Logistic  SAVE DR PRE cMAVE PSVM MASES

. . 53. . . . . 3
MDA. 1 Mean 64.7 629 3.7 5277 69.3 68.7 71.9 16
SE. 08 08 1.4 14 06 08 0.6 0.7
53. 5. . 3 52 . 3 .

MDA.2 Mean 53.3 55.2 78.5 66 24 599 44 104
SE. 07 06 0.9 .2 07 25 0.6 0.2

LDA-1 Ind. Mean 17.6 26.2 20.5 183 203 233 21.7 114
SE. 03 05 0.4 03 04 04 0.4 0.2
52. . 54. 3. . . . .

LDA.1 Cor. Mean 52.7 63.3 48 532 717 594 64.5 27.0
SE. 07 07 0.7 07 07 07 0.7 0.6
8 3L . . . . 33 .

L DAL Ind. Mean 30.8 31.0 75.7 62.7 203 349 2 344
SE. 06 06 1.2 .7 04 07 0.4 0.7

LDA2 Cor. Mean 58.8 629 66.8 609 624 629 70.6 374
SE. 07 06 0.7 07 07 08 0.6 0.7

Table 1: Inverse models. Mean and standard error of the angles between the true direction 3 and
various estimators (3, based on 100 replicated data sets each with sample size 200.

compared MASES with competitors using the angle between the estimated direction ,@ and the
truth 3. Since 3 is just a vector, we also compared MASES with the direction estimated by logistic
regression, in addition to the SDR methods. We considered various data generating process from
the following inverse models. We generated i.i.d. samples of X | (Y = j) with sample size
n; = 100 for each class j = 1, 2. Figure 2 is the graphical illustration of typical data clouds in the
simulation set-up.

e MDA-1. The mixture discriminant analysis model. Since (3, Bg) forms an orthogonal basis
for RP, we generated 87X and BgX separately and then let X = B8TX + BngX.
The discriminantive component 87X is generated from two different mixture distributions
BTX | (Y =1) ~ IN(-1,10)+2N(1,0.1) and BTX | (Y =2) ~ IN(0,1) + $N(2,1).
The other components are generated as BTX N(0,Ip—1), 1ndependent of Y.

e MDA-2. Same as MDA-1 model, except that we change the mixture distribution to ST X |
(Y =1) ~ IN(-2,0.1) + 1N(2,0.1) and BTX | (Y =2) ~ $N(0,1) + 1 N(5,1).

e LDA-1. The linear discriminant analysis model. We generated X | Y from multivariate
normal distributions, X | (Y = 1) ~ N(0,X) and X | (Y = 2) ~ N(u,X) where
p = X3 is the mean difference. Then from Proposition 4, we know that SIR and LDA find
direction in span{X~!(p — 0)} = span(3). Two types of within class covariance matrices
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X are: ¥ = I, and ¥ = AR(0.8), which is the auto-regressive covariance such that the
(i, 5)-th element of the covariance matrix is (X);; = 0.8/l fori,j = 1,...,p.

e LDA-2. Same as LDA-1 model, except that we change the within class covariance to be
0.1 so that the two class are easier to separate than in the LDA-1 model.

In Table 1, we summarize the estimation accuracies of each method, using the angles between 3
and Ej on the 100 replicated data sets. The MASES estimator dominates all other competitors in all
models, except for model LDA-2 with identity covariance matrix 3 = I,

As clearly illustrated by Figure 2, for the LDA-1 model, the two classes overlap with a rea-
sonable proportion; and for the LDA-2 model, we made the two classes well-separated along the
discriminant direction ,STX. Because of its equivalence to LDA, SIR is the maximum likelihood
estimator for the central subspace. From Table 1, we indeed find that SIR consistently outperforms
logistic regression, SAVE, and DR. However, in LDA-2 model, which is the easiest case as the two
classes are almost completely separated and X = I,. PRE and PSVM have the best performance
and are followed by SIR and MASES. This may be due to finite sample efficiency gain by slicing
on the probability density function in PRE, and due to the perfect separation recognizable from
margin-based classifier. It is noted that the MASES estimator outperforms all the other methods in
the other three settings, especially when correlation is high.

For the mixture discriminant analysis models, the MASES estimator is significantly better than
popular dimension reduction and discriminant analysis methods. From Figure 2, we see that the
MDA-1 model is very difficult for linear or first-order moment methods such as SIR (or equiva-
lently LDA), logistic regression, and PRE because the centers of the two classes of distributions are
close to each other. At the same time, because of the different variances in two classes, the second-
order moment methods such as SAVE and DR are able to perform better. In contrast, MDA-2
model is designed such that the centers of two classes are separated and the first-order methods are
better than the second-order methods. Clearly, the MASES estimator is able to efficiently detect
both mean and variance changes between two classes, as well as learning complicated distributions
such as the mixture normal distributions. Such encouraging results also suggest that our MASES
estimator can be a useful classification technique in the context of mixture discriminant analysis
models, without knowing or estimating the number of normal mixtures in each class.

5.2 Forward models

Same as Section 5.1, we consider binary response Y € {1,2}, multivariate predictor vector X €
RP with p = 15, and i.i.d. sample with the total sample size n = 200 for two classes. We
considered various data generating process from the following forward models, where we first
generated i.i.d. samples of X and then generated Y from Bernoulli distribution with probability

p(BTX).
e SIM-1. Single-index logistic regression model with normal predictors, X ~ N(0, X) where
> = AR(0.8), and a nonlinear link function p(X) = logit{sin(87X - 7 /4) + 0.1(87 X)?},
where logit(z) = 1/{1 + exp(—z)}.
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Models SIR Logistic  SAVE DR PRE cMAVE PSVM MASES
SIM1 Mean 80.6 80.6 80.8 81.7 83 78.2 82.8 37.8
S.E. 0.6 06 0.7 07 05 0.8 0.5 0.7
SIM.2 Mean 50.3 47.7 66 55.8 554 50.8 51.8 31.2
S.E. 0.8 07 0.6 07 06 0.8 0.8 0.7
Mean 20.3 20.1 53.1 27 21.2  20.7 21.1 22.2
LR-Ind.
S.E. 04 04 1.9 1.1 0.7 0.7 0.1 0.5
Mean 50.1 47.6 59.9 522 51.8 476 48.7 29.2
LR-Cor.
S.E. 07 07 0.8 07 07 0.6 0.6 0.5

Table 2: Forward models. Mean and standard error of the angles between the true direction 3 and
various estimators (3, based on 100 replicated data sets each with sample size 200.

e SIM-2. Single-index logistic regression model with non-normal predictors and a nonlinear
link function p(X) = logit{3” X+0.1(8T X)?}. The non-normal predictors were generated
as follows. We first generated Z ~ N (0, X) with X = AR/(0.8) and then let X} = Z, for
k=1,2,7,...,pand let X3 = |Z1| + |Z2| + |Z1| e, Xy = (Zl + Z2)2 + |Z2| - 4,
X5 ~ Binomial(5, logit(X3)) and X ~ Binomial(5, ®~1(X2)), where ¢, § ~ N(0,1)
and ®~1(z) is the inverse normal cumulative distribution function.

e LR. Logistic regression model with normal predictors X ~ N (0, X) and p(X) = logit(287 X).
We considered both ¥ = AR(0.8) and X = I, settings.

Figure 2 displays the probability function p(X) =1 —Pr(Y =1 | X) = Pr(Y = 2 | X) ver-
sus the index function BT X. Clearly SIM-1 is the most challenging model setting in terms of the
probability function p(X) = p(37X). Table 2 summarizes the comparison among all methods.
The MASES estimator substantially outperforms all other competitors in the two challenging sin-
gle index models. Then in the logistic regression model, the logistic regression is the best for the
simpler setting with identity covariance X = I, but loses to the MASES when predictors are cor-
related. This is similar to the findings in the LDA models in Section 5.1, where MASES estimator
outperforms SIR/LDA in the correlated predictor scenarios.

5.3 Two-dimensional models

In this section, d = 2, B = (B1,82) € RP*? and By € RP*(P—2) were randomly generated
such that (3, Bp) is an orthogonal basis for RP. We consider the following simulations, including
both the multi-class LDA model as a generalization of binary LDA model in Section 5.1 and the
multiple index models (MIM) as a generalization of the single index models (SIM) in Section 5.2
and mixture discriminant analysis (MDA) models in Section 5.1.
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Figure 3: Simulation models with two-dimensional MASES. The two axes are the two discriminant

directions 37 X and 31 X. Open circles, solid dots and crosses represent the three classes.
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Models SIR SAVE DR PRE cMAVE PSVM MASES
vy Mean 170 177 177 196 153 196 080
SE. 001 001 001 00l 003 001 004
VM, Mean 171 095 095 188 067 192 058
SE. 001 00l 001 00l 00l 00l 001
MMy Mean 196 088 088 189 079 181 029
SE. 001 001 001 001 002 00l 001
53 0. 56 0.66 0. . 3
DA Ing Mean 053 081 056 066 085 083 034
SE. 001 002 001 00l 002 00l 001
DA Cop Mean 162 165 162 1.64 163 167 041
SE. 001 00l 001 00l 00l 001 002

Table 3: Two-dimensional simulation examples. Mean and standard error of the estimation error,
|P 53— Pg||F . between the true directions 3 and various estimators 3, based on 100 replicated
data sets. The sample size is ng = 100 for each class.

MIM-1 MIM-2 MIM-3 LDA Ind. LDA Cor.
d<d 17 3 2 0 1
d=d 65 97 94 100 99
d>d 18 0 4 0 0

Table 4: Selecting the MASES dimension. Under the exactly same set-up as in Table 3, we report
the numbers of under-estimation (d < d), correct selection (d = d), and over-estimation (d > d)
of the MASES dimension, based on 100 replicated data sets.

e MIM-1. Forward multiple index model with two classes. We generated 37 X and 81 X from
Uniform (—4,4) distribution and B X ~ N(0,I,-3) and let X = £187X + 3,87 X +
BoB!'X. Then Y = 1 if both |37 X| and | 3] X| are between 1 and 3 and Y = 2 otherwise.

e MIM-2. Inverse multiple index model with two classes. We first generated Y from Bernoulli
distribution with probability 0.5 for each class. Then 37X € R? was simulated as normal in
the first class 87X | (Y = 1) ~ N(0,1,), and as mixture normal in the second class 37 X |

(Y = 2) ~ %N(pﬂl,lg) + %N(,{LQ?IQ) + iN(pﬂg,O.lIg) + iN(,UJLL,O.lIQ), where p;

(0,3)T, 2 = (0,-3)T, u3 = (3,0)T and 4 = (—3,0)7. Finally Bl X ~ N(0,I,_2) was
generated independently of Y.
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SIR  PRE SAVE DR cMAVE PSVM MASES

Bird vs. Plane 0.851 0.631 0.194 0.959 0.305 0.789  0.968
Bird vs. Car 0.550 0.354 0.000 0.004 0.850 0.540 0.978
Plane vs. Car 0916 0476 0.205 0968 0.696 0.464 1.000
Overall 0.772 0487 0.133 0.644 0.617 0.597  0.982

Overall (weighted) 0.759 0.481 0.126 0.609 0.626 0.597  0.981

Table 5: Real data illustration. Pairwise and overall Hellinger distances from the subspace es-
timated by each method. Recall that from Proposition 1, all the numbers in the table should be
between 0 (indicating indistinguishable) and 1 (indicating perfect separation).

e MIM-3. Inverse multiple index model with three classes. We first generated Y from discrete
uniform of 1, 2 and 3. Then, for class 1, 3TX | (Y = 1) ~ N(0,1L); for class 2, 37X |
Y =2)~ %N(ﬁl,lg) + %N(,ug,lg), where py = (3,0)T and p2 = (-3, O)T; for class
3. 87X | (Y = 3) ~ §N(u3,D) + 3N (ua, D). pz = (0,3)". pa = (0,-3)" and

D = diag(5, 1) is a diagonal matrix.

e LDA. Multiclass LDA model with normal predictors. We first generated Y from discrete
uniform of 1, 2 and 3. Then X | (Y = k) ~ N(pg,X), where g1 = 0, po = 3051,
3 = 33>. We consider the two covariance structures as before, X is either I or AR(0.8).

For the above models, we set the total sample size to be n = n; + ny = 200 for models with
binary response and n = n; + ny 4+ ng = 300 for models with three classes. Figure 3 graphically
illustrates the two-dimensional simulation models, where we plotted the simulated data on the two
true discriminant directions 87 X and 87 X. For each of the simulation setting, we again simulated
100 independent replicated data sets and summarized the results in Table 3. We used || P 53— Ps |F

instead of the angle é(ﬁ,,@) because now 3 is no longer a vector. Our MASES estimator is
substantially more accurate and efficient than all other competitors in all five models.

For all these models, where d = 2, we further applied the dimension selection procedure from
Section 4.2. The results are summarized in Table 4. In four out of five models, the percentage
of correct dimension selection is above 90%. The only exception is in Model MIM-1, where the
correct selection percentage is 65%. This is not surprising because Model MIM-1 is the most
challenging model where MASES has the biggest estimation error (cf. Table 3) among the five
models.

6. Real data illustration

We revisit a discriminant analysis data set from Cook and Forzani (2009), where the goal is to
distinguish n; = 58 birds, ny = 64 planes and ng = 43 cars based on 13 continuous SDMFCC
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Figure 4: Real data illustration. Estimated two-dimensional subspaces from various dimension
reduction methods.
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Figure 5: Real data illustration. Estimated two-dimensional subspace from the proposed method.

variables (standing for Scale Dependent Mel-Frequency Cepstrum Coefficients). Figure 6 sum-
marizes the scree plot based on added separations A\, and the ratio plot of Ag+1/Aq, based on the
procedure described in Section 4.2. Clearly the MASES dimension is d = 2, which agrees with
the central subspace dimension suggested by previous studies on this data set.

Figure 4 shows the data projected onto the first two directions estimated by various competitor
methods. From the first row of these plots, it is clear that SIR gives a reasonably good separa-
tion of the three classes, mainly in location, and PRE-CUME is similar to SIR as their estimation
shares similar flavor. From the second row of these plots, we see that the variance differences
among classes are captured and demonstrated by the second-order methods SAVE and DR esti-
mates. Specifically, the SDMFFEC variables have the highest variability for cars and the lowest
variability for birds. However, the birds and planes are hard to distinguish by SAVE and DR es-
timates. The bottom row of the plots summarizes the results from cMAVE and PSVM. The two
methods demonstrate good separation of birds, planes and cars in both location and variation. This
finding is also consistent with the original results in Cook and Forzani (2009). Finally, Figure 5
provides the two-dimensional summary plot based on MASES. With a closer look one would favor
MASES over cMAVE and PSVM: the three classes are not separated well in the top left region
of the cMAVE plot or the bottom region of the PSVM plot. The MASES has a perfect separation
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Figure 6: Real data illustration. Scree plot of added separations A, and ratio plot of A,y /A, for
selecting the MASES dimension, where we set A1 /Ao = A1 in the ratio plot.

in three classes except for the two cars. Moreover, the small variability in birds are even more
apparent in MASES subspace than in any other methods.

To gain more intuition, we created three-dimensional plots for SAVE, DR, cMAVE and MASES
in Figure 7. The other methods (SIR, PRE-CUME and PSVM) can only find two directions be-
cause the number of class is three. From the plots, we have more evidence that the most plausible
dimension (using any dimension reduction methods) for this data set is two instead of three, and
that the 3D plots can not provide additional useful information beyond the 2D visualization.

Table 5 summarizes the pairwise and overall Hellinger distances from the two-dimensional
subspace estimated by each method. For the overall Hellinger distance, we used the simple aver-
age and the weighted average since the three class have different number of observations, although
there is little difference between the two. Since all the pairwise and overall Hellinger distances are
bounded between 0 (indistinguishable) and 1 (perfect separation), this table gives a good summary
of the separability among classes, and offers more insights in addition to the visualization in Fig-
ures 4, 5 and 7 (additional 3D plots in the Appendix). One thing becomes more apparent in the table
is that the pairwise Hellinger distance between the birds and cars are essentially zeros for SAVE
and DR. This indicates that birds and cars are indistinguishable in the SAVE and DR subspaces.
For MASES, there is a perfect separation for planes versus cars and almost perfect separations for
birds versus planes and birds versus cars, which is consistent with the visualization. The numerical
summary in Table 5 also gives an easy way to compare different methods, as a complement to the
graphical comparison. For example, if one only wants to separate planes from birds and cars, DR
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Figure 7: Real data illustration. Estimated three-dimensional subspaces from various dimension

reduction methods.

will be a better choice than SIR based on the table, which cannot be easily seen from the figures

7. Discussion

In this paper, we propose the general notion of MASES for SDR with categorical response. For
illustration, we focused on the MASES under the squared Hellinger distance and develop an effec-
tive estimation procedure. Future developments under various other distances should be parallel
and similar to the development in this paper, and guided by the basic properties listed in Propo-
sition 1. We conjecture that the convergence rate is generally slower than y/n due to the curse-

26



MAXIMUM SEPARATION SUBSPACE (MASES)

of-dimensionality in density estimates but is still possible under different model assumptions or
estimators based on different distances. We leave this to future studies.

For continuous Y, we can replace Y with the discrete version Y € {1,...,h},where h > 2is
the number of slices, and focus on the estimation of Hﬁx- Conceptually, the MASES estimation
of Hﬁx is similar to SIR and SAVE that estimate Sﬁx using the first two conditional moments

of X | Y, but has advantages over these moment-based methods since it obtains more information
from the conditional density function. We also leave this for future research.
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Appendix A. Proofs and Technical Details
Proof for Proposition 1 and Corollary 1

First, we prove Proposition 1. For the multi-class case, we can write

c-1 C c-1 C
DX) =D > wid(f5(X), (X)) =D D winDik(X),
j=1 k=j+1 j=1 k=j+1
where Dji(X) = §(fj(X), fe(X)) is the distance for two classes. Then the conclusion follows,
because all the five statements holds for each D;x(X), and that the weights are positive constants
that add up to one. Then Corollary 1 directly follows from Proposition 1 and the definitions in the
corollary.

Proof for Proposition 2

Recall that 0 = Dy < --- < Dp < 1 from Corollary 1, thus there always exists a d such that
Dg—1 < D4 = --- = Dp. Thus for this number d, we want to show that Dy |x = span(/3) always
exists, where 3 = arg maxp D(BTX) maximized over all B € RP*¢ such that BTB = I,.
This is because that (1) the objective function ’D(BTX} is bounded between 0 and 1; and (2) the
optimization can be rewrite as Dy|x = arg maxs D(BTX) maximized over the d-dimensional
Grassmann manifolds of RP: S = span(B) € Gj, 4, thus the parameter space of the optimization is
compact (i.e. compactness of the Grassmann manifolds Gy, 4).

27



ZHANG, MAI AND ZOU

Let Dy |z = span(/3), then for a full rank scale transformation Z = AX, it is clearly that
D(BTZ) = D(BTAX). Thus, Dyx = span(ATB8) = ATDyz. From the definition and
properties of the distances ( f1, f2). it is easy to see that an overall location change X* = X — «
will lead to the same distance and thus Dy x~ = Dy|x. Therefore, we have the conclusion follows.

Proof for Proposition 3

Because of Proposition 1, we only need to prove the five statements for the binary classification.
Because the proofs for different distances are essentially following the same logic, we only show
for the squared Hellinger distance 6 (f1, f2) = H2(f1, f2) in the following.

The Statements 1-3 are directly from the definition of the squared Hellinger distance and
H(X). Let T = ATX be the g-dimensional random vector, then

HATX) = H(T) = 5 [ (VA - VA >0

where the last equality H(T) = 0 is attained if and only if fi(t) = f2(t) almost everywhere for
t € R?. From (2.2), we also see that

HATX) =H(T)=1— f VAR fa(t)dt <1,

where the last equality H(T) = 1 is attained if and only if [ +/fi(t)f2(t)dt = 0, which is
equivalent to say that fi(t) and f2(t) have non-overlapping support on RY.

Statement 4 is because span(A ) = span(B) implies that the random variables AT X and BT X
carry exactly the same information about the conditional distribution of X | Y. Then H(ATX) =
H(BTX) is just a consequence of the change of variables in the integrals.

For Statement 5, recall that A € RP*", B € RP*? r < ¢, and span(A) C span(B).
Therefore, we can find some matrix (B1,Bg) € RP*? such that span(B1) = span(A) C
span{(B1,Bo)} = span(B). Let S = BT X and T = B X, we have the following equations
from Statement 4,

HATX)=1— f VIi(s) fa(s)ds; HBTX)=1- / / V fi(t, s) fa(t, s)dtds.
Moreover, we can write fi(t,s) = fi(t | s)fi(s), where fi(t |s) = f(T=t|S=sY =1)

and fi(s) = f(S =s | Y = 1); and similarly f>(t,s) = fa(t | s)fa(s). Therefore, we can see
H(ATX) < H(BTX) from the following inequality,

] VI 8) a6, 8)dtds = ] VA®RE! ] VEAE 97t s)dt}ds < ] VA LGS,

where the last inequality is because [ /fi(t | s) f2(t | s)dt < 1.
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Proof for Theorem 1

First, we show that H(BTX) = H(X) =Y 1L X | BTX.
Let U = BTX and V = B!'X where span(By) is the null space of span(B). From the
definition of #(-), we can express H(BTX) = H(X) as

/\ffj(u)fk(u)du:/f\/fj(u,v)fk(u,v)dudv, Vik=1,...,C. (A.1)

Since fy(u,v) = fy(u)fy(v|u) fory =1,...,C, we can re-write the right-hand side of (A.1) as
I [V fiv[u) fr(v|u)dv/fj(u) fe(u)du. The left-hand side minus the right-hand side of (A.1)

becomes
0 = /ij(u)\!fj(u)fk(u)du, Vi,k=1,...,C, (A.2)

where Gji(u) = 1 — [ \/fj(v|u) fr(v|u)dv. Itis easy to see that Gjr(u) > 0 for all u. Hence
J Gjr(u)y/fi(u) fr(u)du = 0, Vj, k = 1,...,C, implies that we can partition the support of U
as T1 U T2, where 71 C R% and T2 C R? are defined as follows. For u € 71, fj(u)fi(u) = 0,
Vj,k=1,...,C; foru € Ty, Gjp(u) = 0,4,k = 1,...,C. Notice that we do not require 7,
and 75 to be disjoint. For u € Ty, f;j(u)fi(u) = 0, Vj,k = 1,...,C implies that at most one
class has non-zero density. Then given U = u, we know the value of Y with probability one and
hence Y is independent of X given U = 87 X. On the other hand, for u € 75, if Gjk(u) = O then
V|(U =u,Y = j) ~ V|(U = u,Y = k), which is equivalent to the definition of a sufficient
dimension reduction subspace: V 1L Y |U. Therefore,

VIY[UeBIX 1LY B'X<Y I X|BTX. (A3)

Next, we show that Y I X | BTX — H(BTX) = #(X). Following the same logic,
we can straightforwardly shown that Y 1 X | BTX implies (A.2) and (A.1), and therefore
’HI(BTX) = H(X).

Proof for Theorem 2

When the central subspace exists, let Sy|x = span(-y) and Hy|x = span((3) for some orthogonal
matrices 4 € RP** and B € RP*<. To prove Sy|x = My x. it suffices to show that (1) Sy x C
Hy|x and (2) dim(Sy|x) = k > d = dim(Hy x). For (1), because the CS is the intersection
of all SDR subspace and the MASES is also SDR subspace, we have Syx € Hy|x. By the
definition of the CS, Y I X | #7X. From Theorem 1, it implies that H(v7X) = #(X). From
the definition of the MASES, d is the smallest dimension such that H(BTX) = #(X) holds for
some B € RP*?, Therefore, dim(Sy|x) = k > d = dim(Hy x).

Finally, the CDS statement is a direct consequence of Theorem 1: the conditional independence
of Y I X | 87X implies that the Bayes’ rule is the same for ¢(X) = ¢(87X) and therefore

Spyix) € span(B) = Hyx -
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Proof for Proposition 4

In the multi-class LDA model, we have X|(Y = y) ~ N(pu,, X) fory =1,...,C, then, without
loss of generality, we consider only the full 3 € Rpm, 1<d<p Fory =1,...,C, the
multivariate normal density leads us to

VABTX) £,(87X)
= (AT (1 + 1y)/2, 8758 - exp{ 5 (1 — )T BBTR) BT (1 — )},

where ¢(- ; (11 + py)/2, BTE) is the probability density function of the d-dimensional multi-
variate normal random variable with mean 87 (p; + fty)/2 and covariance BTX3. Then for the
squared Hellinger distance, we have

-1 C
HEBTX) = 3 3 wiH(£(87X), f1(87X))
J'— k=j+1
C
= Z > wi [1 —eXP{—%(uj — )T B(BTEB) BT (1 —uk}}] ?
J=1 k=j+1

where the maximum is attained at,

c1 ¢ )
Dp=HX)=> > wyp [1 —exp{—2(k; — i) TS (g — .\U‘k)}] -

7=1 k=j+1

The LDA directions is obtained from sequentially maximizing (w’ Zyw)/(w’ Zw), the w’s
will be eigenvectors of 1%, which span the subspace E_lspan(Eb) = Sipa. Letd =
rank () then clearly it is also the dimension of Sppa.

If we plug-in any basis matrixWyps € RP*? such that span(Wypa) = X !span(Z;) into
H(BTX), we haveH (Wi, X) = H(X). This is because that, for any j and k,

(15 — 1) "WrLpA (Wipa S Wipa) " Wi (115 — per)
= (uj— )T Py oy, B2 (1 — k)
= (mj— #k)TE_l/QPE—lﬂspan(zb)E_lﬂ(#j — Hk)
= (15— ) "=y — ),

where the last equality is because the projection onto X ~1/2span(Xp) = X~V 2span(pj — py |
Vi,k=1,...C) = X72span(ua —p1,- - - , ptc — p1) is the subspace that contains X ~1/2( 4 —
k). Therefore, by Definition 3 and Corollary 1, we have shown that,

Dy >Dy= arg max, H(BTX) > H(WIpsX) = H(X) = Dj,
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which immediately implies that MASES has dimension d < min(C — 1,p) and is Hy|x =
span(Wipa) = span(E~H(p; — pg) | Vi, k=1,...,C) = 7 'span(puo — py, - , o — p1)-
Finally, the equality of X~ 'span(u2 — p1, -+ , ppc — 1) = E;(lspan(,ug — W1, e — 1)
is from the equivalence between the linear discriminant analysis direction and the least squares di-
rection (Ye, 2007; Mai et al., 2012; Mai, 2013). For SAVE, it is easy to see that span(Xx — X) =
span(2), then the conclusion follows.

Proof for Proposition 5

The equivalence between SIR and LDA subspace is shown in the proof for Proposition 4. The
remaining of this proposition is a direct consequence of Theorem 2 and the fact that SAVE subspace
is the central subspace under QDA model (Cook and Forzani, 2009, Proposition 3).

Proof for Proposition 6

Let B be an arbitrary basis matrix for the MASES Hy x. then Theorem 1 implies that Y L

X|BTX and hence Pr(Y = j) L X|BTX forall j = 1,...,C. Therefore, we know span(g3)
in (3.4) is the MASES, which is guaranteed to provide a sufficient reduction without loss of any
information. It also immediately implies that the MASES contains all the information about the
Bayes’ rule and thus contains the CDS, provided that the CDS exists.

Proof for Proposition 7

Franc et al. (2011) showed that span(wWsym) is the maximum likelihood estimator for span(u)
in model (3.6). Under the model (3.6), it is easy to see that Syx = Hy|x = span(u) as direct
consequence of Theorems 1 and 2.

Proof for Proposition 8

We compute the derivative as follows,

dB 4 dB af oB of oB

i=1 i=1

AF(B) - dR(B) {6&(?‘1,};) 0f,(BTXy) +6F@(ﬁ,f;)6ﬁ(BTxd)}1 A4

where F; (fi,ﬁl is the same function as F;(B) in (4.2) and we abused the notation a bit here for
denoting fr = fk(BTX@), k =1,2. Then,

OF(f,F) _ AT OF(hT) _ AR 5 g VAR R mhit) o

L ¥ ™

—

dfi A 8f f2 2(p1f1 + p2fa + 6n)2
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The derivative of the normal kernel density estimator with respect of B is computed as follows.
Fork =1,2,

0f(BTX;) -1 L RTX XA RLIX XN (XX
OB ~ (2m)¥2(n— 1)h3d Z EXP[_WnB (Xi=X5)[17]- (X5 —X4) (X;—X4)" B,

yj =k
j#i

which is to be combined with (A.5) as

dF(B - OF;(f1, f2) 0fu(BTX; n
d,((-) ) Z Z Z (;? f2) O (g}ﬁ %) = Z A; Z Wi (X; — Xa)(X; — Xi)'B
i=lh=l k = por

where A; = (fuﬁe‘)lﬁ : (P2f2i —pifu + 571}/{2(101]?11' + pofai + bn)?} and fri = J?;(BTXa'),
k=1,2,and Wi; = (=1)"h;* Wi /(X i Yoy, Uim) and Uy; = exp{—(2h3") BT (X; —
X;)|3} foralli,j=1,...,n.

Proof for Theorem 3
Recall that we are interested in the density estimation function of the following form:

13

ATy 1 BTX: — BTX; _
fk‘(ﬁ X—i}_ m %é: K (h—n) 1 k= 1:\2?
j#i

Y; =k

which is the general class of kernel density estimator used in our estimation, cf. (4.3). For simplic-
1
hi
in Wand and Jones (1994). Set ppin = ming pg. Throughout the proof, for an arbitrary constant
0 < € < pmin/2, we assume that [pr. — pr| < e. By Hoeffding’s inequality, this event happens
with a probability greater than 1 — 4 exp(—2ne?). In what follows, we use the shorthand notation

2 = ABTXy), 1B = fu(BTXy).

ity, we write that K, (x) = — K (h,;1x). Our proof borrows some classical ideas, such as those

Lemma 1 Under Condition (C1), uniformly on BTx and B, we have
¢ T T d 2
|Efi(B”x) — fu(Bx)| < 5 Mihy,. (A.6)
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Proof The proof is for Gaussian kernel, but similar conclusions hold for any kernel K that satisfies
[ wK(w)dw = 0, and [ wT wK(w)dw < co. Straightforward calculation shows that

Ef(BTx) = f Ky, (BTx — BTy) f(BTy)d(BTy)

_ f K(BT2) fo(BTx — h,BT2)d(B2)

f K(BTz){fx(BTx) — (haBT2)TVf(BTx) + %hi(BT 2)T (V2 £1.(€))BT2}d(BT 2)
— (BT + / K (BT2){513(B"2)" (V*fi(62)) B 2}d(B"2)

for some &; € R4, By Condition (C1), we have that

BA(B™) ~ (BT = [ K(BT2)(3(BT2) (V*£u(6)) B 2}d(B )
which is less than or equals to %h%Ml [K(BTz){(BTz)'BTz}d(BTz) = gh,ﬁMl. |

Lemma 2 Under Condition (C1), for sufficiently large n so that € > dMyh2, for any B € RP*4

Pminne? (v2mhy )%
4

Pr(sup | fo(BTX;) — fu(BTX;)| > €) < 2nexp(— ). (AT

Proof Note that

PT(S‘%PME,@ - f:f'iil >e€) = Pr(U@{|f£i - f;?d >e}) < ZPTUJE;E@ - flgﬂ > €)

i=1

Now for each 1,

Pr(lfl!'?:z‘ - f£i| > €)
< Pr(|ff - E(E | Xo)| + [E(FE | Xa) — fBi =€)
= Pr(|ff - E(f& | Xi)| > ¢/2)

where we have applied Lemma 1. Now note that, conditional on X, kai is an average of ng, — 1

independent random variables, K (BT (X; — X;)) and K}, € [0, (v/27hy,) 9. Because |p. —
Pr| < € < pmin/2, by Hoeffding’s inequality, we have that

NPmin€> (v 2?rhn)2d
4

Pr(|f& — E(f& | Xi)| > €/2 | X;) < 2exp(— ) (A.8)
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It follows that

Pr(|f; — E(fih | Xi)| > ¢/2) = E{Pr(|f; — E(f8 | Xi)| > ¢/2| Xi)}

. 20, /2 h 2d
The conclusion follows by combining (A.8) with (A.9). ]

Lemma 3 Forz > 0, |y| < x, we have that |\/z + y — /x| < /]yl

Proof If y = 0, the conclusion is trivially true. If y > 0, then |\/z + vy — /z| = /oy —/z =
Tty—<z Y
= < If y < 0, then|\/z +vy — /x| = Vo — /2 — =
\/QTQ‘I-\/E \/QTQ‘I-\/E < Vylty I V| VT |yl
T —x+ —

VZ+z—Jyl Tz ly

Naixiix
Recall that the sample objective function is, F(B) = Y @ il for some

= ﬁlfll?g +ﬁ2f2‘?¢ + 571
8y, > 0. We next prove that n='F(B) — Fj,,(B) uniformly in B as n — oo and that

max{hn, b ¥~} <« 5, < 1.
By the triangle inequality,

In"1F(B) — Fpop(B)|

n AB' AB'
< |[n"'F(B) - 1 3 \/ﬁ |

ni plfll?g +p2f2]?§ +

N |l n \ffll?ifgl?g _li \!f}if?@ |
mn

N pifP 4+ pafP + o n o pif +pafyy + 0

i A JIBTE
n

+ —F
P Plffi+p2f2]?£+5n p1fﬁ- +p2f2]?¢-+5n
Neixtix
+ — Fpop(B))|

E
plfll?g+p2f2]?§+5n
= Li+Lo+La+ Ly

We show in the following that all these four terms converge to O in probability uniformly in B.
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L < s V il \ Fifa

i ﬁlfﬁ ‘l‘ﬁ?fgl?i + 6n ;le'ﬁ +p2f2]?i + 0n

|;52—p2|)_su (ﬁlfll?i+ﬁ2f2]?i)\/ fll?if%?i

< (Iﬁl _p1| +
- 1 P2 i (ﬁlfﬁ'+ﬁ2f2]?i}(P1ng+P2f2]?g)
< 4,/;p2(|p1 — p1| + |P2 — p2|) < 4,/p1p2¢e

Pmin Pmin

For Lo, set Us = p1 f% + p2f8, + 6n and Vi = p1 fB, + po f5; + 6n.
VBB \JBIE
o v
- IBIE =
e U.V;

o B B B rB
< Y sup Ifﬁ—fﬁlJrsup'Vfl,ifu_ frifail
T 47 i 2yPipadn i On

Ly < sup]

13

NG
-+ sup
i Vi

= Ls + Le,

where we use the fact that

/ B B
f 1,e‘f2,e‘ 1 ) .
< and |V;| > §,. To this end, we consider 0 <
Ui 2\/p1p2

€ < M, and sufficiently large n such that miq{dﬁeQ, Sn€, €} > dh2 M. Note that this is possible
because &, > hy. Consider the event 4 = {|f£§ — f],f;-| < min{62€, dne, €} }.

By Lemma 2, we have that Pr(A) > 1—Crn exp(—Cndlel(v/2mhn)24)) — 1,if n= /40, Y? <
dn. Under this event, it is easy to see that Ly <

\/Plpz'
By Lemma 3, we have that Lg — 4 sup; |\/f}?®-f2% - \/ffiffﬁ < 6=V sup; /[l
where 7; = (fll?i — flli.)ff@ + (fg?i — ffé)fﬁ-. To show that Lg < +/3M;e€, we have

|f1]?'i — ffd : fQ]?z' + |f2B1, - fgl?ﬂ . fll?t‘
|f2 = fOl - (15 — ol + 1) + |3 — fl - 5
3M,62¢6?

|7

IAIA A

For L3, note that

\!fﬁ'ffi 1

B B S '
plfl,'i +p2f2,i +0n 2\/101192

35



ZHANG, MAI AND ZOU

By Hoeffding’s inequality, we have that Pr(Ls > €) < 2 exp{—mne2/(2p1p;)}. Therefore, Lz — 0
in probability uniformly.
For L4, note that, when &, — 0, for any X; and B, we have

NI NEibY
%
plffi+p2f£;’+5n plf]%"‘pr?i

monotonically increasingly. By dominant convergence theorem, Ls — 0 for each B. Then by
Dini’s theorem, the convergence is uniform. Consequently, we have the desired conclusion.

Proof for Theorem 4

To show that P 7 converges to the true parameter P g, in probability, where the population objective
function Fop(B) attains a unique global minimum at Hy|x = span(3;), we apply Proposition
4.1.1 of Amemiya (1985), which establishes the convergence in probability of the sample estimator
6 to its population truth 8; under the following three conditions: (A1) parameter space is a compact
set of RY for some real number ¢; (A2) the sample objective function J,(8) = J,(6;X) is a
measurable function of the i.i.d. data matrix X = (X4, ..., X,,) € RP*" for all 8; (A3) n=1J,,(0)
converges to a non-stochastic function Jpop(@) uniformly in 8 as n — oo and Jpep(0) attains a
unique global maximizer at 8;. For Condition (A1), the optimization of B & RP*4 is in fact over d-
dimensional Grassmannian. Therefore, the parameter space is compact (a conpact set of R®~4)d)
due to the compactness of Grassmannian. For Condition (A2), the sample objective function by
definition, (4.2), is a measurable function of X = {(Xj,Y3)};*, for all B. For Condition (A3), it
is proven in Theorem 3.

Next, for non-unique Hy x. Let G = {B : mingep |B’ — BJ|} < €}. Because G is an open
set, G CNoeis compact. It follows that Fpop has a maximum over QC N @. Define

Fnax = max Fyop(B), Fax = Foop(B), €0 = Finax — I A.10
max = WX Fpop(B), Fmax plax pop(B), €0 = Fmax — Fmax (A.10)

Let A be the event “|F'(B) — Fpop(B)| < €/2 for all B”. Then under A we must have that,
for any B c B’,B ebB,

Fpop(B) > F(B) — ¢9/2 (A.11)
F(B) > Fnax — €0/2 (A.12)
On the other hand, by definition of B. we have F(B} > F(B) and hence (A.11) implies that
Fpop(B) > F(B) — €/2 (A.13)
Add (A.12) and (A.13) and we have that
Fpop(B) > Frax — €0 (A.14)

By the definition of o we have that A implies that B. Also note that Pr(A) — 1. It follows
that, Pr(B € G) > Pr(A) — 1. And we have the desired conclusion.
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