
 

 

INTRODUCTION 
Computational modeling of the heart dynamics and function can 

help further our understanding of different heart diseases, which are still 
the dominant cause of death in the world. The pumping action of the 
heart is dictated by the active contraction of the myocardium, which is 
commonly modeled as an incompressible material [1]. Numerically 
satisfying the incompressible constraint is quite challenging as it leads 
to a saddle point problem and the well-known inf-sup condition [2]. 
Common methods to enforce incompressibility include Lagrange 
multiplier methods and penalty methods [3]. They usually require high-
order elements for vectors in order to satisfy the inf-sup condition and 
can be computational expensive.  

Inspired by the application of stabilized finite element methods in 
fluid dynamics, researchers have been developing the counterpart in 
solid mechanics [2,4]. In such approach, the momentum balance is 
stated in a rate form (velocity), and the incompressibility is enforced 
through divergence of velocity equaling zero. The introduction of 
stabilization terms enables application of linear elements in modeling of 
problems involving large deformations.  

In this study, we couple the new stabilized finite element method 
for mechanics with an active strain model to simulate the cardiac 
contraction. A classic block contraction case is used to demonstrate the 
capability of the solver. 
 
METHODS 
 Computational Biomechanics: The governing equations for the 
passive responsive of the myocardium expressed in the current 
configuration are: 

				�̇� = 𝒗                                     (1) 
	𝜌�̇� = −∇!𝑝 + ∇! ⋅ 𝝈"#$                                        (2) 
∇! ⋅ 𝒗 = 0                                                                 (3) 

Here, 𝒖 , 𝒗  and 𝑝   are the displacement vector, velocity vector and 
pressure. 𝝈!"#  is the deviatoric stress tensor, and its expression is 
determined by the constitutive relationship of the material. It is noted 
that the above governing equations are very similar to the Navier-Stokes 
equations, where the momentum equation is expressed in the rate form 
and the incompressibility is enforced through the divergence of 
velocity. Moreover, the volumetric component of the stress is grouped 
into the pressure, while 𝝈!"#  strictly represents isochoric parts. 
Equations (1-3) are solved by the variational multiscale method 
developed by Ju & Marsden [4] using linear elements. 
 Active Strain Model: In the active strain model, the deformation 
gradient follows a multiplicative decomposition [5] 

𝐅 = 𝐅%𝐅&                                                                   (4) 
Here, 𝐅$  is the passive elastic deformation and 𝐅% is the active 
deformation of the heart muscles initiated by electric signals. The 
assumption here is that the energy is only stored during the passive 
elastic process and not in the active deformation process. Hence, the 
first PK stress in the reference configuration is  
                       𝐏(𝐅) = det(𝐅%)
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∂𝐅E

𝐅A−𝑇             (5) 
where 𝑊(𝐅$) is the strain energy.  
 The active deformation gradient is usually expressed as 
𝐅% = 01+ 𝛾𝑓1 𝐟𝟎⨂𝐟𝟎 + 21+ 𝛾𝑠3𝐬𝟎⨂𝐬𝟎 + 21+ 𝛾𝑛3𝐧𝟎⨂𝐧𝟎   (6)                   
Here, 𝐟𝟎 , 𝐬𝟎  and 𝐧𝟎  are the fiber, sheetlet and norm directions, 
respectively. 𝛾*  is the active shortening in the fiber direction and 
det(𝐅%) = 1 due to the incompressibility. Different choices of 𝛾+ and 
𝛾, will lead to different activation models. The transversely isotropic 
model can be recovered by setting 𝛾+ = 𝛾, = 1/:1 + 𝛾* − 1 . The 
orthotropic activation model developed by Rossi et al. [6] requires 𝛾, =
𝑘𝛾*. The parameter 𝑘, which is set to 4 in the current study, links the 
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active deformation in the microscopic scale and macroscopic scale and 
helps to capture the wall thickening during contraction. The 
transmurally heterogeneous orthotropic model, which takes into 
account the transmural variation of contractibility of muscle fibers, can 
be expressed as a linear combination of the previous two models [7], i.e. 
𝛾,(𝜆) = (1 − 𝜆)𝑘𝛾* + 𝜆21/:1 + 𝛾* − 13, where 𝜆  is the transmural 
coordinate. 
 
RESULTS  
 A classic block contraction case is used to demonstrate the 
accuracy of the proposed method. The computational domain is a cube 
with unit length, i.e., Ω0 = [0, 1] × [0, 1] × [0, 1]. The fiber and sheetlet 
directions align with Y and X axes respectively (see the wireframe in 
Fig. 1a). The domain is discretized by tetrahedral elements. The widely-
used fiber reinforced hyperelastic material model is used to describe the 
passive response of the myocardium slab [1]. The parameters can be 
found in Rossi et al. [6]. 

  
Figure 1: (a) The wireframe represents the reference 

configuration and the color map shows the displacement under 
orthotropic activation. (b) Temporal evolution of fiber shortening. 

 

 Since the propagation of electrical signal is usually much faster 
than the mechanical activation, the fiber shortening can be considered 
homogeneous within the computational domain. Instead of solving the 
electrophysiology for the active fiber shortening, it is prescribed during 
the simulations and its evolution is plotted in Fig. 1b. Symmetric 
boundary conditions are applied at planes X = 0, Y = 0 and Z = 0, while 
a stress-free boundary condition is enforced on the other faces. 
 The deformation at maximum fiber shortening is plotted in Fig. 1a. 
The fiber shortening triggers a more aggressive shrinkage along the 
norm direction (Z direction). Due to the incompressible constraint, this 
leads to a substantial wall thickening along X axis at this phase.  
 Fig. 2 tracks the temporal history of the displacement at the center 
point of face X=1. The orthotropic model leads to nearly 40% maximum 
wall thickening, which is in good agreement with the physiological 
value [8]. On the other hand, the transversely isotropic model only 
produces 3% maximum wall thickening. Moreover, results from the 
current study match closely with those extracted from Rossi et al. [6]. It 
is worth emphasizing that linear tetrahedral element is used in the 
current study while high order elements were used in the other study. 

 
Figure 2:  Displacement along the sheetlet direction at [1.0, 0.5, 

0.5]. The lines are from the current study. 

     
Figure 3: (a) Idealized LV model; the color map shows the 
deformation under transmurally heterogeneous orthotropic 
activation. (b) Temporal evolution of fiber shortening. 

 

 The capability of the proposed method is further demonstrated by 
simulating the active contraction of a left ventricle (LV) model shown 
in Fig. 3a. The fiber direction 𝒇-  varies linearly in the transmural 
direction from −60° at the epicardium to +60° at the endocardium. 
Details about the geometry can be found in Ref. [7]. The transmurally 
heterogeneous orthotropic model is used to simulate the LV contraction 
under prescribed fiber shortening in Fig. 3b. It is observed that the 
endocardium generally shows larger deformation than the epicardium 
and the apical region undergoes largest displacement, which are in 
agreement with clinical observations and findings in [7]. 
 
DISCUSSION  

The current study successfully demonstrates the capability of the 
new stabilized finite element method in modeling muscle that undergoes 
large deformation. Translating the incompressible condition from 
Jacobian determinant equal one to zero velocity divergence enables 
application of tools developed for fluid flow in solid dynamics, such as 
the variational multiscale approach. This leads to efficient modeling of 
myocardium contraction with linear finite elements at accuracy 
comparable to higher-order elements. Application of this method in 
modeling idealized LV contraction shows qualitative agreement with 
previous literature and clinical observations. More in depth validation 
is ongoing and for a broader range of examples. 

Individually, computational fluid dynamics and solid mechanics 
have each made significant inroads into understanding cardiac function 
and heart diseases.  The current method provides a unique perspective 
to couple these physics using a unified theoretical and numerical 
framework to study cardiac fluid-structure-interaction. 

There are two common models for active contraction: active stress 
and active strain models. We employed the latter. While it is more 
difficulty to implement, a main advantage of this model is that 
the ellipticity of the stress is guaranteed even under substantial 
deformation [5]. However, the active stress model is more widely used 
due to its intuitiveness and ease of implementation. A comparison of 
these two models under the same numerical framework is ongoing. 
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